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Abstract
Visible spectral radiometric measurements from space, commonly referred to as ocean-col-
our measurements, provide a rich stream of information on ocean biota as well as on bio-
logical and ecosystem processes. The strength of the ocean-colour technology for observ-
ing marine life lies in its global reach, combined with its ability to sample the field at a 
variety of spatial and temporal scales that match the scales of the processes themselves. 
Another advantage lies in the growing length of the time series of ocean-colour-derived 
products, enabiling investigations into any long-term changes, if present. This paper pre-
sents an overview of the principles and applications of ocean-colour data. The concen-
tration of chlorophyll-a, the major pigment present in phytoplankton–single-celled, free-
floating plants that are present in the sunlit layers of the ocean–was the first, and remains 
the most common, biological variable derived from ocean-colour data. Over the years, the 
list of ocean-colour products have grown to encompass many measures of the marine eco-
system and its functions, including primary production, phenology and ecosystem struc-
ture. Applications that exploit the data are many and varied, and include ecosystem-based 
fisheries management, biogeochemical cycles in the ocean, ecosystem health and climate 
change. An integrated approach, incorporating other modes of ocean observations and 
models with satellite observations, is needed to investigate the mysteries of the marine 
ecosystem.
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Article Highlights

• Ocean colour satellites are designed to investigate marine biota by their distinct optical 
signatures

• Some common ocean-colour products are concentration of chlorophyll-a and marine 
primary production along with many other indicators of marine ecosystem status

• Ocean colour has become a very useful tool in climate research and is recognized as an 
essential climate variable

1 Introduction

The global ocean covers two-thirds of the surface of our planet; it is about 3700 m deep on 
average; it is a highly dynamic fluid medium that experiences variability at multiple tempo-
ral and spatial scales. The ocean is the cradle of life as we know it and supports a complex 
network of species and ecosystems that have adapted to this fluid and at times hostile envi-
ronment. There are many reasons why the ocean biota and their processes are essential for 
both humans and our green planet.

It is estimated that the oceans are home to some 2.2 million species, of which only 9% 
has been described (Mora et al. 2011). With such a small portion that has been observed 
and described, it is highly likely that we understand little about the diverse services that 
these organisms provide, to maintain the intricate and inter-connected properties that ren-
der the Earth a hospitable and pleasant environment for us humans; maintain the multi-
tudes of life forms that make our planet beautiful and shape our landscape; and control the 
chemical composition of our atmosphere.

The ocean biota plays a significant role in the global biogeochemical cycles of this 
planet, notably the cycle of carbon, various nitrogen compounds (e.g., nitrate, nitrite, 
ammonia and nitrogen gas), phosphate, silica and iron. In fact, the role of marine phy-
toplankton (microscopic, free-floating, single-celled plants) as net primary producers of 
organic material in the ocean is estimated to be equivalent to that of terrestrial plants 
(Longhurst et al. 1995; Field et al. 1998). For this and other reasons, such as their role in 
absorbing sunlight and thereby modulating the depth distribution of solar heating of the 
upper ocean, phytoplankton are considered an important player in studies of the ocean 
carbon cycle.

Marine primary production, currently estimated to be about 50 Pg of carbon globally 
per annum (Kulk et al. 2020a, b, 2021), sustains all pelagic life in the oceans, including the 
fish and seafood that we rely on for nutritious, high-quality food (Budge et al. 2014). With 
aquaculture making an increasingly important contribution to the global supply of fish 
and seafood for human consumption, there are growing concerns on its potential adverse 
impact on the marine ecosystems and on water quality.

Whether it be from considerations of the impacts of human activities on water quality 
or the effect of climate change on marine ecosystems, or for understanding how to manage 
marine living resources in a sustainable manner, we have a need for observing the ocean 
biota globally, consistently, over long periods, and at various time scales commensurate 
with the intrinsic scales of biological processes and their variability.

Satellite-based observations have an important role to play in meeting this requirement. 
There are many factors that render remote sensing a suitable mode of observation. A particu-
lar advantage is the capability for observations at the global scale using a single instrument, 
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in a consistent manner. Another is the ability of satellites to observe the oceans at a variety of 
scales that are relevant for biological processes in the ocean–at temporal scales ranging from 
hours to decades, and spatial scales ranging from a few meters to the global scale.

Of all the various types of satellite-borne sensors that are available to us now, it is the 
visible spectral radiometric observations, commonly referred to as ocean-colour measure-
ments, that have the proven capability to interrogate ocean biota directly. But many others 
are also relevant, particularly for placing the biota in their environmental context.

In this paper, we examine the principles that underlie the use of ocean-colour sensors, 
and the ancillary information from other satellite sensors that can be used to enhance the 
applications of ocean-colour data. We recognise that satellites cannot satisfy all our obser-
vational requirements relating to the biological system; and so, we examine the value and 
importance of what is amenable to remote sensing, how to make the most use of the obser-
vations, sometimes in conjunction with other types of observations. We examine the chal-
lenges and identify the need and advantages of combining satellite-derived information with 
other modes of observation, to enable a holistic view of ocean biota and ocean ecosystems.

In this paper, we have attempted to present the myriad of ways in which ocean-colour 
data have contributed to the study of ocean biota and marine ecology and biodiversity. To 
present the case, we have relied heavily on our own work, and the paper is not designed to 
be an exhaustive review of the field.

2  Principles of Ocean Biology from Ocean Colour

It is a matter of everyday observation that the colour of natural bodies of water changes with 
location and with time (Fig. 1). We know instinctively that the colour is an indicator of water 
quality: we associate limpid, blue, transparent waters with purity; brown and reddish waters 
that are more opaque are linked with high content of mud; and we know that green waters 
likely indicate high plant content. But to progress from this type of casual observation to quan-
titative assessment of life in the oceans, we need to invoke the principles of marine optics.

Marine optics is built on a bedrock of two subdisciplines (https:// www. ocean optic 
sbook. info/). One of them is devoted to the study of inherent optical properties of 
various types of material, whether particulate or dissolved, that are present in seawa-
ter. Inherent optical properties include spectrally-resolved absorption and scattering 
coefficients, and the volume scattering function that describes the angular distribution 

Fig. 1  Examples of colour of 
natural aquatic bodies at different 
locations and times (images from 
CEOS Report 2018, courtesy 
CSIRO). In this paper, we 
examine the optical processes 
responsible for these changes; 
whether we can quantify the 
responsible agents; what biologi-
cal information we can garner 
from colour; and the applications 
of the information

https://www.oceanopticsbook.info/
https://www.oceanopticsbook.info/
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of scattered light. They represent the optical properties of the materials independent 
of the nature of the light field in which they are present. The second branch of marine 
optics deals with the study of radiative transfer in the oceans, and how the spectral 
and angular distribution of under-water light field (induced by sunlight or by artificial 
sources) is modified by the types and concentrations of material present in the water.

Ocean colour, as detected by a satellite, is defined by the spectral variations in 
remote-sensing reflectance, defined as the spectrally-resolved ratio of water-leaving 
radiance, normalised to the downward irradiance at the surface of the ocean:

In the equation above, Rrs(�, �,�, 0) is the remote-sensing reflectance at wavelength 
� , at depth zero (just above the surface), zenith angle � and azimuth angle �, with 
L(�, �,�, 0) being the corresponding water-leaving radiance at the same wavelength, and 
Ed(�, 0) being the downwelling irradiance, also at wavelength � and depth zero. Note 
that radiance is defined as flux per unit surface area and per unit solid angle, whereas 
irradiance is flux per unit area. It is typical when processing remote-sensing data to 
normalise Rrs(�) such that we deal with the special case of zenith angle of zero, to avoid 
any deviations in the signal arising from changes in the viewing angle. Intuitively, we 
can anticipate that reflectance will decrease as absorbing material increases in the water, 
and that it will increase with scattering, especially with back-scattering (or upward-scat-
tering). In fact, various theoretical explorations have led to general solutions of the form 
(e.g., Morel and Prieur 1977; Sathyendranath and Platt 1997; 1998; Sathyendranath 
et al. 2001; Brewin et al. 2012):

where f  is a function of bb(�), the back-scattering coefficient and a(�), the absorption coef-
ficient. Note that here, and in the following, we have dropped the arguments �,� and zero, 
for simplicity.

The optical properties of pure water itself (with low absorption in the blue and green 
parts of the visible spectrum, and high scattering in the blue) render pure, clean water its 
characteristic deep blue colour. Typically, four major groups of material are responsible for 
changes in ocean colour. These are:

• Phytoplankton that contain plant pigments–notably chlorophyll-a and its variants, and 
auxiliary pigments that have photosynthetic or photoprotective roles. Chlorophyll-a has 
an absorption maximum in the blue, a minimum in the green and a secondary maxi-
mum in the red, and a relatively flat backscattering spectrum that could be modulated 
in the vicinity of absorption bands.

• Coloured dissolved organic matter (CDOM) or yellow substance, which is charac-
terised by an absorption coefficient with low values in the red part of the spectrum, 
increasing exponentially towards shorter wavelengths. Because these are dissolved sub-
stances, their contribution to scattering is considered negligible.

• Detrital material, which have absorption properties similar to those of CDOM; and

(1)Rrs(�, �,�, 0) =
L(�, �,�, 0)

Ed(�, 0)

(2)Rrs(�) = f
bb(�)

a(�)
,
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• Suspended sediments, whose optical properties vary, depending on the type of sedi-
ments present: whether they be mud or sand, for example. Suspended sediments 
become important in certain coastal areas and in areas of river outflow, but are largely 
absent in the surface waters of the open ocean.

The optical properties of phytoplankton are such that the colour of water changes from 
blue to green with increasing concentrations of phytoplankton. CDOM and detrital mate-
rial tend to impart colours to the water that range from a deep yellow to orange (often 
described as the colour of black tea), and suspended sediments yield muddy brown, black-
ish or turquoise coloured waters, depending on the type of sediment present. These trans-
formations of the colour of water with the nature of substances present in it, is shown sche-
matically in Fig. 2.

To extract quantitative information on these substances from ocean-colour data acquired 
by satellites, we express the absorption coefficient as the sum of absorptions by individual 
substances, as in:

where the notations W , B , Y  , D and S stand respectively for water, phytoplankton biomass, 
yellow substances (CDOM), detritus and suspended material. Furthermore, for the latter 
four categories, the absorption is expressed as the product of their biomass-specific absorp-
tions indicated by asterisks, and their concentrations B , Y  , D and S . We recognise that, 
when other substances are present, it may be essential to include additional terms (as indi-
cated by the trailing dots in the equation). The phytoplankton biomass is usually taken to 
be the concentration of the main phytoplankton pigment, chlorophyll-a.

Similarly, the back-scattering coefficient bb(�) can also be expressed as a sum of its 
components:

(3)a(�) = aW (�) + Ba∗
B
(�) + Ya∗

Y
(�) + Da∗

D
(�) + Sa∗

s
(�) +…

Fig. 2  The optical properties of the principal constituents of seawater, and how they vary with wavelength 
in the visible portion of the electromagnetic spectrum. Photos of phytoplankton, non-algal and dissolved 
substances were adapted from Wernand et al. (2011). Photo of pure seawater taken in the centre of the oli-
gotrophic North atlantic subtropical gyre, during an atlantic meridional transect
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where we have assumed there is no additional scattering from CDOM.
Once the theoretical framework is laid out, algorithm development in ocean-colour 

remote sensing becomes an inverse modelling problem of retrieving the concentrations 
of the constituents, given the remote-sensing reflectance Rrs(�) . Alternatively, we can 
develop empirical algorithms relating Rrs(�) to the concentrations of the constituents 
and ensure that the empirical approach is consistent with the theory.

However, the remote-sensing reflectance at the sea surface is not what the satellites 
observe: they observe the radiance at the top of the atmosphere, which includes contri-
butions to the signal from the atmosphere. The first step in the ocean-colour processing 
chain is therefore a procedure referred to as the atmospheric correction, designed to 
remove the atmospheric impact on the signal and to extract the water-leaving radiance. 
This is a critical step, since the atmospheric contribution to the signal at the top of the 
atmosphere is typically 80% or more of the overall signal (Fig. 3).

There are many sources of uncertainties in the retrieved remote-sensing products. 
These include uncertainties in the instrument calibration, errors introduced during the 
atmospheric correction procedure, uncertainties in pixel identification, and those in the 
algorithms used for retrieval of the in-water constituents. The overall uncertainties are 
established using formal error propagation analyses or through comparison of satellite 
products against field observations that are matched in time and location (Brewin et al. 
2015a; Müller et al. 2015a; Jackson et al. 2017a; Sathyendranath et al. 2019; McKinna 
et al. 2019).

From this background, it becomes evident that the biological variable that is most 
readily retrieved from ocean-colour data is the concentration of the phytoplankton pig-
ment, chlorophyll-a (see example in Fig. 4).

3  Chlorophyll‑a as an Index of Phytoplankton Biomass

Phytoplankton are complex organisms, and no single measure of its biomass will con-
stitute a complete description of the organism. So, when choosing an index of biomass 
for routine estimations of phytoplankton biomass, it would be worthwhile to consider 
the ideal characteristics of such an index and examine to what extent the selected index 
meets those requirements. Holm Hansen (1973) listed the desired properties of indica-
tors of biomass of a community of living organisms and concluded that ATP (adenosine 
triphosphate) would be a suitable index. We could use a similar set of criteria for an 
ideal index of phytoplankton biomass rather than for the entire community (Table  1) 
and examine the extent to which chlorophyll-a meets those requirements, and carry out 
a similar evaluation for phytoplankton carbon, which is also often considered a desir-
able index of phytoplankton biomass. The table shows that chlorophyll-a meets most of 
the requirements of an ideal index of biomass for routine measurements, more so than 
carbon.

(4)bb(�) = bbW (�) + Bb∗
bB
(�) + Db∗

bD
(�) + Sb∗

bs
(�) +…
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Chlorophyll-a is also an important biological molecule because of the central role 
it plays in photosynthesis, on land and in the oceans. In photosynthesis, light energy is 
absorbed by a photosynthesising organism, which is then used to convert carbon dioxide 

Fig. 3  ‘True Colour’ images of a region in the South Pacfic Gyre (top left) and the Baltic Sea (top right) 
derived from the VIIRS sensor aboard the Suomi NPP satellite. Lower panels show pixel extractions of 
radiances at pin locations. Lt, Lr, Lw and nLw are the top of atmosphere, Rayleigh, water leaving and nor-
malised water leaving radiance respectively. Atmospheric correction was performed using the NASA l2gen 
processor (within SeaDAS version 7.5.3)
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and water into organic matter, and oxygen is released. In phytoplankton, as in all photo-
synthetic organisms, chlorophyll-a is at the heart of the photosynthetic unit and serves 
as the transducer that connects the supply of energy from the sun to the ecosystems of 
our planet. The photosynthesis equation can be written as follows:

Primary production is the rate of fixation of carbon dioxide in the presence of sun-
light into organic matter, through photosynthesis. It is a rate, with dimensions [M(C)] 
 [L]−3[T]−1 (Mass of Carbon per unit volume and unit time), or [M(C)][M]−2[T]−1 (Mass 
of Carbon per unit surface area, and per unit time). Any map of chlorophyll concen-
tration (e.g., Fig. 4) shows how the strength of this energy–ecosystem coupling varies 
in the ocean: the higher the chlorophyll concentration, the stronger the coupling, and 
higher the potential for primary production. It is a most fundamental property of our 
ecosystem. Thus, in calculations of primary production, it is very useful to know the 
amount of chlorophyll-a that is available for the process. It is also possible to base pri-
mary production calculations using phytoplankton carbon as the state variable, rather 
than chlorophyll-a. But a comparison of the two indicators (Table 2) shows that chloro-
phyll-a has some advantages in this context, over carbon.

H2O + CO2 + Absorbed energy              HC2O +O2 + Dissipated energy

Available Energy
(sunlight)

Chlorophyll and 
auxiliary pigments

Stored energy

(5)

Fig. 4  Example of an ocean-colour derived map of the chlorophyll concentration, from the ocean colour 
climate change initiative processing chain (version 5, dates 2018-08-29–2018-09-05)
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All things considered, chlorophyll-a is an extremely useful variable for studies of 
marine ecosystems. It would be easy to make the argument that chlorophyll-a should be 
one of the top-most priorities for observations of the marine ecosystem, and it is fortu-
nate that this property is accessible to remote sensing.

4  Ecological Indicators from Remote Sensing

Phytoplankton chlorophyll concentration is not the only piece of information on ocean 
ecology and ecosystems that is accessible to remote sensing. Over the years, a formida-
ble range of ecological indicators have been developed from ocean-colour data (Table 3). 
Chlorophyll concentration underlies many of these products, though not necessarily all of 
them. For example, combining chlorophyll data with light available at the sea surface and 
photosynthesis models, it has been possible to compute marine primary production.

The spectrally-resolved radiance data have been used to develop algorithms for detec-
tion of phytoplankton functional types and phytoplankton size structure (IOCCG 2014). 
Information on other environmental variables have been used to improve ocean-colour 
algorithms; for example, light and temperature have been used to refine models for detec-
tion of phytoplankton size classes from space (Brewin et al. 2015b, 2019). Recent years 
have seen considerable progress in our efforts to detect various biological pools of carbon 
in the ocean (Brewin et al. 2021). Availability of methods to detect phytoplankton carbon 
from space implies that it is no longer essential to choose between carbon or chlorophyll as 
the ideal index of phytoplankton biomass: we can choose one or the other according to the 
problem at hand or personal preferences.

The utility of ocean colour for mapping large-scale structures in the marine ecosystem 
is closely linked to our efforts to map marine diversity from space. Large-scale structures 
in the marine ecosystem include variance fields in chlorophyll concentration and primary 
production, as well as the organisation of the marine ecosystems into ecological prov-
inces or optical classes. The ecological provinces have formed the foundation of recent 
efforts to map biotic biogeography, species distribution and diversity of the pelagic ocean 

Table 1  Requirements of an ideal indicator for routine monitoring of phytoplankton, and the extent to 
which two candidate indicators, chlorophyll-a and carbon, meet those requirements

Requirement Chlorophyll-a Carbon

Indicator must be present in all living cells, but not in dead cells ✓
Indicator must not be present in detrital material ✓
Indicator must be absent from non-phytoplanktonic living cells (bacteria, zoo-

plankton, virus…)
✓

It must exist in fairly uniform concentrations in all living cells, regardless of 
environmental stresses

✓

Analytical techniques must be sufficiently sensitive ✓
Quick, simple and inexpensive measurement techniques must be available ✓
Easy to standardise across multiple investigators, globally ✓
For operational applications, should not depend too heavily on expert interven-

tion
✓

The biomass of the indicator should form a significant part of the total biomass 
of phytoplankton

✓
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(Reygondeau and Dunn 2019). Though most organisms other than phytoplankton are 
not directly observable using ocean colour, exceptions exist: for example, Basedow et al. 
(2019) have used ocean-colour data to map swarms of a particular species (Calanus fin-
marchicus) of copepods (a type of zooplankton). Indirect methods (e.g., exploiting the size 
structure in the marine biota) have also been employed to map zooplankton populations in 
general (e.g., Strömberg et al. 2009).

Life under water is very much at the mercy of the underwater environment, with light 
and nutrients playing important parts in sustaining it. Ocean colour also enables the study 
of the underwater light environment, with algorithms to map various properties of the 
underwater light field, such as the diffuse attenuation coefficient (which determines the rate 
of penetration of solar light under water), the euphotic depth (at which light is reduced to 
1% of its surface flux). turbidity, water colour and water clarity. Ocean colour data are also 
used to map concentrations of the suspended sediment load and coloured dissolved organic 
matter (IOCCG 2000; Sathyendranath et al. 2020b).

5  Ancillary Information from Satellites Needed to Probe Ocean 
Ecosystems

Whereas ocean-colour satellite sensors provide our only window into marine ecosystems at 
synoptic scales, we also rely on other satellite-derived physical variables as a complement 
to ocean-colour data. These include information on the optical thickness of aerosols in the 
atmosphere (essential for the atmospheric correction procedures), sea surface temperature, 
sea surface salinity and sea state (all of which influence phytoplankton community compo-
sition and dynamics).

Table 2  Comparison of chlorophyll-a and carbon as the state variable in computations of primary produc-
tion

Chlorophyll-a Carbon

Has distinctive optical and chemical signatures 
that cannot be mistaken for anything else (direct 
methods)

Phytoplankton carbon has no distinctive signal that 
allows separation from other types of particulate 
carbon at sea (indirect methods)

There is a wealth of data on chlorophyll from a 
variety of sources (both in situ and satellite)

Phytoplankton carbon is difficult to measure, not just 
from satellites, but also in situ

There is a large body of photosynthesis-rate param-
eters that are available from in situ observations 
that can underpin chlorophyll-based models

Carbon-based growth parameters from the field 
are difficult to measure, and hence hard to find in 
literature and data repositories

Chlorophyll-a is at the heart of the photosynthetic 
reaction (but note: not all chlorophyll-a is in the 
photosystems)

Not all carbon in the cell is linked to primary produc-
tion

Chlorophyll-a is the transducer that acts to connect 
the supply of energy from the sun to the plant-
based ecosystems on our planet

Phytoplankton carbon without chlorophyll-a in pho-
tosystems cannot produce organic material

There is perhaps less recognition of the central role 
played by chlorophyll-a and associated pigments 
in maintaining life as we know it on this planet

In the climate context, and in ecosystem models, the 
importance of biologically mediated carbon pools 
and fluxes is now well-recognised
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6  Applications

Chlorophyll concentration and the suite of ecological indicators listed above have been revo-
lutionary in biological oceanographic studies, providing global coverage, with unprecedented 
detail at fine spatial and temporal resolution. Satellite-based observations are the only means 
available to us today to sample an entire area defined by the pixel size of the sensor, and that 
too, using a non-invasive method. With all other observational tools, the sampled volume or 
area is always a woefully small fraction of the area we wish to investigate, and much effort 
has to be invested into methods to fill the gaps in between spot observations. This high cover-
age from satellites bestows a distinct advantage for studies aimed at obtaining the large-scale 
view.

Studies of marine primary production have benefited hugely from ocean-colour obser-
vations. With phytoplankton biomass (indexed either as chlorophyll-a or as carbon) derived 
from satellites, photosynthesis models have been developed that incorporate photosyntheti-
cally active radiation (PAR), also from satellites, and photosynthetic models, to compute 
marine primary production at large scales. Phytoplankton are at the base of the marine food 
web, and understanding marine primary production is key to all studies of the maintenance 
of the various trophic levels of the ecosystem, including zooplankton and fish larvae at the 
second trophic levels, all the way to fish and shellfish at higher trophic levels that we har-
vest as high-protein, high-quality food from the sea.

It has been argued that fisheries management plans should incorporate considerations 
of bottom-up control on fish recruitment, in addition to considerations of top-down control 
through fishing, to enable long-term, sustainable, ecosystem-based management of fish-
eries. In this context, it has been demonstrated that metrics of phytoplankton phenology 
derived from satellites can shed light on survival rate of important commercial fish (Platt 
et al. 2003; Koeller et al. 2009; Kassi et al. 2018a, b; Menon et al. 2019).

In general, there is a link between ecosystem health and human health. Especially for 
the millions of people who make their home in coastal locations, the sea is an important 
source of food and of a sense of well-being. Degraded ecosystems threaten this food sup-
ply as well as the sense of well-being. Industries such as tourism and transport are affected. 
Water quality also implies the microbial quality of water. Bacteria and viruses are natu-
ral components of marine ecosystems; but some of these are pathogenic in nature and are 
associated with water-borne diseases such as cholera. The Vibrio cholera bacteria, respon-
sible for cholera, are found in free-floating form in water, and also in association with phy-
toplankton and zooplankton, and other hosts. This link between the bacteria and plankton 
has been exploited in many studies to develop predictive models that rely on satellite-
derived chlorophyll-a data as input (Sathyendranath et al. 2020a; Anas et al. 2021). Thus, 
satellite observations are being used increasingly, to elucidate the link between ecosystem 
and human health.

Issues related to climate are all-encompassing and all consuming, and the many appli-
cations listed above come to the fore as an ensemble, in studies of the impact of climate 
change on marine ecosystems and on the feedbacks between various elements of our 
climate system. The Global Climate Observing System (GCOS) has in fact recognised 
ocean colour and phytoplankton as essential climate variables, and there is currently a 
concerted effort to produce satellite-based climate-quality data records of spectrally-
resolved remote-sensing reflectances and chlorophyll concentrations, for climate studies. 
One of such efforts is led by the European Space Agency within the umbrella of its Cli-
mate Change Initiative.
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7  The Challenges to Producing Climate Quality Time Series 
from Ocean‑Colour Data

Preparing climate-quality data records brings stringent requirements over and above those 
that are required for most other applications. These additional requirements arise from the 
need to detect not just the state of the marine ecosystem or short-term changes and vari-
ability, but also long-term trends in the ecosystem status and processes. Since any putative 
climate-change related signal could be a small one embedded within a noisy environment 
that experiences high natural variability at multiple time scales, it becomes particularly 
important to ensure that the data are of the highest precision possible. Since the stand-
ard error in the mean decreases with increasing number of observations, high coverage 
and high number of repetitive measurements become important. Because we have to dis-
count natural variability at all shorter scales to extract the climate signal, it also becomes 
of importance to avoid gaps in data. Another key requirement for climate data streams is 
that for a long time series, in which the data are acquired and processed in a consistent 
manner. For example, one has to avoid artefacts introduced into the time series because 
of systematic biases between sensors. Since satellite sensors have a finite life span, one 
could introduce spurious trends in the data when multiple sensors are merged to extend 
the time series, if inter-sensor bias is not corrected for. One also has to consider whether 
the in-water algorithms employed are appropriate for detection of changes in the marine 
ecosystem, whether they be in the biomass of phytoplankton present, as indexed by chloro-
phyll concentration, or in the community composition or in the phytoplankton phenology 
(Sathyendranath et al. 2017, 2019).

These considerations have led, within the ocean colour component of the Climate 
Change Initiative (CCI), to put in place dedicated, specialised processing chains (Fig. 5) 
for generation of multi-sensor, consistent, error-characterised, inter-sensor bias-cor-
rected time series of remote-sensing reflectance and chlorophyll concentration (Sathy-
endranath et al. 2019). The philosophy that underpins the approach is explored in Sathy-
endranath et  al. (2017). Some samples of ocean colour CCI chlorophyll products are 
shown in Fig. 6.

The Ocean Colour Climate Change Initiative chlorophyll products and marine primary 
production derived from these products (Kulk et al. 2020a, b, 2021) can be used to map the 
23-year climatology and linear trends (Fig. 7a, b).

8  Synergy with Ecosystem Models

There has always been a close association between ecosystem models and ocean-colour 
data. Over the years, chlorophyll concentration derived from ocean-colour data has served 
to test outputs from ecosystem models. Conversely, models have helped fill the spatial and 
temporal gaps of the ocean-colour observations, as well as explain the mechanism that 
underlie their patterns. With the advent of data assimilation in ecosystem models, ocean-
colour products became the primary source of biological and bio-optical data that are 
assimilated into those models. The incorporation of phytoplankton functional types into 
ecosystem models has paralleled development of algorithms for detection of phytoplankton 
types and size classes from space (IOCCG 2014). State-of-the-art models are now capable 
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Fig. 5  Processing chain used in the ocean colour climate change initiative to generate long-term time series 
of climate-quality ocean-colour products

Fig. 6  Some examples of chlorophyll products from ocean colour climate change initiative (OC-CCI) show-
ing daily, weekly, monthly and annual products, from an early version of OC-CCI. For further details about 
OC-CCI products, see Sathyendranath et al. 2019
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of assimilating ocean colour phytoplankton types for both ecosystems functioning studies 
and operational biogeochemistry predictions (Ciavatta et al. 2018; Skákala et al. 2018).

In the climate context, in the absence of long time series of ocean-colour products, 
one relied heavily on models for understanding threats to the marine ecosystems from cli-
mate change, and to predict future changes. But as the time series of ocean-colour data 
grows–for example, the ocean-colour time series from the Climate Change Initiative is now 
24 years long–the satellite data are being used increasingly to test model outputs and to 
examine whether model structures are appropriate for detection of climate impacts on the 
ocean biota.

Until recently, quantitative comparisons of model outputs and satellite products have 
been hampered by the differences in the currencies used in the two approaches: ecosys-
tem models use biogeochemically-important variables, such as carbon or nitrogen, as their 
main currency. On the other hand, the principal output from satellites is the chlorophyll 
concentration. This required a conversion between carbon and chlorophyll to enable com-
parisons between model outputs and satellite products. However, the recent developments 
in satellite oceanography, which have enabled computation of phytoplankton carbon from 
space using photo-acclimation models (Sathyendranath et al. 2020b and references therein) 
have facilitated model-data comparisons at a more fundamental level. More recent ecosys-
tem models include chlorophyll as a state variable that depends on light availability, with 
the assimilation of ocean-colour chlorophyll leading to an impact on the simulation of the 
physiological status of phytoplankton (Ciavatta et al. 2011). One of the challenges of eco-
system modelling is in the assignment of suitable values for the many physiological and 
ecological rate parameters that are used in the models. Ocean-colour data assimilation into 
ecosystem models can also serve to improve our understanding of model parameters (Roy 
et  al. 2012). Sathyendranath et  al. (2020b) have argued that the focus of future research 

Fig. 7  Climatology and linear trends in a) chlorophyll-a and b) primary production for 1998–2020, derived 
from the ocean-colour climate change initiative data, version 4.2. The linear trends in chlorophyll and pri-
mary production (as a rate of change over time) are provided as maps, with non-significant trends in grey, 
and as histograms after area weighing, with all trends in light blue and significant trends (p < 0.05) in darker 
blue. Figures are adapted and updated (extended by 2 more years) from Kulk et al. (2020a, b, 2021), also 
see the IPCC AR6 working group I report, chapter 2



1303Surveys in Geophysics (2023) 44:1287–1308 

1 3

should be on understanding variability in model parameters that define rates of physiologi-
cal processes, even more than on variability in the biological pools themselves.

Some of the recent ecosystem models include bio-optical modules, which expand 
the use of ocean colour to assimilate diffuse light attenuation products (Ciavatta et al. 
2014), remote sensing reflectance (Jones et  al. 2016), and light absorption of phyto-
plankton functional types (Skákala et  al. 2020), in combination with water column 
observations from gliders in shelf-seas (Skákala et al. 2021) and biogeochemical-Argo 
floats in the ocean (Teruzzi et al., 2021).

A recent IOCCG report (IOCCG 2020) is devoted to the synergy between ocean 
colour and ecosystem models, which constitutes an excellent reference material on this 
topic.

9  The Need to Integrate Ocean Colour with Other Essential Variables

The strengths of satellite observations lie in their capability to provide synoptic views 
of the marine ecosystem; to provide global coverage using a single, or a handful of, 
sensors, ensuring consistency across all observations; in their capability to sample the 
entire area within each pixel of a satellite image; and to do this in a non-invasive man-
ner, repeatedly and over long time-scales.

These strengths have to be balanced against their limitations: satellites only observe 
a finite layer of the surface ocean; ocean-colour sensors are unable to penetrate clouds; 
the need for stringent atmospheric correction further limits coverage under other 
adverse conditions (clouds, cloud shadow, high aerosol concentrations, low solar ele-
vation, to name a few); the interpretation of the signal is complex, and may be asso-
ciated with varying optical properties of phytoplankton (with changes in community 
structure and pigment composition) or with the presence of other substances in the 
water, obscuring the phytoplankton signal; and above all, by the limited number of 

Fig. 7  (continued)
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ecosystem properties that are amenable to satellite observation. The list of observable 
properties can be extended by the use of proxies that include chlorophyll concentration 
and relevant environmental properties also amenable to remote sensing, such as pho-
tosynthetically active radiation, sea surface temperature, sea state and salinity. Yet, it 
would be hard to argue that satellites tell us everything we need to know about biology 
and ecosystems of the oceans.

Typically, one relies on meticulous process studies, in the laboratory or at sea, for 
new insights into the structure and function of marine ecosystems. Other modes of 
observations are essential to extrapolate surface observations from satellites through 
the water column, and to cover those properties and processes that are not observ-
able through satellites. Furthermore, we rely on models of various sorts–conceptual, 
theoretical, and simulation models–to interpret and synthesise observations and under-
standing, and for predictions. Thus, it is only through an integrated approach that we 
can delve deeper into the mysteries of the ocean ecosystems.

Our understanding that biological systems on land and in the oceans are integral 
parts of our climate system is a relatively new one and was perhaps first revealed 
through paleontological studies that highlighted the links between biological pro-
cesses, notably primary production, and changes in our planetary climate over geologi-
cal time scales. But subsequent explorations of climate using Earth system approaches 
have led to new revelations on the inter-connectedness between various elements of 
the climate system. This leads to one of the grand challenges of the day: to explore the 
links between ocean biota and biogeochemical processes in relation to various compo-
nents of the climate system, not only in the oceans, but also on land, atmosphere and 
cryosphere.

10  Concluding Remarks

Ocean colour from space has become the mainstay of biological oceanographic and marine 
biological research, making significant contributions to various subdisciplines of the fields. 
The achievements in ocean-colour research in the last few decades have been remarkable. 
However, it is by no means a closed chapter now: one anticipates further improvements in 
products and development of new products in the near future, keeping pace with techno-
logical developments, notably with the advent of hyperspectral optical sensors.
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