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Abstract
Understanding processes driving air-sea gas transfer and being able to model both its mean and variability are critical for studies of 
climate and carbon cycle. The air-sea gas transfer velocity (K660) is almost universally parameterized as a function of wind speed in 
large scale models—an oversimplification that buries the mechanisms controlling K660 and neglects much natural variability. Sea 
state has long been speculated to affect gas transfer, but consistent relationships from in situ observations have been elusive. Here, 
applying a machine learning technique to an updated compilation of shipboard direct observations of the CO2 transfer velocity 
(KCO2,660), we show that the inclusion of significant wave height improves the model simulation of KCO2,660, while parameters such as 
wave age, wave steepness, and swell-wind directional difference have little influence on KCO2,660. Wind history is found to be 
important, as in high seas KCO2,660 during periods of falling winds exceed periods of rising winds by ∼20% in the mean. This hysteresis 
in KCO2,660 is consistent with the development of waves and increase in whitecap coverage as the seas mature. A similar hysteresis is 
absent from the transfer of a more soluble gas, confirming that the sea state dependence in KCO2,660 is primarily due to bubble- 
mediated gas transfer upon wave breaking. We propose a new parameterization of KCO2,660 as a function of wind stress and significant 
wave height, which resemble observed KCO2,660 both in the mean and on short timescales.
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The ocean is a key sink of CO2, and the instantaneous rate of ocean CO2 uptake is proportional to the air-sea gas transfer velocity. 
Transfer velocity is almost universally parameterized as a function of wind speed only in global models, which is a reasonable ap
proximation in the mean but neglects physical mechanisms and so variability. Here, combining the largest observational dataset 
to date we demonstrate that there are substantial variations in CO2 transfer at short timescales due to sea state and wind history. 
We propose a new parameterization of the gas transfer velocity based on wind and waves data to more accurately predict air-sea 
CO2 flux.
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Introduction
The ocean has absorbed ∼30% of the atmospheric CO2 emitted 
from human activities since the industrial revolution (e.g. (1)). 
Reducing the uncertainties in air-sea CO2 flux and improving 
our understanding in the processes controlling it are thus critical 
for monitoring ongoing change and projecting the future climate. 
Air-sea flux of a gas such as CO2 can be measured directly by the 
eddy covariance (EC) technique (e.g. (2)), but such monitoring has 
not been implemented on a large spatial and temporal scale. 
Instead, flux is generally estimated from a parameterization of 
the gas transfer velocity, K660, and the gas concentration differ
ence between air and water near the interface, ΔC: Flux = K660 

(Sc/660)−0.5 ΔC. Here, Sc is the Schmidt number of the gas in water. 
Thus, any error in K660 is directly propagated to the flux estimate 
and is in fact the dominant source of flux uncertainty (e.g. (3)).

Wind blowing over the ocean provides the predominant, but in
direct forcing for K660. This is because for sparingly soluble gases 

like CO2 and dimethyl sulfide (DMS), their air-sea exchange is ul

timately controlled by complex waterside processes (4). K660 in 

global models is almost universally parameterized as a simple 

function of wind speed (U10n), oversimplifying the underlying 

physical mechanisms. Such K660 parameterizations become espe

cially unsatisfying when gases of different solubility (e.g. CO2 and 

DMS) require different wind speed fits (e.g. (5)).
Mechanistic models usually partition K660 into two parallel 

processes (K660 = kd + kb): (i) diffusive transfer through an un
broken surface (kd) due to viscous wind stress and surface re
newal, which is relatively more important at lower wind speeds 
and (ii) bubble-mediated transfer (kb) upon wave breaking, 
which becomes increasingly important at higher wind speeds. 
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kd for different waterside-controlled gases should be identical 
when normalized to a reference Schmidt number, and the trans
fer velocity of the more soluble DMS (KDMS,660) is often thought 
to approximate kd (e.g. (6, 7)). In contrast, kb is relatively more im
portant for the less soluble CO2 than for DMS (5–9). Reichl and 
Deike (10) estimated that kb contributes to 30% of CO2 exchange 
globally by combining a mechanistic bubble-breaking model (11) 
with significant wave height data from the Wavewatch III model. 
A survey of literature, though, shows an order-of-magnitude dis
crepancy in the estimation of kb (11–17), illustrating our poor 
understanding in bubble-mediated transfer.

Direct air-sea CO2 flux measurements on ships by the EC meth
od have improved dramatically in quality over the last 1.5 deca
des. Yang et al. (2) synthesized and reevaluated CO2 flux 
observations from 11 cruises, primarily from the North Atlantic 
and Southern Ocean but also including the Tropical Indian 
Ocean and the Arctic. Dividing CO2 flux by the concurrently meas
ured air-sea CO2 concentration difference and applying a Schmidt 
number normalization yields KCO2,660. This foundational dataset 
(over 2,000 h) shows that the SD in the mean KCO2,660 vs. wind 
speed relationship is about 20% (range >50%), with typically high
er KCO2,660 at a given wind speed in regions of larger waves such as 
the North Atlantic.

The physical interaction between wind and waves is complex 
and nonlinear. Simplistically, wind blowing over the ocean sur
face provides the momentum to produce windsea, which after 
some separation in time and space becomes swell. Breaking waves 
generate bubbles, which are manifested as whitecaps on the 
ocean surface. Sea state has long been speculated to affect K660 

but deciphering consistent relationships from in situ data has 
been difficult. This is likely due to a combination of factors: 

• K660 over the open ocean is challenging to measure. Each re
search cruise typically returns 100–200 valid data points (if 
measured by EC) or a few data points (if inferred from tracers, 
e.g. (18)), which do not cover the full range of sea states.

• There is substantial scatter in the K660 observations. Until re
cently, the partitioning in scatter between natural variability 
and measurement uncertainty was unclear. Dong et al. (19) 
comprehensively determined the random uncertainty in EC 
KCO2,660 data to be about 30% under typical conditions for 
hourly measurements (generally decreasing with increasing 
wind speed and flux magnitude).

• Wind and wave parameters tend to correlate with each other, 
and which wave parameters are of importance toward K660 is 
not well known.

Some sea state dependencies in K660 have been proposed, but with 
little consensus. Zhao et al. (20) proposed the wave Reynolds num
ber (RHw = u* × Hs/vw) that includes both wind and wave informa
tion as a parameter to describe K660. Here, u*, Hs, and vw are the 
friction velocity (related to surface wind stress), significant wave 
height, and water viscosity, respectively. This theoretical frame
work implies that K660 should be greater in more developed seas 
than in developing seas. Brumer et al. (21) showed that the use 
of RHw collapses different field observations of K660 better than 
wind speed. Blomquist et al. (5) and Fairall et al. (17) adopted 
this R0.9

Hw scaling for kb. Deike and Melville (11) developed a mech
anistic model of kb, which can either take on a spectral form or be 
related to bulk wave parameters: proportional to u5/3

∗ H2/3
s . Using 

the spectral model, kb was modeled to be greater during the devel
oping phase of a storm in the Southern Ocean (22), in contrast to 

the RHw formulation. Zavarsky and Marandino (23) further sug
gested a dependence in KDMS,660 on the swell-wind directional dif
ference, which certain directions causing more “shielding” of wind 
from swell, resulting in suppressed transfer.

In this work, we investigate the sea state dependencies in K660 

from multiple datasets of KCO2,660, KDMS,660, waves, and whitecap 
coverage. We first quantify the variability in the KCO2,660 observa
tions that cannot be explained by wind speed and by measure
ment noise. We then use a machine learning (ML) method to 
“agnostically” investigate relationships between KCO2,660 and vari
ous wave parameters. The ML approach elucidates the potential 
key controlling parameters for KCO2,660. Further in depth analysis 
of these parameters as well as comparison between KCO2,660 and 
KDMS,660 enable us to tease out the driver for the sea state depend
ence in KCO2,660. Finally, we propose and evaluate a new param
eterization of KCO2,660 based on wind and bulk wave data.

Variability in the hourly KCO2,660 
observations
In this paper, we have added ∼600 hours of KCO2,660 data from four 
recent cruises in the Southern Ocean (24, 25) to the foundational 
dataset of KCO2,660 observations (∼2000 hours) from 11 cruises by 
Yang et al. (2), forming the largest KCO2,660 dataset to date. 
Please refer to these two papers for the exact location/time of 
the cruises. A simple power fit as a function of U10n to all the 
KCO2,660 observations returns a R2 of 0.70 (Fig. 1A). How much of 
the residual variance is due to noise vs. natural variability? To an
swer this, we generate a set of synthetic KCO2,660 data based on the 
U10n fit with a Gaussian random noise that averages 30% (19). This 
synthetic data shows that the maximum possible R2 between 
KCO2,660 and a dependent variable within this dataset is 0.91 
(Fig. 1B). Wind is indeed the predominant driver for gas transfer, 
but there remains substantial variability not explained by U10n 

(variance gap of 0.91–0.70 = 0.21). This is particularly true at 
high wind speeds (e.g. 15 to 20 m s−1), where variance in the syn
thetic KCO2,660 dataset is only about a quarter of the variance in the 
observations. Clearly, confining our attention to averages of 
KCO2,660 in wind speed bins, as is the norm in past decades of re
search, neglects much natural variability caused by other factors 
such as sea state.

Deciphering sea state dependence in KCO2,660 
using ML
To investigate controlling factors in gas transfer, we developed a 
ML model (random forest, (26)) for the prediction of hourly 
KCO2,660 based only on the foundational dataset of Yang et al. (2). 
Model input parameters, consisting primarily of wind (in situ) 
and bulk wave (ECMWF) parameters, are detailed in the 
Supplementary Material. Wave parameters from ECMWF were 
computed from the full modeled wave spectrum, as well as separ
ately for windsea and swell components. In the spectral wave 
model, the area of the spectrum where the wind input is actively 
transferring momentum into waves is defined as windsea. The re
maining part of the wave spectrum is defined as swell.

The random forest model was developed with 200 trees, a leaf 
size of one, and the trees were trained to minimize the means 
squared error. From the cruise data collected, periods of incom
plete data were removed, and standard scaling was performed 
to normalize the rest of the data to zero mean and unit variance. 
The data were then randomly split into training (65%) and testing 
(35%) datasets (see Fig. 2D as an example). The 65/35% split was 
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applied to all the cruises within the foundational dataset to ensure 
suitable temporal and geographical representations within both 
the training and testing datasets. We reserve the new Southern 
Ocean data from Dong et al. (24, 25) as an independent dataset 
for further model validation.

Within the foundational dataset, the ML model captures a R2 of 
0.97 in the training data and 0.81 for the testing data (Figs. S1 and 

S2). The R2 for training exceeds the theoretical maximum R2 of 
0.91 (Fig. 1B). This reflects a small degree of “over-fitting” by the 
ML model, which does not appear to affect how the ML predicts 
nontraining data (Fig. 2D). The R2 for testing surpasses the R2 of 
a simple wind speed fit by 0.11 but is lower than the maximum 
possible R2 of 0.91, likely in part because we have neglected in 
the ML model some other processes that can also affect KCO2,660, 

Fig. 1. A) Observed KCO2,660 vs. wind speed (hourly) from the entire dataset; the thick solid line shows the mean wind speed dependence (power fit) and the 
thin line with markers show bin-average with SD. B) Synthetic KCO2,660 (hourly) based on the wind speed dependence, accounting for random 
measurement noise. C) Predicted KCO2,660 (hourly) from Eq. 4, Deike and Melville (11), and Fairall et al. (17). D) Predicted KCO2,660 (hourly) from Eq. 4 with 
random measurement noise, which approaches observations in the mean and in variability. Variability predicted by Fairall et al. (17) appears to be too 
large at high wind speeds relative to observations.
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such as surfactants (e.g. (27, 28)) and convection (29). A separate 
random forest ML model run with wind input only yields an R2 

of 0.75 for the testing data. This shows that (i) inclusion of wave 
parameters improves the ML model of KCO2,660 (by R2 of about 
0.81 − 0.75 = 0.06), and (ii) ML is able to identify wind-dependent 
patterns in KCO2,660 (e.g. wind history) that a simple wind speed 
fit neglects (by R2 of about 0.75 − 0.70 = 0.05).

When we validate the ML model with wave parameters 
against the new KCO2,660 observations that were not used for 
the training (24, 25), the model slightly over predicts (R2 of 
0.66, Fig. S2), perhaps due to the aforementioned other control
ling factors for gas transfer that have not been considered. The 
Pearson correlations between observations and predictions re
mains high though (r2 = 0.74), implying that the ML model does 
capture most of the variations in KCO2,660 in the validation 
dataset. The random forest ML algorithm is publicly available 
at GITHUB (https://github.com/djmoffat/air-sea-gas-prediction). 
We also explored the use of a small Artificial Neural 
Network, but this underperformed compared with the random 
forest model, likely due to the still relatively limited observation
al dataset.

To further assess which input predictor has the largest impact 
on the predictions from the ML model, we turn to SHAP (SHapley 
Additive exPlanations; (30)) analysis. The SHAP value (Fig. S3) 
shows that the most important parameters in predicting KCO2,660 

are U10n and significant wave heights (windsea, swell, and total), 

while parameters such as wave age, swell-wind direction differ
ence, swell period, and wave steepness are generally not 
important.

Example of sea state dependence from the 
HiWinGS cruise
Clear sea state dependence in KCO2,660 is apparent in the data from 
the HiWinGS cruise (2013 in the North Atlantic; originally pub
lished by (5) and recomputed in the case of CO2 by (2)), during 
which the ship stationed through multiple exceptionally large 
storms (Fig. 2). The highest wind speed (>25 m s−1) was observed 
on 25th October 2013 in what eventually was named the “St 
Jude” storm upon landfall in the United Kingdom. KCO2,660 was ex
pectedly very high at the peak in wind speed, but interestingly the 
high KCO2,660 values persisted for many hours following the wind 
peak. A simple U10n fit to all the HiWinGS KCO2,660 observations 
clearly underestimates the observed KCO2,660 for most of 26th 
October, when the seas declined following the peak of the storm. 
At the same time, the U10n fit overestimates KCO2,660 for most of 
24th October, when the seas were building up. In contrast, we 
do not see any difference in KDMS,660 (a proxy of diffusive transfer) 
between rising and falling winds/seas during the HiWinGS cruise.

Fairly long periods of continuous measurements and the large 
range in wind conditions during HiWinGS allow us to assess the 
time lag between gas transfer and its drivers (Fig. 2C). Consistent 

A C

B

D

Fig. 2. An example of the impact of waves on gas transfer during the “St. Jude” storm of the HiWinGS cruise. A) Wind speed peaked in excess of 25 m s−1 on 
25 October, while significant wave heights (total and swell) and whitecap fraction remained elevated for hours longer. B) A simple U10n dependent fit to the 
HiWinGS KCO2,660 observations tends to overestimate during periods of rising winds and developing seas (e.g. 24 October), and substantially 
underestimate during periods of falling winds and more developed seas (e.g. 26 October). C) Lag correlation analysis of the period during the St. Jude 
storm shows that KCO2,660 is lagged relative to U10n, and this hysteresis is most similar to that of the wave Reynolds number (here the viscosity of water at 
20°C was used to compute RHw). A similar sea state dependent hysteresis is not observed in KDMS,660, which is well described by a U10n dependence 
throughout the storm. D) Predictions from the ML model and Eq. 4 of KCO2,660. Overall, the ML model generalizes the mean trend of the observations well. 
A small degree of over-fitting is apparent as the ML model often tries to match the individual “wiggles” in the training data, which are partially due to 
measurement noise. Equation 4 from this work outperforms a simple wind speed fit but does not capture as much natural variability as the ML model 
following this extreme storm event (e.g. 26 October).
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with our understanding of the development of the seas, windsea 
lagged behind wind by 1–2 h, while swell lagged behind wind by 
much longer. There is a clear asymmetry in the KCO2,660:U10n lag 
correlation. This hysteresis implies that KCO2,660 has some lag rela
tive to U10n, similar to the behavior of the wave Reynolds number 
computed from the total significant wave height. In contrast to 
KCO2,660, KDMS,660 correlates symmetrically with respect to U10n 

and its peak correlation with U10n is higher than that of KCO2,660, 
suggesting minimal sea state effect.

The measured whitecap coverage (Wf) was nearly three times 
higher for most of 26th October than on 24th October, despite 
very similar wind speeds at around 12 m s−1. Measurements of 
bubbles during the HiWinGS cruise also showed higher bubble 
void fractions during falling winds than rising winds (31). On ag
gregate, the higher whitecap coverage during falling winds and 
more developed seas agrees well with previous observations 
from the Knorr11 cruise (32) and with Callaghan et al. (33), as 
shown in Fig. 3A and Table S1. Here rising (falling) wind is defined 
as dU10n/dt of the preceding three hours (including hour of inter
est) being >0 (<0), as in Hanson and Phillips (34) and Callaghan 
et al. (33). An analogous relationship with wind history was ob
served for sea spray flux from a coastal site (35). The similar be
haviors in KCO2,660 and Wf toward wind history and the lack of 
wind history dependence in KDMS,660 suggest that the hysteresis 
in KCO2,660 is mostly due to bubble-mediated transfer upon wave 
breaking.

Mean sea state and wind history 
dependencies in KCO2,660

Conditions during the HiWinGS cruise were rather extreme but a 
similar sea state dependence is apparent at lower wind speeds. 
We now turn our attention to the entire KCO2,660 dataset. As with 

Wf, for each hour we compute wind history as dU10n/dt over the 
preceding three hours. The KCO2,660 data are then stratified into 
categories of “rising wind” (dU10n/dt >0, N = 1074; or >0.5 m s−1 

h−1, N = 465) and “falling wind” (dU10n/dt <0, N = 1197; or < 
−0.5 m s−1 h−1, N = 487). At the same wind speed, on average 
KCO2,660 during falling winds exceeds KCO2,660 during rising winds 
by on the order of 20%, with the steeper threshold of |0.5 m s−1 

h−1| usually leading to a greater enhancement than a threshold 
of 0 (Fig. 3B; Table S1). The enhancement appears to be most pro
nounced at wind speeds above 12 m s−1, though above 20 m s−1 

the number of observations becomes very limited.
Periods of falling wind are typically associated with more devel

oped seas (and relatively high wave age), while periods of increasing 
wind are typically associated with less developed seas (and relatively 
low wave age). The ML model does not find wave age (and inverse 
wave age) to be an important controller factor of KCO2,660. This may 
be because the parameter wave age (phase speed of wave divided 
by wind speed) is highly dependent on wind speed, with high wind 
speed conditions usually corresponding to less developed seas (e.g. 
(36)). Including it thus provides limited additional information over 
what is already provided by wind speed. In comparison, wind history 
is not very dependent on wind speed on the whole.

So what causes the wind history dependence in the KCO2,660 ob
servations? Here, we separate the hourly KCO2,660 data in 1 m s−1 

wind speed bins (to remove the U10n dependence) and then com
pute the correlations between KCO2,660 and significant wave 
heights as well as wind history within the bins (Table S2). The 
key findings from this analysis are: 

• Correlations between KCO2,660 and significant wave heights are 
almost always positive, and the correlations are usually statis
tically significant (95% confidence) at U10n above 7 m s−1, con
sistent with substantial bubble-mediated transfer for CO2.

Fig. 3. Wind history dependence in whitecap coverage from three different cruises (A) and in CO2 transfer from 15 cruises (B). At high wind speeds, 
whitecap coverage tends to be greater during falling winds than during rising winds (by about 50% for the Knorr11 cruise and (33)), while KCO2,660 is on 
average about 20% greater during falling winds than during rising winds. The error bars on rise/fall categories indicate SE, while the gray shading on the 
overall bin-average in B (black line) indicates SD.
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• Total significant wave height correlates most strongly with 
KCO2,660, with both windsea and swell components contribut
ing toward the correlation, qualitatively consistent with ML 
SHAP analysis (Fig. S3).

• Correlations between KCO2,660 and wind history are generally 
negative (consistent with Fig. 3B), but the correlations are 
weaker than with significant wave heights.

The above findings support the approach of parametrizing kb (and 
not K660 directly) as a function of total Hs, as in Blomquist et al. (5), 
Deike and Melville (11), and Fairall et al. (17). The wind history de
pendence in KCO2,660 appears to reflect the Hs dependence to a large 
extent—that KCO2,660 is higher during falling winds than rising winds 
at the same wind speed is partly because waves (and whitecap cover
age) tend to be greater during falling winds than rising winds (Fig. S4). 
This understanding forms the foundation for our new parameteriza
tion of KCO2,660 based on bulk wind and sea state parameters.

Building a new wind-wave 
parameterization of KCO2,660

Deike and Melville (11) proposed a parameterization of K660 based 
on bulk wind and wave parameters:

K660 = kd + kb = Au∗ + Bu∗ 5/3(gHs)
2/3 (1) 

Here, we have for simplicity removed from their formula the de
pendence on Ostwald solubility (which for CO2 is close to unity). 
A and B are tunable coefficients, while g is gravity. Zhou et al. 
(37) adopted the same formulation as Eq. 1 but with different A 
and B coefficients.

Fairall et al. (17), following Blomquist et al. (5), proposed an al
ternative representation of K660 based on the COARE gas transfer 
model, which (ignoring buoyance effects at low wind speeds) can 
be simply represented as:

K660 = kd + kb = Auv∗+BWf = Auv∗ + B(RHw)0.9
. (2) 

Here, uv∗ is the viscous part of u∗ — a parameter described by 
Mueller and Veron (38) that cannot be readily measured in the 
field. Wf is the whitecap coverage, which is parameterized as a 
function of the wave Reynolds number (RHw = u∗ Hs/vw at a mean 
HiWinGS temperature of 10°C) according to the works from 
Brumer et al. (39). A and B again are tunable coefficients, which 
are constrained by limited observations of both KCO2,660 and 
KDMS,660. Compared with Deike and Melville (11), kb in Fairall 
et al. (17) is ∼70% greater while kd is 30%∼smaller.

In both equations above, kb depends on wind stress as well as 
wave heights. Yang et al. (2) showed that at low to moderate 
wind speeds, KCO2,660 has an essentially linear dependence on u*, 
consistent with the idea that diffusive transfer is driven by wind 
stress. Here, we opt to parameterize kd as a function of u* instead 
of uv*, since the former is more readily measurable in the field and 
already available in large datasets (e.g. ECMWF reanalysis). Since 
Wf appears to have a near linear dependence on RHw (39), for our 
parameterization we start with the basic form below:

KCO2,660 = kd + kb = Au∗+BWf = Au∗+Bu∗Hs. (3) 

Here, we have neglected the dependence on vw, which is conveni
ent for simplifying units in RHw, but does not help to constrain 
variability in KCO2,660 (2). The bulk u* is used, which is derived 
from in situ meteorological and underway seawater observations 
using the COARE3.5 model (with a wind speed dependent 
Charnock relation). We note that during windsea-dominated 

conditions, Hs approximately scales with u2
∗ . Then, the kb term in 

Eq. 3 (as well as in Eq. 1) scales with u3
∗ , which is in line with histor

ical Wf observations and the concept that Wf is strongly related to 
the energy flux from the wind (40). Compared with the Eq. 1, the kb 

term in Eq. 3 is more weighted toward wave height and less toward 
wind stress in the presence of swell.

Since KCO2,660 in Eqs. 1 and 3 are both dependent on u*, we can 
divide observed KCO2,660 by u* to evaluate the functional form for kb 

and assess the coefficients A and B. For this analysis, we neglect 
periods when u* < 0.1 m s−1, as the relative measurement uncer
tainty is substantially larger and other effects such as buoyancy 
may become important under these calm conditions. For the 
Deike and Melville (11) approach, KCO2,660/u* appears to have a 
nonlinear relationship with (u* g Hs)

2/3 (Fig. 4A). In contrast, 
KCO2,660/u* and Hs has essentially a linear relationship (Fig. 4B). 
From this it seems that the functional form of Eq. 3 is reasonable 
and seems more consistent with KCO2,660 observations than Eq. 1
(11) over the full range of sea state.

If we fit the observed KCO2,660 as a function of u* and Hs simul
taneously following the functional form of Eq. 3, we arrive at the 
following parameterizations of KCO2,660 (in units of cm h−1):

KCO2,660 = 360, 000(1.52e − 4u∗ + 2.90e − 5u∗Hs). (4) 

Interestingly, fitting KCO2,660 with Hs_windsea instead of total Hs does 
not improve the fit, similar to findings from Blomquist et al. (5) and 
Brumer et al. (21). Swell appears to be important for CO2 transfer, 
as also implied from the SHAP analysis (Fig. S3) as well as from 
correlations between KCO2,660 and the different Hs components 
(Table S2). It is worth cautioning though that the spectral separ
ation between windsea and swell in the ECMWF wave model is 
fairly simplistic. In cases of rapidly changing wind fields, the 
part of the spectrum that is defined as swell might still contain 
steep breaking waves that contribute to gas exchange.

Tuned to overlapping EC datasets, recent parameterizations 
based on wind and waves all predict similar KCO2,660 in the 
mean. However, these parameterizations differ in the partitioning 
between kd and kb. At a wind speed of 15 m s−1, kb accounts for on 
average 39% of total KCO2,660 in Deike and Melville (11), 66% in 
Fairall et al. (17), 43% in Zhou et al. (37), and 42% according to 
Eq. 4. At this wind speed, the relative difference in observed 
KCO2,660 between rising/falling wind is on the order of 20%, while 
the relative difference in Wf between rising/falling wind is on 
the order of 50% (Fig. 3; Table S1). If kb scales proportionally 
with Wf, we expect kb to contribute roughly 40% of the total 
KCO2,660 (20%/0.5), which is more consistent with Eq. 4 (as well as 
(11, 37)), and less than the prediction by Fairall et al. (17).

Out of these parameterizations, Eq. 4 generally matches obser
vations the best when averaged in bins of wind speed, wind his
tory, and swell impact. This is demonstrated in Fig. 5 as the 
ratio between observed and parameterized KCO2,660, with the 
most optimal parameterization giving a ratio of unity during all 
conditions and showing no trend. Parametrizations from Deike 
and Melville (11) and Zhou et al. (37) underpredict KCO2,660 at mod
erate to high wind speeds (8 to 16 m s−1) and slightly overpredict 
KCO2,660 at even higher wind speeds (Fig. 5A), probably related to 
the nonlinearity in their formula as shown in Fig. 4A. In contrast, 
Eq. 4 and Fairall et al. (17) both reproduce the mean wind speed 
dependence in KCO2,660 reasonably well.

Figure 5B, like Fig. 3B, illustrates the wind history dependence 
in KCO2,660 at wind speeds over 7 m s−1 (i.e. observation/wind speed 
fit is negatively correlated with wind history). This wind history 
dependence is well accounted for by Eq. 4. Formulations from 
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Deike and Melville (11) and Zhou et al. (37) also account for the 
relative wind history trend, but on average underestimates 
KCO2,660. The Fairall et al. (17) formula, which has a ∼60% larger 
kb than Eq. 4, appears to inadvertently over-correct for this wind 
history dependence.

Observed KCO2,660 at a given wind speed appears to be 
greater during swell-dominated conditions (here indicated by 
Rswell = (Hs_swell/Hs_total)

2) than windsea-dominated conditions 
(Fig. 5C). This could be another sign of the wind history depend
ence, and/or be related to the idea that breaking in aged seas is 

Fig. 4. A) KCO2,660/u* vs. (u* g Hs)
2/3, which clearly shows a nonlinear relationship. Here, the intercept and the slope correspond to tuning coefficients A for 

diffusive transfer (dimensionless) and B for bubble-mediated transfer (s2 m−2); B) KCO2,660/u* vs. Hs, which has a more linear relationship and higher r2. 
A polynomial fit to (B) looks nearly identical to the linear fit. Here, the intercept and the slope correspond to tuning coefficients A for diffusive transfer 
(dimensionless) and B for bubble-mediated transfer (m−1).

A CB

Fig. 5. A) Bin-averaged ratio between observed and parameterized KCO2,660 at wind speeds above 7 m s−1 where wave breaking becomes important, with 
error bars indicate SE. B) Same as A), but in bins of wind history. Error bars not shown to avoid visual clutter. C) Same as B), but in bins of Rswell.
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less energetic but more conducive to producing longer-lasting 
bubbles (41). Parametrizations from Deike and Melville (11) and 
Zhou et al. (37) do not reduce this swell dependence, while 
Fairall et al. (17) appears to over-correct for it. Equation 4 is again 
the most optimal. We note that re-tuning Eqs. 1 and 2 with the lat
est observations only very marginally improves their performance 
and does not alter the general trends above.

Turning our attention over to short term variability, Eq. 4 gives 
a R2 of 0.753 when applied to the hourly testing dataset for the ML 
model, which is significantly better than wind speed (0.693 for the 
same dataset) but falls short compared with the ML model (0.813), 
probably because there are other subtle wind/wave dependent ef
fects that Eq. 4 does not consider. Nevertheless, we can estimate 
the sea state driven KCO2,660 variability by evaluating the different 
gas transfer parameterizations at the ambient u* and Hs (Fig. 1C). 
At U10n of 15 m s−1, the standard deviation (σ) of the predicted 
KCO2,660 from Eq. 4 is about 10 cm h−1. This sea state effect can ac
count for over a third of the variance (σ2) in observed KCO2,660 at 
these high wind speeds once measurement noise is considered 
(Fig. 1A and D). In Eq. 2, the use of uv* instead of u* to fit kd neces
sitates a ∼60% larger kb compared with Eq. 4. The sea state driven 
variability in KCO2,660 from Fairall et al. (17), even without consid
ering measurement noise, exceeds the variability in observed 
KCO2,660 at high wind speeds (Fig. 1D), again hinting that their kb 

may be too large.

Concluding remarks
Parameterizing K660 as a simple function of wind speed, given 
sufficient observations across a wide range of sea states, can 
yield a reasonable “climatological fit” in the mean. This study re
veals significant sea state dependent variability in observed 
hourly KCO2,660 that is due to bubble-mediated transfer—a pro
cess that differs between gases of different solubility. We pro
vide a new method of parameterizing KCO2,660 using wind/wave 
data (Eqs. 3 and 4) that explains more observed variability 
than a wind speed fit, and better accounts for the effects of 
wind history and swell than other recently proposed wind-wave 
parameterizations.

It is worth noting that Eq. 4, developed here for CO2, should 
not be used “as is” to predict transfer of other gases (e.g. DMS). 
A universal framework for modeling gas transfer requires the 
specification of the solubility dependence in kb (e.g. (8, 42)), 
which is not very well understood. Quantification of K660 of an
other waterside-controlled gas (in addition to CO2 and DMS) 
should help to further constrain the impact of bubble-mediated 
transfer.

This work has made use of modeled wave data to decipher 
patterns in field KCO2,660 measurements. There have been very 
few field campaigns with concurrent wave, whitecap/bubble, 
and K660 measurements. Further improvements in mechanistic 
understanding require more of these concurrent measure
ments under a wide range of conditions. We have used ML tech
niques here to mostly estimate the total variability that is 
explainable by wind and wave data, as well as identify wave pa
rameters that influence KCO2,660. The total number of direct 
KCO2,660 observations made by the international community 
to date is still rather limited (a few thousand hours). We antici
pate that more KCO2,660 observations will likely lead to further 
improvements in the ML-based predictions of gas transfer. 
Recent developments in buoy-based flux measurements (43) 
appear to offer a highly promising approach to drastically in
crease the number of KCO2,660 observations.
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