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A B S T R A C T   

Given that a substantial amount of time is spent in kitchens preparing food, the kitchen equip
ment used may be relevant in determining the composition and amount of microplastics ending 
up on our dinner plate. While previous research has predominantly focused on foodstuffs as a 
source of microplastics, we emphasise that micro- and nanoplastics are ubiquitous and likely 
originate from diverse sources. To address the existing knowledge gap regarding additional 
sources contributing to microplastics on our dinner plates, this review investigates various 
kitchen processes, utensils and equipment (excluding single-use items and foodstuffs) to get a 
better understanding of potential microplastic sources within a home kitchen. Conducting a 
narrative literature review using terms related to kitchenware and kitchen-affiliated equipment 
and processes, this study underscores that the selection of preparation tools, storage, serving, 
cooking, and cleaning procedures in our kitchens may have a significant impact on microplastic 
exposure. Mechanical, physical, and chemical processes occurring during food preparation 
contribute to the release of microplastic particles, challenging the assumption that exposure to 
microplastics in food is solely tied to food products or packaging. This review highlights diverse 
sources of microplastics in home kitchens, posing concerns for food safety and human health.   

1. Introduction 

Microplastics (usually defined as plastic particles between 0.1 μm and 5 mm [1]) have been found in every environment that has 
been studied (e.g. Refs. [2–4]). Microplastics can originate from the breakdown of larger plastics (e.g., from packaging, fishery and 
agriculture activities, tyres etc. [5]) via chemical, physical or biological processes [6,7] or by being intentionally manufactured at 
microscopic level [8–10]. Fragmentation of plastics can also result in the formation of nanoplastics (<0.1 μm) [11]. Ecotoxicological 
studies have demonstrated microplastics can be readily consumed and translocated into blood and organs, possibly causing and cause 
adverse health effects in wildlife, inevitably leading to concerns for human health [12,13]. Humans can be exposed to micro- and 
nanoplastics via ingestion, inhalation, or dermal contact [14–16]. Ingestion may occur through the consumption of food and drinks 
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contaminated with micro- and nanoplastics such as seafood or marine products (e.g., fish, shellfish, sea salt), drinking water, or 
beverages [12,17]. 

Micro- and nanoplastics may contaminate food products via numerous pathways. For example, microplastics may contaminate 
source material (e.g. ingestion of microplastics by animals or fish [18]); airborne contamination during processing [19,20]), from the 
packaging materials [21], or during food preparation [22]. The ingestion and inhalation of microplastics poses health concerns, 
including the potential for adverse effects on the digestive tract [23], reproductive organs [24], respiratory tract and other systems 
[14]. Understanding and addressing the different sources of micro- and nanoplastic contamination are important steps for being able to 
mitigate any potential effects. 

To date, an extensive number of research papers have established the presence of micro- and nanoplastics in food items [12] 
however, home kitchens may serve as a significant contributor of human exposure to micro- and nanoplastic particles owing to the 
prevalence of furnishings, cookware, food contact materials and electrical goods manufactured from plastic [25–27]. The current 
understanding of how various cookware items might release micro- and nanoplastics is unclear. To address this critical knowledge gap, 
this review aims to explore the extent to which kitchenware, cooking and cleaning and equipment may release micro- and nanoplastics 
into the kitchen environment, resulting in human exposure. Particular attention is drawn to how different processes, such as abrasion 
between utensil and cookware, and heating of plastic ware, may affect the release of plastic particles. Notably, this narrative review 
does not consider the contribution of food or water, or single-use items (e.g. packaging) in contributing to human microplastic 
exposure, given these topics have been reviewed extensively [28–34]. 

In a two-step process, we firstly identified the items commonly used in home kitchens and then employed this list of items as search 
terms in a systematic search of the primary literature on micro- and nanoplastics. The risk of micro- and nanoplastic contamination is 
evaluated for individual items and processes, drawing out commonalities where evident. Owing to variations in analytical methods, 
reported size-classes, measurement units and contamination controls, it was not possible to make direct comparisons between the 
number of micro- and nanoplastic that might be released from given items or processes which makes result comparisons difficult [35]. 

2. Methods 

2.1. Sourcing of literature material 

To investigate the occurrence of microplastics in the home kitchen, including the multiple activities within the kitchen, we un
dertook a narrative review of the scientific literature. A search was performed using ISI Web of Knowledge/Web of Science in February 
2023. This was complemented with additional searches on both ISI Web of Knowledge/Web of Science and Google Scholar in May 
2023 and June 2024 to ensure comprehensive coverage of the available literature. Given the relatively low numbers of papers 
identified, the reference lists of relevant papers were scoured for any additional texts of high relevance to this review. Keywords used in 
the first search were based on the list of commonly used kitchen items typically used in a home kitchen was derived through peer 
discussion and online recommendations (e.g., Kitchen Essentials List [36]). This list was compiled and divided into seven broad 
categories (Fig. 1). The search terms comprised of: TS=(plastic* OR synthetic* OR microplastic* OR nanoplastic* AND (kitchen 
utensils OR food preparation OR knife OR cutting board OR scissors OR vegetable peeler OR garlic press OR grater OR kitchen scale OR 

Fig. 1. Illustration of kitchen categories and their associated equipment and tools. Infographic produced by using the free-to-use online graphic 
design tool canva.com. 
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measuring jug OR measuring spoon OR mixing bowl OR colander OR rolling pin OR blender OR salad spinner OR citrus juices OR ice cube tray 
OR apron OR non-sticking frying pan OR saucepan OR stirring spoon OR slotted spoon OR spatula OR tongs OR master OR whisk OR oven 
gloves OR pot holder OR kettle OR ladle OR pasta fork OR pizza cutter OR cutlery OR cup OR tea towels OR sponges OR dish rack OR detergent 
OR microfiber cloth OR food preservation OR clingfilm OR aluminium foil OR containers OR zipper bags OR Tupperware OR washing machine 
OR washing drier OR kitchen fan OR vacuum cleaner OR synthetic broom OR chopping board OR weighing scale OR sieve OR ice tray OR 
draining rack OR dishwasher tablets OR baking parchment OR food bags OR microwave OR toaster OR kettle OR air fryer OR oven OR fridge 
OR refrigerator OR freezer OR dishwasher OR electric whisk OR electric mixer)). Inclusion of laundry facilities was included given their 
commonality in home kitchens in certain countries (e.g. United Kingdom). Refined languages included Swedish, Norwegian, Danish, 
English, and unspecified language, and all articles from 1965 to 2024 were included in the search. The supplementary searches were 
performed to account for the duration of time from the first search. Only articles published up until June 2024 were included in the 
data analysis of this review. The relevance of the resultant articles was determined by reading through the title and abstract and subject 
to a quality control step (see below). Only literature that passed this stage was utilised in the review. 

2.2. Quality control 

To avoid overlap with other reviews, articles focussed upon drinking water, food or beverages, airborne particles, or single use 
items (e.g. takeaway containers and packaging materials) were excluded. While single-use plastics can be present in the kitchen, 
they’re not typically considered as “kitchenware and appliances” which was the focus of this review. The primary literature obtained 
from the literature searches had to fit the following quality criteria to be included in this review. Firstly, the article had to have 
undergone peer-review prior to publication, ensuring a foundational level of quality assurance. Secondly, we exclusively selected 
articles that focused on items typically found in a kitchen (Fig. 1). 

If any of these parameters were not met, the paper was not included in this review. Following screening, a total of 30 articles were 
selected to be included in this review. Next, articles were categorised into seven main categories (Fig. 1): 1) Food Preparation, 2) 
Storage Equipment, 3) Serving Equipment, 4) Cooking Equipment, 5) Cleaning Equipment, 6) Food Preservation, and 7) Appliances. 
The division of papers between categories is presented in Table 1. Papers were reviewed to ascertain the potential particle release and 
the underlying causes of fragmentation of plastic particles in home kitchens. 

2.3. Caveats with the retrieved data 

Statistical analysis was omitted from the data collected, as it was treated as absolute values without any efforts made to compare the 
particle release values due to variations in detection and analysis methods. Moreover, the lack of contamination control and reporting 
in some papers prevents precise estimations of particle counts, offering only insights into potential polymer types and cooking pro
cesses that might yield higher particle release compared to alternative materials and cooking techniques. 

Table 1 
Total numbers of papers identified in each category of kitchen processes describing the release of micro- and nanoplastics.  

Category Investigated kitchen utensil Papers identified as relevant for this perspective/review 

Food Preparation Cutting boards Habib et al., 2022a 
Chopping boards Luo et al., 2022 
Cutting boards Yadav et al., 2023 
Cutting boards Habib et al., 2022b 
Mixing bowls Jander et al., 2022 
Kitchen blender Luo et al., 2023 
Chopping boards, PTFE-coated pans, jug, knife and spoon Cole et al., 2024 

Food Storage Food container Hee et al., 2022 
Food containers Hussain et al., 2023 

Cooking Equipment Non-stick cookware Luo et al., 2022 
Cleaning Equipment Cleaning sponge Luo et al., 2022 
Food Preservation Victuals Packaging Guan et al., 2021 
Appliances Kettle Shi et al., 2022 

Washing machine Belzagui et al., 2019 
Washing machine Berruezo et al., 2021 
Washing machine Cai et al., 2021 
Drying machine O’Brien et al., 2020 
Washing machine Dalla Fontana et al., 2021 
Washing machine De Falco et al., 2020 
Washing machine Dreillard et al., 2022 
Washing machine Galvao et al., 2020 
Washing machine Hartline et al., 2016 
Washing machine Jenner et al., 2021 
Washing machine Lant et al., 2022 
Washing machine Lim et al., 2022 
Washing machine Palacios-Marin et al., 2022 
Washing machine Vassilenko et al., 2021  
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3. Potential sources of microplastic contamination in home kitchens 

3.1. Food preparation 

Mechanical stress and abrasion of plastics are known to generate microplastics and shifts in temperature and pH may also cause 
plastic degradation [6]. Food preparation activities involving mechanical stress include cutting, mixing, scraping, and whisking, and 
these processes are also thought to generate micro- and nanoplastics [37]. In kitchens, temperature fluctuations are frequent, including 
freezing (-20 ◦C), refrigeration (2 ◦C), washing up (40 ◦C), heating and sterilisation (100–250 ◦C). Heating plastic ware can impact the 
thermal integrity of the plastic product promoting the release of micro- and nanoplastics and chemical leachates within the product. 

Of the various food preparation activities that occur in the kitchen, the mechanical stress on plastic cutting boards when in use has 
received a relatively large proportion of recent attention, though the actual number of studies is still low [25,26,37,38]. Yadav et al. 
[37] focused on three factors associated with the use of cutting boards – chopping style, cutting board material, and mimicking real-life 
application by slicing a carrot on the board. The release of microplastics (20–200 μm), was impacted by chopping style and different 
materials, and thousands of microplastics were estimated to be generated over six cycles of use. The use of polypropylene (PP) cutting 
boards generated three-four times as many microplastics compared to polyethylene cutting boards over six cycles of use, when con
trolling for chopping technique. The difference, however, was not statistically significant. Perhaps most interesting was that the 
chopping of a carrot on the PE cutting board produced almost three times more microplastics compared to use without the vegetable. 
This may be explained by the greater pressure required when cutting through the carrot leading to the knife penetrating deeper into the 
chopping board, thereby excising more microplastics. Extrapolating to an annual exposure per person, the authors suggested an 
exposure range of 7.4–50.7 g of microplastics from a single PE chopping board. 

Cutting boards are not uniform especially after extensive use, and chopping techniques can alter micro- and nanoplastic generation. 
To mimic the cutting process and simplify the sample preparation, Luo et al. [38], sliced or scratched a knife on a chopping board 
surface, without food items. After each cutting action (per cut), the authors directly tested the released debris on the knife and on the 
chopping board (along the cutting groove). They estimated a release of 100–300 micro- and nanoplastics per mm per cut along the 
groove formed, and ~3000 per mm2 per cut in the scratched area on the chopping board. This suggests that the pre-existing condition 
of the board is an important determinant in micro- and nanoplastics generation. The authors concede that the actual action of cutting 
food may alter the dynamics of microplastic formation as shown by Yadav et al. [37], but the study does highlight that cutting boards 
have zones in which cutting is more common and this affects the generation of micro- and nanoplastics. Such insight would be relevant 
for those cutting boards in constant use, such as those that are used in commercial settings, or boards maintained by households over 
sustained periods. 

In Middle Eastern butchers and supermarkets, PE-based plastic cutting boards were identified as a source of micro- and nanoplastics 
in prepared meat and fish products [25,26]. Investigating the potential for cutting boards as a source of microplastic contamination in 
red meat (goat and beef), Habib et al. [25], showed boards contributed 1–7 microplastics per g meat, compared to 0 microplastics 
found when the meat was processed on a bamboo cutting board or with a metallic meat grinder. Scraping the residual meat from the 
plastic board at the end of day resulted in approximately 70 microplastics per g meat. In a follow-up study, investigating produce 
sourced from supermarkets where produce was cut on plastic boards, microplastics levels ranged from approximately 0 - 1 particle per 
g-1 chicken and from 0 to 2 particles per g-1 fish [26]. In chicken, the average microplastic size was around 100 μm whereas in fish the 
average microplastic size was 190 μm. Both studies reported that washing the meat before cooking effectively reduced microplastic 
loads but did not eliminate them entirely. 

Mixing bowls are another aspect of food preparation that involve mechanical stress. Jander et al. [39], exposed six different bowls 
(acrylonitrile–butadiene–styrene (ABS), PP, melamine, PE, polystyrene (PS), and styrene–acrylonitrile (SAN) to a hand mixer for 2 min 
at 200 rpm. Microplastics were released into purified water as standard, but the ABS bowl was additionally subjected to mixing in the 
presence of rock salt in water to simulate a granular matrix. The results showed a slight difference between bowls of different materials. 
Abrasion caused by the salt granules increased microplastics release three-fold. In the second part of the study pyrolysis was per
formed, revealing several chemical components released at temperatures of 200 ◦C and 250 ◦C, which reflect commonly used cooking 
temperatures. All polymers released chemicals, but the results of the analysis of the melamine polymer was particularly concerning, 
given the release of formaldehyde, a known toxicant and carcinogen. Additionally, the age of cookware and kitchen utensils can 
significantly influence the amount of microplastics they release. In a study by Cole et al. [22], researchers investigated the effect of old 
and new kitchen utensils on the release of plastic particles. The study revealed that older plastic cookware, identified by signs such as 
staining, heat damage, scratches etc., released more microplastics compared to their newer and non-plastic alternatives. 

Melamine and melamine–formaldehyde resin is widely used in many applications including kitchen utensils and camping crockery 
owing to their properties of hardness, heat resistance, and physical and chemical stability [40]. Kim et al. [41], investigated the 
migration of monomers (melamine and formaldehyde), plastic additives, and non-intentionally added substances (NIAS) from mel
amine–formaldehyde resin food utensils into food simulants after UV irradiation for up to 7 d. After UV exposure, the release of plastic 
additives increased dramatically in melamine-formaldehyde resin, which was not the case for the other polymers (PP, PA, PE, PET, and 
Silicone). The additives included plasticizers, slip agents, surface-active agents, and coating agents. The study highlighted that mel
amine–formaldehyde resin is less resistant to UV than other polymers. However, an overall evaluation of food safety based on US FDA 
guidelines of tolerable daily intake (TDI) and estimated daily intake (EDI) showed that the monomers presented a low risk, though care 
may be needed if prolonged UV sterilisation occurs (e.g., in an industrial kitchen). 

The studies focusing on mechanical and thermal processes in the kitchen demonstrate pathways for microplastics and their 
chemical constituents to enter food items. For example, significant increases of heavy metal concentrations (aluminium, arsenic, 
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cadmium, and lead) have been observed when boiling water for 1–4 h in a plastic kettle and PTFE-coated pan [42]. Further, a study 
conducted by Luo et al. [43], demonstrated blending an ice block for 30 s in a kitchen blender could release approximately 0.26-0.36 ×
106 microplastics. However, as this study highlights, it is important to acknowledge that the extent of the release is influenced by 
several factors, including the material composition of the blender container, rotational speed, and configuration settings, as well as the 
hardness, quantity, size, and temperature of the food being blended [43]. 

3.2. Storage equipment 

Plastic storage containers and bags are commonly used in households for preserving food, given that they are airtight, waterproof, 
lightweight, and durable. Food containers will often include repurposed takeout containers given their design and availability. Recent 
studies have revealed a release of microplastics from plastic storage equipment, with significant variations based on storage conditions, 
food types, and cooking methods [34,44,45]. 

Material used to manufacture storage containers can also influence the quantity of microplastics discharged [34]. Polystyrene (PS) 
containers, due to the softer texture, low rigidity compression resistance, exhibit looser structures and coarser surfaces [46]. These 
features might explain why PS containers shed more microplastic than other types of plastic containers [34,47,48]. Notably, PS 
containers had physical defects such as surface cracks and gaps on the surface. Furthermore, the container’s surface retained PS 
particles, likely originating from the manufacturing process [49]. The extent of microplastic release can also be influenced by factors 
such as contact area and friction between the food and the take-out container, as demonstrated in various studies focusing on lid 
mechanics in plastic bottle caps [50,51]. In summary, the quantity of microplastic release is influenced by choice of material and 
surface properties, where softer texture and structural characteristics can cause microplastic to enter our foods and be a source of 
microplastic being brought into our kitchen. 

Exposure to high temperatures can cause plastics to degrade and fragment, potentially contaminating food with micro-and 
nanoplastics. The contamination may start when the raw materials are stored in plastic-based packaging at high temperatures, such 
as when reheating food in microwaves. At given polymer type-dependent thermal energy, a free radical process generation occurs with 
successive removal of lower molecular weight fragments from plastic storage via random and chain end degradation [52]. Release of 
micro- and nanoplastics of various shapes and sizes is highly likely to be due to the heat-induced flaking of the cracked plastic surfaces. 
Repeated heating of PET and PP packaging results in consistent leaching of plastic particles, suggesting that reheating food and 
beverages in such “reusable” plastic containers is a food safety risk. Hussain et al. [53], found PP containers heated in a microwave 
released significantly more microplastics compared with containers stored at room temperatures or in refrigerators. The study also 
tested the influence of deionized water (DI) (to simulate aqueous food) versus 3 % acidic acid (to simulate acidic food). Under 
refrigeration conditions the containers with DI-water released between 577 and 415 thousand microplastics/cm2 and under 
room-temperature conditions between 95 and 841 thousand/cm2. However, under microwave heating, the containers released be
tween 425 and 4.22 million/cm2 microplastics, underscoring that increased temperature can cause an acceleration in polymer chain 
scission, and consequently increased release of microplastics. The difference between released number of particles between containers 
holding DI-water and 3 % acidic acid also demonstrates that overall, more particles were released during room-and refrigerator 
temperatures conditions in 3 % acidic acid. This highlights the potential influence of acidic food on particle release [53]. In addition to 
variable temperatures, chemical composition, and exposure time to food and drinks, we consider that varying material quality - 
stemming from differences in production quality and the age and degradation of a product - may also contribute to fluctuating degrees 
of wear and tear on plastic ware. 

3.3. Serving equipment 

While we identified several studies investigating the release of microplastics from drinking water bottles and feeding bottles for 
children [54–56], and single use plastic cups and cutlery [57,58], we found no research on the release of microplastics from plastic 
serving equipment such as ladles, pasta forks and pizza cutters. These serving utensils are in direct contact with our food and highlights 
the knowledge gap of potential sources of microplastics within our kitchens. 

3.4. Cooking Equipment 

Cooking in the kitchen utilises a variety of equipment and appliances, often subject to high temperatures. Non-stick pans, widely 
used in kitchens for their convenience, are designed to prevent food from sticking to the pan when cooking [59]. Non-stick pans, 
utensils and rice-cookers are coated in polytetrafluorethylene (PTFE), a polyfluorinated synthetic plastic material with both water and 
fat-repellent properties. Concerns have been raised about the potential health risks of non-stick cookware when they exceed certain 
temperatures (>350 ◦C) as they may release toxic fumes [60,61]. Additionally, it has been highlighted that micro- and nanoplastics 
might be formed if non-stick materials are abraded or scratched, for example when using utensils or scourers [62]. Luo et al. [62], 
identified that using a stainless-steel turner, BBQ clamp, stainless steel wool and word turners on new and old non-stick cookware all 
released PTFE particles. Their findings highlighted that a broken part of the Teflon could release 2,300,000 micro- and nanoplastics, 
while a fractured part from a scratch could release around 9100 micro- and nanoplastics. Additionally, a recent study identified that 
even using a soft silicone whisk with newly purchased non-stick pans could result in the release of PTFE particles [22]. Cooking 
processes may also affect particle release, with prolonged frying of food demonstrated to release more particles than when baking in 
the oven [34,44]. 
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3.5. Cleaning Equipment 

Cleaning equipment and items manufactured from plastic including sponges, tea towels, dish rack/draining racks, detergents, 
microfiber cloths and dishwasher tablets are commonly found and used in home kitchens. The mechanical process of cleaning, which 
involves friction between the cleaning item and the surface, can result in the degradation and shedding of microplastics [63]. These 
cleaning items come in direct contact with various surfaces such as countertops, dishes, and utensils, facilitating the contamination of 
food and human exposure to microplastics. The material composition of the cleaning item can influence the level of particle release 
[64]. For example, dish sponges can be manufactured from nylon, polyester (PES), PE, and cellulose [65]. In a study Luo et al. [66], 
examined the shedding of microplastics from sponges by mimicking the cleaning process using a soft and hard layered sponge on a 
glass surface to simulate smooth surfaces and knives and forks to simulate sharpen edges. The study revealed that nylon PA-6 particles 
were shed from the soft layer of the sponge, while PET particles were released from the hard side. Although this study focused on a 
specific type of sponge, the results give an indication that microplastics might be released in the cleaning process. While this study did 
not include detergents, we consider chemical detergents, containing surfactants, bleach and abrasives, may exacerbate the release of 
microplastics. Older sponges are likely to release particles more easily due to the breakdown of the core network on the sponge [66]. 
Even though no studies have been performed on microfiber cloths and the potential release of microplastic fibers due to the friction 
when cleaning, most microfiber cloths are composed of synthetic materials such as PES or PA, potentially shedding tiny plastic fibers 
[64,67,68]. 

3.6. Food preservation 

Plastic coverings and preservation items, such as clingfilm and silicone wrap, have made a significant contribution to food pres
ervation, by effectively shielding food from oxygen, water vapour and microorganisms [69]. These food preservation materials often 
play a significant role in our daily lives, whether it is for reheating leftovers in the microwave, covering food in the fridge or being used 
in baking. By being in direct contact with food products under different temperatures (ovens, refrigerators), these products and 
materials can be a potential source of micro-and nanoplastics into our food. On a general basis, to ensure the safety of these materials 
for human use, various regulatory measures have been implemented, though primarily focusing on the release of additives and 
chemicals associated with plastics [70], but not plastic particles. The release of micro- and nanoplastics from clingfilm, baking 
parchment and silicone wrap are poorly elucidated. We only identified one study on clingfilm (food wrap), which revealed that 
irregularly shaped PE particles were released from preservative film when exposed to deionized water at temperatures of 50 ◦C, 75 ◦C 
and 95◦ [46]. This suggests that release of micro- and nanoplastics may occur when these materials are subjected to high temperatures 
and highlights the need for further studies considering the frequent use of such materials in food preservation. 

3.7. Appliances 

Several appliances are typically found within a kitchen, e.g., kettles, microwaves, ovens, kitchen fans, vacuum cleaner, brooms, 
toaster, air fryer, fridge, dishwasher, freezer and electric whisk and mixer, and in some instances washing machines and dryers. Our 
systematic searches revealed that very few studies have explored release of microplastics from kitchen appliances. While a few studies 
have explored microplastic release from kettles, there is a significant lack of research on other commonly used kitchen appliances. Shi 
et al. [71], investigated the release of micro- and nanoplastics when boiling water in plastic kettles, revealing a notable decrease in the 
release of micro-and nanoplastics from the plastic kettle after an extended period of usage. The authors describe their finding as a 
natural passivation phenomenon, which confirms that the natural formation of films with diverse chemical compositions in kettles, 
influenced by the ions in local regional water supplies, affects the number of released micro- and nanoplastics by acting as a barrier to 
the release of particles. 

While washing machines and dryers are not commonly considered to be kitchen appliances, in some countries (notably the United 
Kingdom) they are placed there. Although both appliances have been extensively examined as sources of micro- and nanoplastics, 
specifically microfibers, in the environment (via wastewater) [72–76], there is a noticeable gap in research regarding their potential 
contribution within a domestic setting. With regard to the contamination within the kitchen, laundry facilities, if placed there, may 
well contribute to the release of microfibers into the air, ultimately affecting human exposure via deposition onto kitchen surfaces 
Microfibers predominantly originate from textiles, whether natural or synthetic [72,73]. Research by Lim et al. [74], revealed that over 
50 % of microfibers are released during washing and wearing, posing a substantial human exposure risk. Textiles in Western 
households encompass clothing, and dish cloths, hand towels, upholstery, curtains and carpets that might be present in domestic 
kitchens. Numerous studies have explored the release of microplastic microfibers during a textile’s lifespan, often focusing on their 
presence in wash water rather than considering human exposure through inhalation or ingestion [67,75]. To date, few studies have 
observed direct microfiber release into the air from laundry [76] and its potential impact on indoor human exposure. Indoor exposure 
to microplastics is increasingly recognised as significant, given that people spend approximately 90 % of their time indoors [77]. 
Jenner et al. [78], reported substantial daily microplastic deposition rates indoors, with small fibrous particles (5–250 μm) being the 
most prevalent (90 %); this size of particles are small enough to be inhaled deep into the lungs where they have the potential to cause 
physiological harm. Dreillard et al. [79], found 40–75 % of microfibers were between 50 and 200 μm, with average microfiber di
ameters ranging from 8 to 17 μm which was similar to the findings by Galvão et al. [80], where 53 % of the microfibers were between 
50 and 100 μm. Various factors of appliance efficiency, washing or drying conditions (e.g. temperatures) and fabric quality (e.g. 
chemical composition, textile surface density, yarn type and aging garments etc.) will influence the release of microfibers from washers 
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and dryers [73,81–88], but ultimately placing dryers in kitchens and living areas may increase exposure risks through air and 
deposition on kitchen surfaces. Thus, relocating laundry facilities away from living spaces could be an effective strategy to reduce daily 
exposure to microplastics in the form of microfibers. 

4. Conclusion 

Given global usage of plastic, exposure to micro- and nanoplastics is inevitable. However, consideration of utensils, cookware and 
equipment usage and placement in the domestic settings may be useful in reducing exposure. While microplastics have been detected 
in a range of food items, with the underlying assumption that the microplastic comes from the food, packaging or airborne 
contamination, we highlight that the choice of preparation, storage, serving, cooking and cleaning materials in our kitchens are also 
substantial contributors. Mechanical, physical, and chemical processes are the predominant factors driving the generation of micro- 
and nanoplastics from plastic materials during food preparation. The release of micro- and nanoplastics may be influenced by myriad 
factors, including material quality, forces applied, temperature and material type, age and integrity. For example, exposing non-stick 
and plastic cookware to high temperatures can release toxic fumes, degradation of the plastic and migration of plastic leachates into 
food. Similarly, microplastics can be released from the inner surface of food containers during freezing and thawing cycles. The ageing 
and manufacturing processes of utensils can significantly influence the release of microplastics, with extended use and wear increasing 
the likelihood of malformations, cracking and oxidization of the plastic. With non-stick cookware and utensils prolonged used can 
result in the loss of protective layers or coatings, allowing for increased contact between the utensils and the food being prepared and 
loss of integrity. Cleaning equipment, such as sponges and cloths, can shed microfibers during the cleaning process, with evidence 
suggesting age and type of materials both influence deposition rates. Finally, kitchen appliances, such as washing machines and dryers 
located in the kitchen may increase the likelihood of airborne microplastic fibres. 
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Table S1 
Overview of analysed articles, including their focus area, primary author, and classification as peer-reviewed or review article.   

Investigated kitchen utensil Reference Research or review article 

Food Preparation Cutting boards Habib et al., 2022a Research Article 
Chopping boards Luo et al., 2022 Research Article 
Cutting boards Yadav et al., 2023 Research Article 
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Table S1 (continued )  

Investigated kitchen utensil Reference Research or review article 

Cutting boards Habib et al., 2022b Research Article 
Mixing bowls Jander et al., 2022 Research Article 
Kitchen blender Luo et al., 2023 Research Article 

Food Storage Food container Hee et al., 2022 Research Article 
Food containers Hussain et al., 2023 Research Article 

Cooking Equipment Non-stick cookware Luo et al., 2022 Research Article 
Cleaning Equipment Cleaning sponge Luo et al., 2022 Research Article 
Food Preservation Victuals Packaging Guan et al., 2021 Research Article 
Appliances Kettle Shi et al., 2022 Research Article 

Washing machine Belzagui et al., 2019 Research Article 
Washing machine Berruezo et al., 2021 Research Article 
Washing machine Cai et al., 2021 Research Article 
Drying machine O’Brien et al., 2020 Research Article 
Washing machine Dalla Fontana et al., 2021 Research Article 
Washing machine De Falco et al., 2020 Research Article 
Washing machine Dreillard et al., 2022 Research Article 
Washing machine Galvao et al., 2020 Research Article 
Washing machine Hartline et al., 2016 Research Article 
Washing machine Jenner et al., 2021 Research Article 
Washing machine Lant et al., 2022 Research Article 
Washing machine Lim et al., 2022 Research Article 
Washing machine Palacios-Marin et al., 2022 Research Article 
Washing machine Vassilenko et al., 2021 Research Article  
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