
Ecological Informatics 82 (2024) 102708

Available online 8 July 2024
1574-9541/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Drone imagery and deep learning for mapping the density of wild Pacific 
oysters to manage their expansion into protected areas 

Aser Mata a,*, David Moffat a, Sílvia Almeida b, Marko Radeta b,c,d, William Jay a, 
Nigel Mortimer e, Katie Awty-Carroll f,1, Oliver R. Thomas a,g, Vanda Brotas h, Steve Groom a 

a Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK 
b Marine and Environmental Sciences Centre (MARE), Aquatic Research Network (ARNET), Regional Agency for the Development of Research, Technology and 
Innovation (ARDITI), Funchal 9020-105, Portugal 
c Wave Labs, Faculty of Exact Sciences and Engineering, University of Madeira, Funchal 9020-105, Portugal 
d Department of Astronomy, Faculty of Mathematics, University of Belgrade, Belgrade 11000, Serbia 
e South Devon Area of Outstanding Natural Beauty, Follaton House, Plymouth Road, Totnes TQ9 5NE, UK 
f The Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK 
g Plymouth University, Drake Circus, Plymouth PL4 8AA, UK 
h Marine and Environmental Sciences Centre (MARE), Lisbon University, Lisbon, Campo Grande 016, Portugal   

A R T I C L E  I N F O   

Keywords: 
Pacific oysters 
Invasive species 
Convolutional neural networks 
Deep learning 
Drone 
Remote sensing 
Ecological management 

A B S T R A C T   

The recent expansion of wild Pacific oysters already had negative repercussions on sites in Europe and has raised 
further concerns over their potential harmful impact on the balance of biomes within protected areas. Monitoring 
their colonisation, especially at early stages, has become an urgent ecological issue. Current efforts to monitor 
wild Pacific oysters rely on “walk-over” surveys that are highly laborious and often limited to specific areas of 
easy access. Remotely Piloted Aircraft Systems (RPAS), commonly known as drones, can provide an effective tool 
for surveying complex terrains and detect Pacific oysters. This study provides a novel workflow for automated 
detection, counting and mapping of individual Pacific oysters to estimate their density per square meter by using 
Convolutional Neural Networks (CNNs) applied to drone imagery. Drone photos were collected at low tides and 
altitudes of approximately 10 m across a variety of cases of rocky shore and mudflats scenarios. Using object 
detection, we compared how different Convolutional Neural Networks (CNNs) architectures including YOLOv5s, 
YOLOv5m, TPH-YOLOv5 and FR-CNN performed in the detection of Pacific oysters over the surveyed areas. We 
report the precision of our model at 88% with a difference in performance of 1% across the two sites. The 
workflow presented in this work proposes the use of grid maps to visualize the density of Pacific oysters per 
square meter towards ecological management and the creation of time series to identify trends.   

1. Introduction 

The Crassotrea gigas (or Magallana gigas), commonly known as the 
Pacific oyster, is a species indigenous to the Northwest Pacific coast. Due 
to their commercial value, Pacific oysters were introduced across 73 
countries worldwide mainly in America, Europe and Africa (Ruesink 
et al., 2005). In the United Kingdom, Pacific oysters are well docu-
mented as a non-native invasive species (Walne and Helm, 1979), first 
introduced into the River Blackwater (Essex, UK) in 1926 for aquacul-
ture (Utting and Spencer, 1992). Since 2017, wild Pacific oysters has 
been reported in large numbers on coastal and estuarine areas across the 

Southwest of England (Natural England, 2021). The impact of the 
dissemination of wild Pacific oysters across Europe has become a 
growing concern in recent years (Herbert et al., 2016). Furthermore, as a 
result of climate change, their numbers are expected to keep increasing 
due to the warmer climates in Europe (King et al., 2020; Rinde et al., 
2017; Wilson et al., 2024). 

Pacific oysters have a high reproduction rate and their colonisation 
can induce the development of biogenic reefs. Biogenic reefs can 
introduce diversities, services and food items based on a non-native 
ecology as well as inhibit or block the access to the sediments that 
could otherwise be used as foraging habitat for other species, displacing 
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and or changing the original community structure (Green and Crowe, 
2014). Therefore, the unmanaged dissemination of Pacific oysters can 
lead to a reduction in the number of prey for different species of birds 
and fish, altering the balance of biotopes and precipitating the loss of 
original species in intertidal areas. This effect can have a significant 
negative impact, especially within Marine Protected Areas (MPAs). 

The Saccostrea and Crassotrea oysters are predominantly located in 
intertidal regions and the Pacific oysters or Crassotrea gigas are no 
exception (Herbert et al., 2012). On the other hand, the Ostrea to which 
the UK native oyster Ostrea edulis form part of, are mainly found in 
subtidal areas and display a different shape and colour (Perry et al., 
2023). 

The recent expansion of Pacific oysters into MPAs in the UK caused 
that several sites across Cornwall and Devon being flagged as in 
“unfavourable condition” (Natural England, 2021). Hence, there is a 
need for continuous monitoring to detect and manage the advance of 
Pacific oysters, ideally at early stages of colonisation. Fig. 1 shows an 
example of two different cases of very high density or low density of 
Pacific oysters. To prevent the possible negative impact of Pacific oysters 
in protected areas, the focus should be in the detection and number 
estimation in low and medium density sites (Figure as shown in 1a) 
before an oyster reef is created and clusters are formed (Fig. 1b). 
Therefore, it is important to assess the expansion of the Pacific oysters 
into protected areas by quantifying their individual number to plan 
remedial action if necessary before a tipping point is reached and large 
aggregates are formed (Hansen et al., 2023; Reise et al., 2006). Current 
detection methods in the UK include the training of volunteers to 
organise counting or culling surveys to eradicate them by mechanical 
means e.g., using chisel hammers in rocky shores (Natural England, 
2021). This translates into a high manpower cost to survey regional 
areas. 

Moreover, different intertidal regions are of difficult or impossible 
access to traditional on-foot surveys and thus may present a high risk to 
the involved personnel (e.g. mudflats or vertical cliffs). In these cases, 
and only when practicable, expertly trained personnel might access 
some of those areas and need to wear suitable equipment like mudflat 
walkers. This provides further challenges to survey large areas, 
increasing significantly the labour and costs (Jaud et al., 2019). 

Remotely Piloted Aircraft Systems (RPAS), popularly known as 
drones, have the potential to provide a cost-effective monitoring solu-
tion for the Pacific oysters (White et al., 2022). Aerial drones not only 
can reduce the costs of surveys but also provide tools to monitor areas 

that are otherwise dangerous to access. Analysing the drone imagery to 
detect the Pacific oysters would allow to assess the expansion of Pacific 
oysters at early stages and detect hotspots providing the necessary data 
to act in order to mitigate their possible negative impact. 

As Pacific oysters are found in intertidal areas, drone aerial surveys 
can be undertaken around low tides to detect them while they are 
exposed, avoiding as well artifacts due to turbidity or sunglint. On the 
other hand, Autonomous Marine Vessels (AMVs) could also be beneficial 
for detecting other subtidal species of oysters but AMVs are not able to 
operate in very shallow waters or too close to the shoreline, which 
makes them difficult to be deployed in intertidal regions for surveying 
Pacific oysters especially. 

Likewise, Deep Learning (DL) can aid in the automated detection of 
Pacific oysters present in large amounts of drone images, which would 
otherwise require extensive human work (Radeta et al., 2022). Indeed, 
Kakehi et al. (2021) proposed the application of object detection tech-
niques to microscopic images for identifying and counting Pacific oys-
ters larvae collected from Matsushima and Sendai bays in Miyagi 
Prefecture, Japan. In this work, we applied object detection protocols 
and techniques similar to those employed for the detection of intertidal 
marine litter in drone images (Andriolo et al., 2020, 2022; Takaya et al., 
2022). 

In order to correctly identify Pacific oysters from different back-
grounds that include rocky shores with pebbles of similar colour to the 
oysters, their shape must also be captured in the images. Therefore, 
when planning the drone survey, a Ground Sampling Distance (GSD) 
that makes possible to collect images of Pacific oysters with enough 
resolution to perform at least medium size object detection (50–300 
pixels) is required (Gong et al., 2022). The GSD of a camera mounted on 
a drone is determined by its focal length, the number of pixels and the 
distance of flight altitude to the target (Andriolo et al., 2023). Adult 
Pacific oysters have typical lengths of 8–15 cm and can reach lengths up 
20 cm, sometimes even larger. Their width present an approximate ratio 
2:3 to their length. If we consider the smallest size of an adult Pacific 
oysters to be 8 cm long and 5 cm wide, then at least a GSD of 0.8 cm/px is 
required to capture the oyster with at least 50 pixels. 

Other researchers (Ridge et al., 2020) published results from 
applying Masked R-CNN and segmentation to aerial images collected at 
100 m altitudes with reported Ground Sampling Distance (GSD) of 2.2 
px/cm to delineate and map the area of oyster reefs rather than detecting 
individual Pacific oysters. Additionally, Sadrfaridpour et al. (2021) 
showed how Masked R-CNN could be used to detect subtidal (non- 

Fig. 1. Examples of sparse and very high density of Pacific oysters in the field.  
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Pacific) oysters from images collected with AMVs at a distance of 3 ft 
(approximately 92 cm) from the seabed. As Sadrfaridpour et al. (2021) 
data was collected using a GoPro Hero7 Black camera, they used a GSD 
better than 0.06 cm/px (Wierzbicki, 2018). This means that an oyster of 
8 × 5 cm will be captured in 666 pixels, therefore falling in the category 
of big object detection (> 300 pixels), (Gong et al., 2022). However, 
undertaking a drone survey in the field to cover medium to large size 
areas at altitudes of 1 m would not be feasible due to the amount of hours 
required. Hence, when planning the survey, the resolutions and sensor 
altitudes needed for big object detection are only recommended for very 
small areas and are not applicable to characterise the expansion of wild 
Pacific oysters. Similarly, Lin et al. (2022) used similar pixel resolutions 
of large object detection and reported success in modelling partially 
captured submerged non-Pacific oysters by applying Generative 
Adversarial Networks (GANs). 

To the best of authors’ knowledge, no case of study has been pub-
lished to date that outlines the workflow to identify and count individual 
Pacific oysters per square meter using aerial drones for the potential 
deployment towards large-scale monitoring of an area of study. 

Our study presents four core differences from other publications: (i) 
we focus on detailed and individual Pacific oyster counts using object 
detection; (ii) we focus on the detection of wild Pacific oysters in 
intertidal mudflats and rocky shores; (iii) we collected data using aerial 
drones flown at low altitudes and during low tides resulting in sub-
centimeter pixel size that allows for identification of individual Pacific 
oysters as medium size objects; and (iv) we benchmark other state of the 
art DL architectures. Additionally, following the best practices suggested 
by Gonçalves et al. (2022) detecting marine litter in the intertidal re-
gion, our workflow includes the creation of grid orthomaps for best 
visualization of the Pacific oysters detected per square meter of the 
surveyed area. Using this approach, areas of higher densities of Pacific 
oysters can easily be identified in the map. Moreover, this makes 
possible to visualize on a map changes due to seasonal effects by 

undertaking periodic drone surveys in the same area for continuous 
monitoring. 

2. Methodology 

2.1. Study sites 

A field campaign was carried out at two distinctive intertidal cases at 
Kingsbridge Estuary, UK (Fig. 2). Drone images were collected around 
low tide on each site of the estuary selected by the high number of Pa-
cific oysters reported and their very different characteristic landscapes 
of mudflats and rocky shore. The two sites included in this work are:  

• Site A: Collapit Creek mudflats. An area of approximately 1.67 ha 
intertidal mudflat was surveyed on 13th May 2022 shown on Fig. 3 
(lat, lon = 50.259245, − 3.771041).  

• Site B: Scoble Point rocky shore. The intertidal region that follows 
the shoreline for approximately 250 m was surveyed on 16th May 
2022, Fig. 4 (50.240164, − 3.755421). 

Collapit Creek (Site A) is a mudflat area of special interest for sea-
grass where Pacific oyster have previously been reported in exception-
ally high numbers (Natural England, 2021). Moreover, this area is not 
accessible by boat and is very difficult to access by foot as the mud 
column can reach more than 1.5 m depth. Contrarily, Scoble Point (Site 
B) is an intertidal rocky shore with a steep coastline accessible by boat 
that presents a very high density of seaweed and where the Pacific 
oysters grow over the rocks and fill gaps. 

At the Collapit Creek mudflat (Site A), drone images were collected 
using a DJI Phantom4 Pro v2.0 in a pre-planned grid mission using the 
“DJI GS Pro” mission planner software. Photos were acquired at 10 m 
altitude (resulting in a pixel size of ~0.3 px/cm) with a front overlap 
ratio of 80% and a side overlap of 70%. The camera was positioned at a 

Fig. 2. The two study sites selected for this study and located in the Kingsbridge Estuary (UK). Drone surveys were carried out during low tides using a DJI 
Phantom 4. 
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15◦ angle off-nadir to minimise sun-glint effects (Schneider-Zapp et al., 
2019). A total of 1964 individual drone images were collected over the 
mudflat during approximately 80 minutes using 4 sets of batteries. 

The rocky shore (Site B) comprises a smaller site and presents a more 

complicated orography due to the steepness of the rocky shoreline and 
different obstacles such as trees. Drone images were collected with the 
same aircraft (DJI P4v2) and same overlapping ratios and off-nadir 
camera angle but at a slightly higher altitude of 12 m for most of the 

Fig. 3. Drone orthomosaic of Site A, Collapit Creek mudflat (50.259245, − 3.771041) collected on 13th May 2022 overlaid on a Google map image.  

Fig. 4. Drone orthomosaic of Site B, Scoble Point rocky shore (50.240164, − 3.755421) collected on 16th May 2022 overlaid on a Google map image.  
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site (~0.4 px/cm). Additional overlapping photos were collected by 
manually operating the drone at the altitudes of 9 m and 3 m to capture 
high densities areas in higher detail where the steepness of the terrain 
would have prevented the collection of images with the planned overlap. 
A total of 829 drone images were collected for this site using 2 sets of 
batteries in 40 minutes. 

2.2. Data pre-processing and data annotation 

Drone photos were processed using the photogrammetric technique 
Structure from Motion via the commercial package “Agisoft Metashape 
Professional” (software version 1.7.6). This software is able to identify 
Tie Points in the overlapping regions of the images to stitch the photos 
together and model the elevation of the surveyed area. A Digital 
Elevation Model (DEM) and orthomap were created for each site, as can 
be seen in Fig. 3 and Fig. 4. These orthomaps allowed for individual 
orthorectified images from both sites and were made freely available to 
other researchers (Mata, 2024). These two environments present 
different challenges to the DL model, particularly to ensure that rocks 
are not confused with Pacific oysters. The selected sites are represen-
tative of a large variety of naturally occurring intertidal landscapes 
(Diederich, 2006) and were selected to ensure that DL models generalize 
across different geographic locations. 

In order to create the Pacific oyster dataset, specific subsets of each 
region were manually selected to make sure all different terrain types 
found at each site were captured: mud, rocks, and sand. These regions 
included areas of both sparse and dense Pacific oysters population on 
each sites. The images in each region contained oysters that were clearly 
visible and oysters partially covered with seaweed in all possible back-
ground configurations. 

Individual orthorectified images covering the training and valida-
tions areas within both sizes were visually inspected to identify indi-
vidual Pacific oysters. Bounding boxes were drawn for each Pacific 
oyster to build the tagged dataset using the Python “LabelImg” library 
(Tzutalin, 2015). A total of 6846 Pacific oysters were identified and 
annotated, 3954 at the Scoble (Site A), and 2892 at the Collapit (Site B). 
Due to the overlapping nature of the images, many of those oysters were 
captured in different photos at different angles and light conditions. 

Orthorectified tiles were then generated from the orthomosaic, as 
640 × 640 pixel images for feeding into the Neural Network, which were 
tiled across the training and validation areas of each site. 

This resulted in a dataset consisting of 3643 tiles for the Scoble site 
(758 containing Pacific oysters, 2885 without Pacific oysters) and 7571 
tiles for the Collapit site (879 containing Pacific oysters and 6692 
without Pacific oysters). 

2.3. Validation and training datasets 

To create the training and validation datasets, the tiles containing 
Pacific oysters were split into 70% training, and 30% validation. Data 
augmentation was used to increase the size of the training dataset, 
through random variations and manipulations to the data. Augmenta-
tions were applied in a random order. The list of augmentations is 
described in Table 1. 

The training data set had five augmented images created per original 
tile to create an additional 5735 tiles split between the two sites. 

Augmentation was not applied to the validation data. An additional 300 
tiles containing no Pacific oysters from each site were added to the 
training data set and 50 into the validation dataset to ensure that the 
model does not overestimate the number of Pacific oysters. This pro-
duced a training dataset of 7482 tiles, 3996 tiles for Scoble (Site A) and 
3486 tiles for Collapit (Site B), and a validation dataset of 540 tiles, 288 
tiles for Scoble (Site A) and 252 tiles for Collapit (Site B). 

2.4. Deep learning models 

Two widely used object detection models were selected for com-
parison, YOLOv5 (Jocher et al., 2021) and Faster R-CNN (FR-CNN) (Ren 
et al., 2015). YOLO is a lightweight approach where objects are identi-
fied directly through as single pass, whereas the FR-CNN is a multi-stage 
network approach based on identifying potential regions and then cat-
egorising and discarding some inappropriate regions (Ren et al., 2015). 
For the YOLOv5 model, we also tested three variants, YOLOv5 small, 
YOLOv5 medium and TPH-YOLOv5 (Zhu et al., 2021b), which is a 
modified variant of YOLO with a Transformer Prediction Head (TPH) 
(Yang et al., 2019). 

The TPH-YOLOv5 model was pre-trained with the VisDrone dataset 
(Zhu et al., 2021a), and the YOLOv5m, YOLOv5s and FR-CNN models 
were pre-trained on the COCO dataset (Lin et al., 2014), to leverage the 
advantages of transfer learning (Safonova et al., 2023). 

All models were trained to detect bounding boxes around Pacific 
oysters with a batch size of 16 image tiles, except for YOLOv5s, which 
needed to be trained with a batch size of 128, due to being a smaller 
model size. Models were all trained for 50 epochs (number of iterations 
over the training dataset in one cycle). Visual inspection of the training 
and validation loss curves showed that 50 epochs were sufficient for 
each model to reach convergence. As can be seen in Fig. 5, the loss 
plateau’s then slowly rises for the object loss, thus no more training was 
required. 

When taking the trained model for further inference, we selected the 
best model, based on the validation loss curve metrics, which means that 
the model selected was the one trained until epoch 6 (from the 50 epochs 
trained). The full loss curve is included for completeness. 

Using the two independent validation dataset for each study site, 
result metrics were calculated using Padilla et al. (2021) for each DL 
model. A positive detection is identified where the Intersection over 
Union is greater than 0.5. As such, when detecting of a Pacific oyster, a 
detection overlaps with a true Pacific oyster by more than 50% of the 
bounding boxes. Consequently, we are able to classify each detection as 
one of the three categories: 

True Positive (TP): A successfully detected Pacific oyster. 

Table 1 
Data Augmentations applied to training data.  

Augmentation Minimum Maximum 

Flip – – 
Crop 0 10% 

Contrast Shift − 25% +50% 
Translation − 20% 20% 

Rotation − 90◦ +90◦

Fig. 5. Plot of the Validation Loss curve for the YOLOv5s model.  
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False Positive (FP): An incorrect detection, where no Pacific oyster 
exists, but one is predicted - such as a rock that has been misclassified. 

False Negative (FN): Where a Pacific oyster is not detected. 
The real number of Pacific oysters that were present in the field and 

were labelled within the validation dataset for each site is also referred 
as the Ground Truth and is used to obtain the metrics for each model. 
From this, we can calculate the precision and recall metrics, which was 
performed using Padilla et al. (2021). 

Precision =
TP

TP + FP
=

TP
Number Detected

Recall =
TP

TP + FN
=

TP
Ground Truth 

The uncertainties of precision and recall for each model are also 
estimated by calculating the Confidence Interval (CI) for each metric as: 

CI = (Metric) ± z × SEmetric  

where z is the z-score that corresponds to z ≈ 1.96 for a 95% confidence 
assuming a normal distribution and the Standard Error (SE) defined as: 

SEPrecision =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Precision × (1 − Precision)

Number Detected

√

and 

SERecall =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Recall × (1 − Recall)

Ground Truth

√

Furthermore, in order to establish the balance between the precision 
and recall of each model, the F-score is also calculated as the harmonic 
mean of precision and recall uncertainty of the model: 

F-score = 2 ×
Precision × Recall
Precision + Recall  

3. Results 

The results are presented in Table 2, which shows the evaluation 
scores for each model using the data from both sites combined as well as 
split into the two different evaluation sites with the different back-
grounds of rocky shore and mudflats respectively. For each case, the 
models that return the higher number of true positives, the lower 
number of false negatives and those that score best on precision and 
recall, are highlighted in bold. 

The results show YOLOv5s model performs best in both site, with 
precision scores of ≈ 88 − 89%. On the mudflats site, both YOLOv5s and 
TPH-YOLOv5 are almost exactly matched for precision scores (with a 
difference in precision below 0.05%) though YOLOv5s shows a higher 
recall (80% vs 68%). If the recall is prioritised over precision, then the 
FRCNN model performs best across all sites. For YOLO models, results 

indicate that some Pacific oysters are not being detected, however the 
models present higher confidence in those identifications as the number 
of false positives is much lower than FRCNN. As such, FRCNN is over-
estimating the number of Pacific oysters as it is detecting more than the 
Ground Truth number across both sites. 

Similarly, the F-scores and Confident Intervals (CI) are shown on 
Table 3 to give an estimation of the uncertainties of each model and the 
balance between precision and recall. In all cases, YOLOv5s presents a 
higher F-score of approximately 85% which indicates a better trade-off 
between precision and recall than the other models. The 95% confident 
interval for precision is 86.7% - 89.7% meaning that the true precision of 
the YOLO5s model across both sites is 88.2% with a margin of error of 
1.5%. In other words, we are 95% confident that 88.2% ± 1.5% of the 
detection raised by YOLO5s are indeed Pacific oyster. Similarly, the 95% 
confidence interval for YOLO5s recall is 80.7% - 84.1% which is 
equivalent to say that it might miss to identify between 15.9% - 19.3% of 
the Pacific oysters. FRCNN presents the second best F-score but it pre-
sents however the largest differences between precision and recall 
metrics sacrificing precision for higher recall values. As such, the FRCNN 
model is 95% confident that is detecting 90.2% of the Pacific oysters 
across both sites with an uncertainty of 0.4%. However, FRCNN’s pre-
cision is 75.3% ± 1.8%, hence between 22.9% - 26.5% of the positives 
will not be Pacific oysters (likely rocks and other artifacts). 

The prioritisation of precision or recall is an important distinction. In 
our case of study, we chose to reduce as much as possible the number of 
false negatives to increase the confidence and ensure the highest per-
centage of detected Pacific oysters are indeed Pacific oysters (and not 
rocks for example). This is particularly important when organising ac-
tions that might involve costly intervention schemes to manage the 
expansion of wild Pacific oysters at early stages. Hence, we determine 
that in this case the model that performs best is the one that favors 
precision over recall to ensure the Pacific oyster population is not 
overestimated: YOLOv5s. If we were targeting an approach where a 
larger number of false positives was acceptable to reduce as much as 
possible the number or false negatives or missed detection, then the 
recall metric would take precedence and FRCNN will be more appro-
priate even with a lower F-score. 

To further explore the occurrence of false positives, we visualised 
some detection cases for the FRCNN, TPH-YOLO and YOLOv5s models. 
As shown in Fig. 6, there is a consistent under-performance in the 
detection across the mudflats region (Site A), particularly for the TPH 
model. In the rocky shore cases shown in Fig. 6, some rocks were 
incorrectly identified as Pacific oysters. Visual inspection of these fig-
ures can shed some light on why the models fail in different 
environments. 

Lastly, the trained YOLO5s model was run over all tiles composing 
the entire data orthomosaic to create density maps of the surveyed re-
gions. The orthomap and bounding boxes of the detected Pacific oysters 

Table 2 
Validation results from the four models, for each Site (A and B).  

DL Model Ground Truth Number Detected True Positives False Negatives False Positives Precision Recall  

Both Sites   
FRCNN 1829 2191 1650 179 541 0.753 0.902 
TPH-YOLOv5 1829 1594 1257 572 337 0.789 0.687 
YOLOv5s 1829 1709 1508 321 201 0.882 0.824 
YOLOv5m 1829 1751 1446 383 305 0.826 0.791  

Collapit Mudflat (Site A)   
FRCNN 1025 1225 916 109 309 0.748 0.894 
TPH-YOLOv5 1025 796 699 326 97 0.878 0.682 
YOLOv5s 1025 935 821 204 114 0.878 0.801 
YOLOv5m 1025 970 784 241 186 0.808 0.765  

Scoble Point Rocky Shore (Site B)   
FRCNN 804 966 734 70 232 0.760 0.913 
TPH-YOLOv5 804 798 558 246 240 0.699 0.694 
YOLOv5s 804 774 687 117 87 0.888 0.854 
YOLOv5m 804 781 662 142 119 0.848 0.823  
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were transformed into the UTM (Universal Transverse Mercator) pro-
jection and the number of oysters per square meter was calculated using 
1 × 1 m grid via the open source package QGIS. The result is a grid map 
that displays the density and location of the wild Pacific oysters spread 
in our study sites as shown on Figs. 7 and 8. 

A total of 11,943 Pacific Oysters were detected at Collapit Creek and 
2518 at Scoble Point. The density per square meter of Pacific oysters is 
larger at Collapit Creek as expected from previous reports (Natural En-
gland, 2021). These grid maps allow for easy visualization of the Pacific 
oysters density to locate hotspots and make possible regular monitoring 
to analyse trends. 

A GitHub repository of the selected YOLO5s pretrained model has 
been made available, to provided a tutorial on how to apply the devel-
oped train model on new orthorectified images.2 

4. Discussion 

The expansion of wild Pacific oysters pose a threat to ecosystems of 
marine protected areas across Europe (Herbert et al., 2016; Natural 
England, 2021). Current models predict that their expansion will 
continue or accelerate due to warmer waters resulting from climate 
change (King et al., 2020; Rinde et al., 2017; Wilson et al., 2024). Hence, 
there is an urgent need to monitor their expansion to provide the pivotal 
information for early assessment and management action before their 
numbers can form reefs that might alter the balance of protected biomes 
(Natural England, 2021; Hansen et al., 2023; Reise et al., 2006). More-
over, monitoring the number of invasive wild Pacific oysters and their 
location is also vital to better understand the factors leading their 
spread, their impact, and to reduce the uncertainties of their expansion 
models (Wilson et al., 2024) as well as to provide the necessary data to 
promote regulations and ecological policies (Hansen et al., 2023). 

This work presents a novel approach towards early detection and 
management of wild Pacific oysters expansion. We present a workflow 
for detecting, mapping and counting individual Pacific oysters using 
aerial drone imagery and DL. 

Our approach identifies Pacific oysters using medium size object 
detection (50–300 pixels, Gong et al. (2022)). This method relies on 
morphological detection of juvenile or sexually mature Pacific oysters 
that have already acquired their distinctive colour and shape (that is 
different from their larvae) to be leveraged for their detection. Hence, by 
early detecting and mapping individual Pacific oysters, their expansion 
can be quantified, their hotpots assessed and remedial action can be 
planned before putting at risk marine protected areas (Reise et al., 
2006). 

The detection of Pacific oysters as medium size objects is funda-

mental to this study and allows the workflow proposed to become a 
successful monitoring solution that can be easily deployed on the field. 
While other researchers (Lin et al., 2022; Sadrfaridpour et al., 2021) 
have showed success in detecting individual Pacific oysters using CNN 
and segmentation or similarly, to detect morphological and colouring 
traits of cockle shells to identify their harvest locations (Concepcion 
et al., 2023), these studies are based on capturing individuals with the 
resolution needed to perform big object detection (> 300 pixels). These 
methods require images with extremely high resolution and, in all cases, 
the distances between the camera and the Pacific oysters required are 
lower than a meter distance (reportedly 92–30 cm) to achieve pixel sizes 
of 0.06 or better and capture the oysters and cockles as objects with 
more than 300 pixels. This restriction on the distance between camera 
and target imposed by the resolution of big object detection means that 
these techniques are not feasible to be implemented to survey medium 
size areas (≈1Ha) or larger due to the amount of hours that will demand 
for data collection (either using aerial or underwater drones or manu-
ally). On the other hand, Ridge et al. (2020) showed how CNN can be 
applied to aerial images collected at the altitudes of 100 m with a re-
ported pixel size of 2.2 cm to delineate oyster reefs but not providing 
enough resolution to perform object detection and identify individual 
Pacific oysters. Therefore, selecting an appropriate pixel size for 
capturing Pacific oysters as medium size objects is key for ecological 
management for early detection and it is dictated by the camera pa-
rameters (focal length and number of pixels) and flight altitude 
(Andriolo et al., 2023). The pixel size can be easily calculated and 
adjusted when drafting a drone survey by entering the camera model or 
camera parameters and the flight altitude in any of the most common 
drone planning software tools including DJI GS PRO, Pix4D or Litchi. 

While the data acquired in this work were collected at 0.3 cm/px 
(using a DJI Phantom4 Pro v2.0 at 10 m altitude), a lower resolution can 
be selected to fly at higher altitudes making possible to cover larger 
areas in the same span of time. In those cases, a pixel size or Ground 
Sampling Distance (GSD) better than 0.8 cm/px is required when 
planning the drone survey to capture common sizes of Pacific oysters 
within 50 pixels (usually around 8 cm long and 5 cm wide). Moreover, 
we recommend a resolution of 0.5 cm/px (cm per pixel) to be able to 
correctly detect Pacific oysters that might be partially covered by mud or 
algae. Using a resolution of 0.5 cm/px, the smallest Pacific oyster that 
can be detected within 50 pixels is 5 cm long and 3 cm wide (juvenile 
stage). This can be achieved with widely available consumer drones 
such as the DJI Phantom 4 (GSD of 0.5 cm at 18 m altitude). Using 
survey grade cameras with better shutter speed and pixel resolution such 
as the 35 mm lens DJI Zenmuse P1, the same resolution of 0.5 cm can be 
achieved at 40 m altitude, further increasing the area that can be 
covered on each drone campaign (approximately up to 15 Ha within 30 
min). 

This study compares different CNN models to detect Pacific oysters 

Table 3 
F-scores, Standard Error and Confident Intervals for each model.  

Model F-score Std Err Precision CI_Precision Lower Limit CI_Precision Upper Limit Std Err Recall CI_Recall Lower Limit CI_Recall Upper Limit  

Both Sites 
FRCNN 0.821 0.009 0.735 0.771 0.007 0.888 0.916 
TPH-YOLOv5 0.734 0.010 0.769 0.809 0.011 0.666 0.708 
YOLOv5s 0.852 0.008 0.867 0.897 0.009 0.807 0.841 
YOLOv5m 0.808 0.009 0.808 0.844 0.010 0.772 0.810  

Collapit Mudflat (Site A) 
FRCNN 0.814 0.012 0.724 0.772 0.010 0.874 0.912 
TPH-YOLOv5 0.768 0.012 0.855 0.901 0.015 0.653 0.711 
YOLOv5s 0.838 0.011 0.857 0.899 0.012 0.777 0.825 
YOLOv5m 0.783 0.013 0.776 0.826 0.013 0.739 0.791  

Scoble Point Rocky Shore (Site B) 
FRCNN 0.830 0.014 0.733 0.787 0.010 0.894 0.932 
TPH-YOLOv5 0.696 0.016 0.667 0.731 0.016 0.662 0.726 
YOLOv5s 0.871 0.011 0.866 0.910 0.012 0.830 0.878 
YOLOv5m 0.835 0.013 0.823 0.873 0.013 0.797 0.849  

2 https://github.com/djmoffat/PacificOysterDetection 
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Fig. 6. Examples of four scenes with different method ML method comparison (FR-CNN, TPH-YOLOv5 and YOLOv5s) for detection across Site A - mudflats (first and 
second rows of images) and Site B - rocky shoreline (third and fourth rows). Green boxes are the Ground Truth data and blue boxes are the detected Pacific oysters for 
each model. Hence, boxes colored by green and blue indicate true positive, and boxes colored by only green or only blue indicate respectively a false negative and 
false positive. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Pacific Oyster population per square meter over the mudflat area surveyed at Collapit Creek (Site A). A total of 11,943 Pacific Oysters were detected.  

Fig. 8. Pacific Oyster population per square meter over the rocky shore at Scoble Point (Site B). A total of 2518 Pacific Oysters were detected.  
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and reports a model precision up to 88% both for the intertidal areas of 
rocky shores and mudflats. We apply our trained YOLOv5s model to two 
distinctive cases at Kingsbridge Estuary (UK) and present an estimation 
of their population in a grid map. This allows for easy visualization and 
the creation of time series to investigate trends or seasonal effects. 

A comprehensive cost analysis for drone surveys versus traditional 
surveys has been produced by White et al. (2022). Correspondingly, 
aerial drone surveys can provide cost-effective solutions to monitor 
Pacific oysters in contrast to compared to traditional walk-over surveys 
which typically rely on volunteers. Another advantage of the workflow 
presented in this publication versus traditional surveys is that each Pa-
cific oyster is visible and geolocated in the orthomap. This contributes to 
identifying hotpots and areas at risk as well as enables the creation of 
time series by collecting data over the same region. This grants a more 
efficient solution than using manual methods which typically will 
require manually recording the GPS location for each oyster to be log-
ged. The inclusion of UTM grid density maps enhances data assimilation 
delivering powerful visualization tools of the DL model outputs to easily 
assess the Pacific oyster population per square meter in the surveyed 
terrain (Figs. 7 and 8). Additionally, the use of RPAS can provide the 
necessary data from areas that are not easy or safe to access (Jaud et al., 
2019) such as the Collapit Creek mudflats surveyed in this work. 

Several DL architectures were compared for their effectiveness in the 
detection Pacific oysters. YOLOv5s presented the best model precision 
while the best recall was FRCNN. This indicates that YOLOv5s is the 
most appropriate model for use in this domain, due to the precision 
being significantly higher than FRCNN (88% for YOLOv5s and 
YOLOv5m vs 75% for FRCNN) while the recall of both models is closer 
(82% for YOLOv5s vs 79% YOLOv5m). Prioritising precision over recall 
means that we minimise the number of false positives (the number of 
objects incorrectly raised as Pacific oysters), therefore the model is more 
likely to correctly detect Pacific oysters but it might underestimate their 
population. The YOLOv5s model has been trained to detect individual 
oysters at the different landscapes of mudflat and rocky shores with an 
precision of 88% and a marginal difference below 0.5% between the two 
sites and with a 95% confidence accuracy of 1.5%. Similarly, YOLO5s 
presents a recall of 80.7% - 84.1% with a 95% confidence. These values 
ensure that the model is practical and can be implemented for ecological 
management but caution should be exercised when comparing this 
precision to other published work that relies on big object detection 
instead of medium size detection used in this paper. As such Sadrfar-
idpour et al. (2021) reports a similar average precision of 81.8% when 
detecting submerged Pacific oysters within 3 ft of distance (0.92 cm, big 
object detection). While Concepcion et al. (2023) reports precision of 
their model to detect common cockle harvest origin using CNN up to 
96% using photos taken at 50 cm distance. To the best of knowledge of 
the authors, no study has been published that uses medium size detec-
tion to identify oysters or moluscs and reports the precision of the model. 

As three of our models are based on the YOLO structure, we would 
expect the results to be relatively similar, and the results demonstrate 
the success on small training data quantities compared to larger model 
complexity. Intuitively, it would be expected that a smaller model can 
successfully learn from fewer data to represent less complex problems, 
whereas larger more complex models may require more data to repre-
sent more complexity within the object to detect. The results indicated 
that YOLOv5s, as the smallest model, performs best in terms of preci-
sion. The TPH-YOLOv5, which is an extension of the YOLOv5s model is a 
slightly more complex model, and further pre-training on RPAS specific 
imagery. The results indicated that detection of Pacific oysters does not 
demand the complexity of the larger YOLOv5m model and using the 
TPH-YOLOv5 model pre-trained with RPAS data, is not beneficial in this 
instance. 

As shown on Fig. 6, the trained YOLOv5s model was able to detect 
Pacific oysters against the different backgrounds of mud, vegetation, 
different rocks and both when the oysters were found as individuals far 
away from each other or growing together in close proximity in large 

numbers. This is representative of a large number of environments 
across Europe. Hence, the workflow presented is transferable to those 
areas and our CNN model should be able to generalize to new sites. 
However, more data are required to validate this claim. Furthermore, 
due to the constrains of this project, only a limited number of oysters 
could be tagged as a training and validation dataset and the model 
would benefit from including more data over different backgrounds to 
be further fine-tuned. 

The authors recognize several other limitations that could be 
addressed in follow up projects. First, only two types of neural network 
architectures were used, whereas additional benchmarking could be 
performed with other types of ResNets, DenseNets and transformer 
based models. Secondly, this study does not address the individual in-
sights from the trained models, and the pros and cons of architectures 
and hyperparameters in recognizing specific features of Pacific oysters 
across mudflats and rocky shore imagery. Thirdly, ablations studies 
should be performed, showcasing the possibilities for reducing the 
complexities of neural network layers and speeding up the computation 
times. And fourthly, if left unmanaged, Pacific oysters can create oyster 
reefs and very dense clusters where younger oysters grow on top of the 
older. In such cases, no gaps are found in the cluster and only the oysters 
on the top are partially visible (as shown on Fig. 1b). The equivalent 
density for those maximal density clusters are impossible to calculate 
using visual methods only and is sometimes estimated as over 200 
oysters per square meter (Herbert et al., 2016). We expect that our 
current model will struggle to identify these large clusters and will not 
provide an appropriate population estimations in such cases. One po-
tential approach to solve this issue would be to frame the task as object 
segmentation (Ridge et al., 2020). However, our study is designed for 
repeated and early detection on Pacific oysters before those clusters are 
established. Using this methodology, we argue that regular surveys can 
be undertaken over the same area to detect trends of growth and orga-
nise preventive measurements as needed in marine protected areas 
when it is still possible to manage the negative impact of Pacific oyster 
reefs (Hansen et al., 2023). 

This work has been carried out on very different regions that are 
representative of many different environments across Europe. We also 
performed data augmentation on the training the model including 
varying lighting conditions that ensure it represents seasonal or daily 
variations in the conditions. Thus, the model has the potential to be 
expanded and validated to other areas across Europe where the spread of 
wild Pacific oysters can pose a challenge. While this work has focused on 
the detection at early stages of colonisation to preserve marine protected 
areas, the CNN model could also be expanded to estimate the densities of 
large Pacific oyster reefs that include clusters with over 200 oysters per 
square meter presenting little to none substrate visible. In a similar 
manner, the model could also be further developed to include the 
separate detection of other species of molluscs due to their morpho-
logical differences that might compete in the same environment, so long 
as those molluscs can be detected within the intertidal zone using me-
dium size object detection. 

5. Conclusions 

This study presents the results and workflow of mapping emerged 
wild Pacific oysters using low altitude RPAS imagery to estimate and 
visualize their density for ecological management purposes. These data 
are essential to better understand the impact of Pacific oysters, establish 
regulation policies and to early detect the colonisation of marine pro-
tected sites that put these ecosystems at risk. We compared how different 
CNNs models including YOLOv5s, YOLOv5m, TPH-YOLOv5 and FR- 
CNN performed medium object detection to identify Pacific oysters 
both on intertidal rocky shores and mudflat regions. We report metrics 
of each model with precision scores up to 88% with only a marginal 1% 
difference across the different sites. The workflow proposed includes 
how the output of the model can be visualised on an UTM projected grid 
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map to efficiently assess the number of Pacific oysters per square meter 
for management purposes which level of detail is not possible or 
extremely laborious to achieve using traditional surveys. The use of 
drones and DL therefore provides a cost-effective monitoring solution 
while can also provide data over complex terrain that in many cases is 
otherwise unreachable via “walk-over” surveys. 
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