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Abstract—New regional empirical algorithms were developed to obtain maximum specific photosynthetic
rates of phytoplankton ( ) in the surface layer of the Atlantic Ocean. These algorithms were based on the
dependence of  on seawater temperature. Sea Surface Temperature remote sensing data and the PANGAEA
global database of photosynthesis–irradiance parameters were used to test the algorithm. In addition, the
variability in , both spatially (from 60° S to 85° N) and seasonally, (2002–2013) was estimated. The highest

 was obtained in December in areas of deep convection and the interaction between the Labrador Current
and the Gulf Stream, while minimum values were observed in the northern and equatorial–tropical parts of
the ocean during the time intervals between the phytoplankton blooms (March to September–October). In
addition, existing  and  algorithms used in primary production models, as well as the  algorithm devel-
oped using temperature and chlorophyll a data from AMT-29, which were then tested using the PANGAEA
dataset. The results show that the new  algorithm developed using seawater temperature data with region-
ally adjusted empirical coefficients correlated best with the in situ data.
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INTRODUCTION

The specific maximum rate of photosynthesis or
assimilation number ( ) is a necessary component of
many primary production (PP) models, because this
parameter of the photosynthesis illumination curve
characterizes the photosynthetic response of marine
phytoplankton to light saturation [21]. In the Global
Ocean,  varies over a wide range: from 1 to 24 mgC
(mgChl a)–1 h–1, where Chl a is chlorophyll a. Mini-
mum  values are typical of high latitudes and cen-
tral parts of the Subtropical Gyres, whilst maximum

 values are found in coastal communities, subtrop-
ical and tropical waters [5, 17]. In general, the experi-
mental determination of  conducted at sea is lim-
ited in both space and time [9], and it is therefore hard
to describe the interannual and seasonal trends in 
for the entire Global Ocean. However, long-term
measurements of  have been undertaken in specific
areas of the ocean. For example, in the Black Sea, at a

distance of 2 km from the city of Sevastopol, a long
time series has been collected which shows that the
highest  was at the end of spring–beginning of
summer (up to 14 mgC (mgChl a)–1 h–1) during a dia-
tom bloom, whereas in autumn, when pyrrophyta
algae are predominant, its values become somewhat
lower (up to 8 mgC (mgChl a)–1 h–1); in winter and
late summer, they are in the range of 4–12 mgC
(mgChl a)–1 h–1) [1]. In coastal and shelf waters of
Nova Scotia, Canada, the highest  values were
recorded in July–August (6–12 mgC (mgChl a)–1 h–1),
and the minimum values occurred in the cold period
of the year (from January to March) (3–4 mgC
(mgChl a)–1 h–1) [17]. An increase in  precedes a
marine phytoplankton bloom; the time interval
between these events can be a month [1].

There can be considerable variation in  which is
associated with f luctuations in the annual primary
production cycle of marine phytoplankton [5, 19]. The
parameter is normalized to biomass (index B), so that
the phytoplankton biomass involved in photosynthesis
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is accounted for [5, 20, 25]. However, Obtaining accu-
rate  remains one of the main obstacles in deter-
mining PP using models and remote sensing data [7,
8, 14, 23]. Due to the difficulty in obtaining the ship-
borne in situ photosynthetic parameter data, current
algorithms that account for the influence of environ-
mental conditions are used. The most important fac-
tors affecting the variability in  are: solar radiation,
water temperature, the supply of nutrients (N), and
chlorophyll a content [5].  increases with a tem-
perature in the range from –1 to 20°C and decreases in
the range from 20 to 28°C. A rapid decrease is related
to the suppression of phytoplankton vital processes
(increased energy costs for the photoadaptation at
high irradiance in stratified oligotrophic waters) and
insufficient N supply [7, 16, 28, 30]. Temperature
accounts for 50–70% of the total variability in  [5,
12]; therefore, many  models are based on the
dependence of this parameter on Sea Surface Tem-
perature (SST) [6, 7, 15, 22]. Despite the fact that
SST limits the physiology of photosynthetic organ-
isms to a lesser extent compared to light and N avail-
ability, this parameter is a major predictor of photo-
synthetic rates and is readily available from satellite
data [23]. In general, the addition of other parame-
ters (phytoplankton biomass and N) to the  model
equations leads to better correlation of model esti-
mates with in situ data but only in certain areas (for
example, the North Atlantic region [33]), and, there-
fore, the main emphasis is on the use of SST alone.
Algorithms developed for entire ocean basins using
satellite data are characterized by low or moderate cor-
relations with in situ data (r2 = 0.29, 0.21 and –0.21,
respectively for  models [6, 7, 22]) [23], it there-
fore makes sense to compile equations for individual
regions and water masses, as temperature can vary
greatly not only with distance from the equator, but
also in specific seas.

The objective of this study therefore is to develop
regional empirical algorithms for  as a function of
temperature over the entire Atlantic Ocean with differ-
ent oceanographic conditions. The algorithm is vali-
dated using in situ data and compared with other algo-
rithms available from the literature.

MATERIALS AND METHODS
Data. The variability in phytoplankton production

was studied using the PANGAEA global database
using parameters from photosynthesis-irradiance
curves [10]:  (mgC (mgChl a)–1 h–1) and chloro-
phyll a concentration (mg m–3) in the surface waters
(0–30 m), at stations located between 60° S and 83° N
in sixteen biogeographic provinces (Figs. 1b–1c). The
investigation covered the period of 2002–2013. This
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database does not contain the in situ water tempera-
ture (°C) data and, therefore,  was obtained using
the estimated satellite SST from the NASA Physical
Oceanography Distributed Active Archive Center
database with a time resolution of one day and a spatial
resolution of 0.01° × 0.01° (JPL MUR MEaSUREs
Project. 2015. v. 4.1, https://podaac.jpl.nasa.gov/
dataset/MUR-JPL-L4-GLOB-v4.1). In this data-
base, SST is normalized to a temperature of the mixed
upper layer based on the in situ data. The satellite data
quality was validated with the in situ SST data from the
29th Atlantic Meridional Transect (AMT-29), which
was carried out from 16 October to 19 November 2019
between the UK and Punta Arenas, Chile. From the
validation results, the satellite data accounted for 98%
of the variability in the in situ data (n = 20, r2 = 0.98).

The study used 350 PANGAEA stations (Fig. 1c)
located in eight biogeochemical provinces to assess the
spatiotemporal variability in  and to validate the
algorithms. To develop the regional empirical  esti-
mation algorithms, 141 stations (in areas 1, 3, and 4)
were selected from the PANGAEA database as a test
sampling dataset (Fig. 1b).

Atlantic meridional transect (AMT-29). We also
used the in situ data collected on AMT-29 which
included:  (mgC (mgChl a)–1 h–1), water tempera-
ture (°C), Chl a concentration (mg m–3), at the sta-
tions located between 49° N and 42° S in six biogeo-
graphic provinces (Fig. 1a). The data were obtained
from 20 stations in the surface horizon (5–14 m). 
was determined during the research vessel run in the
course of the experiment based on the method
described in [34] without taking into account photoin-
hibition.

Study areas. The Atlantic Ocean data are distrib-
uted between the areas covering one or more biogeo-
graphical provinces according to the Longhurst prov-
ince classification [20]. The classification is used to
assess PP in the Global Ocean based on the physical
environmental conditions (illumination, water dynam-
ics, temperature, and salinity, gas conditions, etc.)
which exert an influence on a structure and function
of phytoplankton communities on a large scale, as well
as on N contents and average illumination within the
surface mixed layer, that affects phytoplankton physi-
ology including photosynthetic rates and magnitude
and specificity of N absorption) [9, 19]. The study was
carried out in eight areas (Table 1).

Seasons. Stations were selected according to the
actual season characteristic of a particular hemisphere
(Fig. 1c): spring (Northern Hemisphere (NH): March–
May; Southern Hemisphere (SH): September–
November), summer (NH: June–August; SH:
December–February), autumn (NH: September–
November; SH: March–May), and winter (NH:
December–February; SH: June–August).
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Fig. 1. Spatial distribution in the assimilation number  (mgC (mg Chl a)–1 h–1) (  scale is shown on right): (a) stations for
the AMT-29 research cruise (n = 20); (b) test sample stations from PANGAEA (n = 141); areas are highlighted in brown; (c) in situ
data stations from PANGAEA (n = 350). Boundaries of biogeographic provinces are outlined according to [20].
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Algorithms for obtaining specific optimum and max-
imum photosynthetic rates. To verify the compliance
between model values and real in situ data, several
temperature algorithms for obtaining  were vali-
dated. Three  algorithms (BF [7], BB [6], and M [22])
using SST as a predictor were considered (Table 2). The
BB algorithm also took a day length (DL) into
account. The BF and BB algorithms were developed
for the Atlantic Ocean; the M algorithm, a simple lin-
ear equation, was based on the data on Lake Min-
netonka in North America (Table 2). , a specific
optimum rate of photosynthesis, is used in BF and M
instead of . The  parameter is derived for the
entire euphotic zone rather than for a surface or spe-
cific depth value. It corresponds to the optimal maxi-
mum photosynthetic rate over the photic zone based
on the assumption that optimum photosynthesis
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occurs under the point specific (station or pixel) con-
ditions [7]. In addition, we also developed an algo-
rithm for obtaining  using an SST and Chl a func-
tion from the AMT-29 data.

RESULTS

Spatiotemporal variability in  from the PANGAEA
data. The seasonal variability in  in the Atlantic
Ocean show that the greatest amplitude was observed
in spring (Fig. 2a: 0.6–12.7 mgC (mgChl a)–1 h–1)
with the maximum annual Chl a concentration of
2.1 mg m–3 and SST of 8.1°C (Table 3). In summer, the
phytoplankton biomass was much lower (0.88 mg m–3),
and the average SST was minimum for the year, while
average  was almost identical to that in spring and
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Table 1. Study areas and their characteristics

Area N
Provinces

after А. Longhurst [20]
Bloom peak, 

month
Study area

(PANGAEA data)

Predominant 
phytoplankton species 
after А. Longhurst [20]

1 25 BPLR, 
northern part of ARCT July June–September 

(2010, 2013)
Diatoms, 
coccolithophorids

2 129 Middle part of ARCT, 
western part of SARC

Bloom beginning: 
April–May

April–August 
(2003–2013)

Diatoms, 
coccolithophorids

3 23 Labrador Sea: southern parts 
of BPLR and ARCT July May–July 

(2002, 2003)
Diatoms 
and dinoflagellates

4 47 NWCS, GFST April
April–May (2003), 
October–December 
(2002, 2003)

Diatoms

5 14 NADR, NASE March–June September–October 
(2004, 2010, 2012) Diatoms

6 15 NATR, WTRA July–September October–November 
(2004, 2010, 2012) Cyanobacteria

7 24 SATL End of February October–November 
(2004, 2012) Cyanobacteria

8 69 Southern part 
of BRAZ, FKLD

November–April, 
peak in January

March (2006), 
September and October 
(2005, 2006)

Diatoms 
and cyanobacteria [31]

Table 2.   and  algorithms as functions of water temperature considered in the study

Abbreviated name 
of algorithm Algorithm Accuracy, area Reference

BF r2 = 0.58; n = 1041, 
Northwest Atlantic region

 [7]

BB r2 = 0.22; n = 4179, 
Atlantic Ocean

 [6]

M
Lake Minnetonka 
(accuracy data are not available)  [22]

MY-21 r2 = 0.56; n = 20, 
Atlantic Ocean (Fig. 1a), AMT-29 data

Section “Results”, 
Eq. (1)
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autumn (2.53 ± 1.79 mgC (mgChl a)–1 h–1; Table 3).
In autumn, with a maximum average water temperature
of 15.9°C and a low Chl a concentration (0.84 mg m–3,
on average), average  remained at the level of the
previous seasons. In winter (December), with a mini-
mum phytoplankton biomass (Chl a = 0.7 mg m–3)
and average SST of 6.9°C, average  was maximum
(3.85 ± 1.25 mgC (mgChl a)–1 h–1).

The spatial variability in  showed that  was
minimum (less than 1.9 mgC (mgChl a)–1 h–1) in cold
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northern waters (area 1) and in summer when there was
an average Chl a concentration of 0.9 mg m–3 (Fig. 2a).
To the south (area 2), the waters were warmer, there
was a greater variability in Chl a (0–16.9 mg m–3),
with a predominance of coccolithophorid species, and

 was higher (2.8 mgC (mgChl a)–1 h–1, on average),
and its range was the largest of all the regions analyzed
(Fig. 2b). In area 3, the water temperature increased,

 was higher, the moderate phytoplankton biomass
was represented by diatoms and dinoflagellates, and
the measurements were carried out at the bloom peak
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Fig. 2. Relationship between assimilation number  and sea surface temperature by (a) seasons and (b) area.
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(July) [20]. Area 4 was characterized by moderately
warm waters with an average Chl a concentration of
1.2 mg m–3 and maximum average  values of
4.2 mgC (mgChl a)–1 h–1. The measurements were likely
carried out in this area at during the peak in phytoplank-
ton (diatom) blooms (Table 1). Open ocean waters
(areas 5–7) were distinguished by high SST (more than
20°C), low Chl a concentration (less than 1.2 mg m–3),
and relatively low  (1.6 mgC (mgChl a)–1 h–1, which
was less than 4.9 mgC (mgChl a)–1 h–1 in both spring
and autumn (Fig. 2)), when diatoms and cyanobacte-
ria dominated [20]. The measurements were carried
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Table 3. Statistical characteristics of assimilation number (
seasons and area: mathematical equation ± standard deviatio

Season/area N , mgC (mgCh

Spring 179 2.65 ± 1.9
Summer 78 2.53 ± 1.7
Autumn 68 2.59 ± 1.9
Winter 25 3.85 ± 1.2

1 25 1.21 ± 0.4
2 129 2.76 ± 1.4
3 23 3.41 ± 0.7
4 47 4.16 ± 2.0
5 14 1.78 ± 1.0
6 15 1.51 ± 0.6
7 24 1.58 ± 0.5
8 69 2.33 ± 2.1

All stations 350 2.70 ± 1.9
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out in this area in September–November during which
time there were no blooms. In the southernmost region
of the Atlantic Ocean considered (area 8), there was a
high biomass indicative of diatoms (Table 1) and a tem-
perature of 8.9°C,  was also relatively low (2.3 mgC
(mgChl a)–1 h–1, on average).

Most  values were in the range of 0.5–4.1 mgC
(mgChl a)–1 h–1 at SST from 0°C to 11°C in the
spring–summer period in areas 2, 4, and 8 (Fig. 2).

Relationship between , temperature and chloro-
phyll a in the PANGAEA dataset. At all stations, the
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), sea surface temperature (SST), and chlorophyll a (Chl a) by
n

l a)–1 h–1 SST, °С Chl а, mg m–3

7 8.10 ± 6.61 2.12 ± 3.08
9 6.13 ± 3.48 0.88 ± 0.71
5 15.99 ± 7.40 0.84 ± 0.82
5 6.90 ± 2.88 0.72 ± 0.59

0 2.04 ± 3.06 0.91 ± 0.74
4 5.31 ± 2.84 2.24 ± 3.02
9 7.23 ± 2.70 0.62 ± 0.48
6 9.21 ± 4.51 1.20 ± 1.22
6 20.97 ± 3.50 0.25 ± 0.21
1 27.16 ± 0.96 0.21 ± 0.08
5 20.25 ± 3.9 0.25 ± 0.33
0 8.93 ± 3.26 1.83 ± 2.64

0 9.11 ± 6.94 1.50 ± 2.34
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Table 4. Dependence of assimilation number ( ) on sea surface temperature (SST) and chlorophyll a (Chl a) by seasons
and area. Significant correlation coefficients (p < 0.05 and p < 0.01) are highlighted in color

B
mP

SST and Chl a  and SST  and Chl-а

season/area rN  (p-level)

Spring 179 –0.23 (p < 0.01) –0.05 (p > 0.1) 0.04 (p > 0.1)
Summer 78 0.22 (p < 0.05) 0.30 (p < 0.01) –0.05 (p > 0.1)
Autumn 68 –0.60 (p < 0.01) –0.03 (p > 0.1) –0.08 (p > 0.1)
Winter 25 0.43 (p < 0.05) 0.82 (p < 0.01) 0.06 (p > 0.1)

1 25 0.60 (p < 0.01) 0.46 (p < 0.05) –0.07 (p > 0.1)
2 129 0.01 (p > 0.1) 0.04 (p > 0.1) 0.06 (p > 0.1)
3 23 0.54 (p < 0.01) 0.67 (p < 0.01) 0.17 (p > 0.1)
4 47 –0.47 (p < 0.01) 0.86 (p < 0.01) –0.61 (p < 0.01)
5 14 –0.92 (p < 0.01) 0.32 (p > 0.1) –0.33 (p > 0.1)
6 15 –0.05 (p > 0.1) 0.35 (p > 0.1) 0.17 (p > 0.1)
7 24 –0.49 (p < 0.05) –0.42 (p < 0.05) 0.08 (p > 0.1)
8 69 –0.09 (p > 0.1) 0.19 (p > 0.1) 0.02 (p > 0.1)

All stations 350 –0.22 (p < 0.01) 0.02 (p > 0.1) 0.01 (p > 0.1)
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correlation between , SST and Chl a was low (here-
inafter, the correlation is considered according to the
classification given in [2]): n = 350, r = 0.02 at p > 0.1
and r = 0.01 at p > 0.1, respectively. When these
parameters were analyzed by season and region, the
correlation coefficient for individual cases increased,
but of course N was lower and the error is therefore
potentially higher (Table 4).

In summer, the relationship between  and SST
was significant, but moderate (r = 0.30 at p < 0.01) and
nonlinear (Fig. 2a; Table 4). In winter, the –SST
relationship was higher (r = 0.82 at р < 0.01), and lin-
ear, with higher SST values causing an increase in 
(Fig. 2a; Table 4). In the spring and autumn periods,
no significant relationships were observed between
these two parameters. No correlation with a Chl a was
found in any season. By comparison, the SST–Chl a
relationship was significant in all seasons: in spring and
autumn, it was inverse, but weak; in autumn and winter,
it was moderate and average: r = 0.43 for p < 0.05 and
r = –0.60 for p < 0.01, respectively.

The areal division made it possible to identify a
significant relationship between  and SST in four
areas (Table 4): in area 1, the relationship was mod-
erate (r = 0.46 at p < 0.05); in area 3, medium (r =
0.67 at p < 0.05); in area 4, high between  and SST
and moderate with Chl a (r = 0.86 and r = –0.61,
respectively). In this case, the relationship between 
and SST was linear mainly between 3 and 10°C and
nonlinear at SST > 10°C (Fig. 5a). In the open ocean,
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a significant relationship between  and SST only
occurred in area 7 (Table 4). Most likely, the –SST
relationship is influenced by the phytoplankton bloom
since in areas 1, 3, and 4, the measurements were
made during the bloom period (Table 1), and the –
SST relationship was significant. By contrast, in area 8
where there was no bloom, even though the other
environmental conditions were similar to area 4, no
such relationship was observed.

Development of regional algorithm based on AMT-29
data. The AMT-29 data collected during autumn were
then used to analyze the dependence of  on SST
and Chl a separately. The analysis made it possible to
reveal a significant relationship between  and SST
(r = 0.75 at p < 0.01): an increase in SST resulted in
higher  (Fig. 3).  was highest from the Equator to
the Northern Tropics, and it was lowest within the
Southern Subtropical Gyre (30°–40° S) (Fig. 1a). The

–Chl a relationship was in turn significant, moder-
ate and inverse (r = –0.61 at p < 0.1). With increasing
temperature (from 10 to 28°C) at low Chl a concentra-
tions (0–1.5 mg m–3), the  values increased (Fig. 3).

This relationship was used to develop a regional
(for the Atlantic Ocean) empirical algorithm (r2 =
0.56 at p < 0.01) for obtaining  as a function of SST
and Chl a in the form of a multiple linear regression
equation (MY-21):

(1)
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Fig. 3. Relationship between assimilation number ,
water temperature, and chlorophyll a concentration in sur-
face waters (n = 20).
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where Т is water temperature (°С), and Chla is the
Chl a concentration (mg m–3). This algorithm was
tested based on the data used to create it (calibration),
and the model values were revealed to have a slight devi-
ation from the factual ones: the systematic error (SE)
was 0.005 (mgC (mgChl a)–1 h–1), the average abso-
lute error was 0.95 (mgC (mgChl a)–1 h–1), and the
absolute percentage error (APE) was 44%.

Development of regional algorithm using the
PANGAEA data. The algorithms were developed to
predict  as a function of SST by season (summer
and winter) and region (1, 3, and 4) using a test sample
set (Fig. 1b). The coefficients of the equation were
obtained using Matlab R2019a (“fitlm” function,
“cftool” package). The algorithms are first-order lin-
ear equations:

(2)

where  are the selected coefficients.
The algorithms were developed for areas with sig-

nificant –SST relationships (Table 4) and where
test sample data were available. Linear regression
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Table 5. Regional empirical algorithms developed for the assi
in terms of determination coefficient (r2).  is assimilation 

Area Algor

Area 1, n = 37

Area 3, n = 34

Area 4, n = 53

B
mP

= 0.0B
mP

= 0.2B
mP

= 0.3B
mP
equations were used to create the algorithms. The
coefficients of the algorithms by area and their accu-
racy are given in Table 4.

Area 4 is considered in detail below, although the
accuracy of the  algorithm is lower than for area 3
(r2 = 0.29 and r2 = 0.37, respectively) (Table 5). Area 4
was validated using a greater number of stations in the
main sampling set (n = 47 and 23, respectively) (Table 1),
while the –SST relationship in this area was the
highest (r = 0.86) of all areas tested (Table 4). The
accuracy of the  algorithm developed for area 1 was
low (Table 5).

Using the test sampling set used to develop the
algorithm, the –SST relationship was moderate in
area 4, which had temperatures between 8 and 11°C,
and in which  varied over a wide range (1–8 mgC
(mgChl a)–1 h–1) (Fig. 4a). When comparing the
model and in situ data on the scatter diagram, the
algorithm yielded the following results for area 4: the
regression and correspondence lines were almost
coincident (a = 1.06 and b = 0.08) (Fig. 4b) with an
algorithm accuracy of 29% (r2 = 0.29).

DISCUSSION

–temperature relationship. The relationships
between physico-chemical environmental conditions
and  observed in this study, partially confirm the
earlier findings that water temperature can be a good
predictor of  only in the coastal and temperate oce-
anic regions (Table 4). In these regions, temperature
can be a major factor in the successional changes of
the phytoplankton community [12, 15, 29]. The opti-
mum temperature conditions for increasing  usually
do not exceed 20°C due to growth rate features of phy-
toplankton cells and the functioning of Calvin cycle
enzymes [7, 28, 30]. This trend is observed in the
dynamically active areas: 3, the Labrador Sea and 4, the
Bank of Newfoundland (Fig. 2b). In area 4, a linear
increase in  was observed in SST from 3 to 10°C,
when the –SST relationship was nonlinear (Fig. 5a).
As for colder waters (BPLR, ARCT, SARC, and
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milation number. The accuracy of each algorithm is expressed
number, and T is sea surface temperature

ithm Accuracy of algorithm, r2

0.13

0.37

0.29

+6 1.08T

+1 1.82T

+8 0.75T
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Fig. 4. Scatter diagrams for area 4 based on test sample data: (a) dependence of in situ  on water temperature and (b) compar-
ison of modeled estimates with in situ data. Solid line is correspondence line (1 : 1); dotted line is linear regression line.
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FKLD provinces), where SST does not exceed 10°C,
no dependence was detected and there was a very wide
range in  values (Fig. 2b). Low  values at SST >
20°C are probably caused by a lack of N combined
with a higher energy phytoplankton consumption for
photoprotection under a high surface irradiance,
which is characteristic of stratified oligotrophic waters
[7, 16, 27]. When SST is more than 12°C, two regional
variants for  variations are possible: the values reach
5–7 mgC (mgChl a)–1 h–1 at 40° N, and they do not
exceed 3 mgC (mgChl a)–1 h–1 at SST of 15–29°C in
the open part of the ocean. In both cases, the measure-
ments were carried out in the spring and autumn
bloom periods (Table 1). In areas 5–7 (open waters of
the southern part of the Atlantic region), such low 
values are natural, because it is a tropical and subtrop-
ical region where the surface layer is characterized by
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low N and a high solar radiation: all phytoplankton
energy is used in photoadaptation [27].

A significant –SST relationship was recorded in
areas 1, 3, 4, and 7 (0.46, 0.67, 0.86, and –0.42,
respectively) (Table 4). Positive correlations in the
ecosystems of temperate latitudes were noted earlier
[26, 29] and were justified by the temperature effect on
the phytoplankton community structure (size and tax-
onomic composition) [11]. If water temperature is an
indicator of low N waters, as in the case of area 7 (the
center of the Southern Subtropical Gyre), which is a
convergence zone, the –SST relationship will be
negative, because a depletion in N is a photosynthetic
limiting factor [18, 32]. 

In one of the latest studies [19], the average –
SST correlation value did not exceed 0.42 in different

B
mP

B
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parts of the Global Ocean. These data are indicative of
the fact that SST alone is not enough to fully describe
the variability in . In this case, the estimation of 
should also take into account other factors such as
light, N availability, and the size composition of the
phytoplankton community.

–Chl a relationship based on pangaea and
AMT-29 data. It is noteworthy that for Chl a concen-
trations > 1 mg m–3,  is low (less than 4 mgC
(mgChl a)–1 h–1), while at a low biomass, when the
phytoplankton community structure can be mixed,

 is highly variable. These data correspond to the
observations in [11, 24, 26] and are explained by the
fact that low Chl a concentrations can result from the
combined action of unfavorable external factors: low
illumination, limited N, and an increase in the zoo-
plankton population. Each of these factors influences
the phytoplankton ability to photosynthesis: colder
waters of high latitudes subjected to a vertical mixing
several times during the year (autumn/spring conven-
tion) are enriched in N (areas 1 and 2) [12, 26]. In
these waters, the phytoplankton community structure
contains larger cells (e.g., diatoms) compared to more
southern waters and contributes to a higher phyto-
plankton biomass [4, 26].  is low however (Table 3),
because solar radiation is not sufficient for intensive
photosynthesis during the production period. In tem-
perate waters (areas 3, 4, and 8), SST values are higher,
solar energy is greater, nanophytoplankton is predom-
inant, biomass is slightly lower than in the northern
regions, and  tends to be higher (Table 3) [12, 13,
26]. Warm, consistently stratified oligotrophic waters
(areas 5–7) with a high solar radiation throughout the
year are dominated by a smaller abundance of phyto-
plankton (cyanobacteria), and, accordingly, are char-
acterized by low biomass and  due to a lack of N and
an excessive illumination (Table 3) [11–14, 26].

A significant (negative) relationship between 
and the Chl a concentration was determined only in
area 4 (Bank of Newfoundland) in April–May and
October–December (r = –0.61 for p < 0.01) (Fig. 5b),
according to the PANGAEA data, and during the run
of the AMT-29 research vessel (r = –0.61 at p < 0.01)
in the autumn period. No significant –Chl a rela-
tionship was observed in most areas of the Atlantic
Ocean, as was noted in previous studies [19].

Validation of temperature based algorithms for
obtaining . As mentioned above, a significant –
SST relationship, from moderate to high, was deter-
mined in certain areas of the Atlantic Ocean (Table 4):
area 1, r = 0.45; area 3, r = 0.67; and area 4, r = 0.86.
Regional linear algorithms for obtaining  were
developed (Table 5) for these areas based on the PAN-
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GAEA data set (n = 141, Fig. 1b). A subset of the data
was used to validate the algorithm (MY-22), MY-21
and other temperature algorithms were also used in
the PP reconstruction models (Table 2).

The dynamically active region 4 (n = 47, Gulf
Stream turn, Bank of Newfoundland) is considered in
detail below (Figs. 6, 7; Table 6). This area is charac-
terized by moderately warm waters (3.4–19.3°С) with
an average Chl a concentration of 1.2 mg m–3 and
maximum  among the average values of the Atlan-
tic Ocean (4.2 mgC (mgChl a)–1 h–1). In addition to
the high –SST relationship, this is the only area
with a significant relationship between  and Chl a
concentration (r = –0.61 at p < 0.01). The model val-
ues of the algorithms were closely related to in situ 
(r > 0.70 in absolute value); the exception was the MY-21
algorithm characterized by the lowest correlation with
the initial data, which resulted in a considerable
underestimation and the highest deviation angle of the
linear regression line (Fig. 6). Model BB estimates
deviated from the real values to the greatest extent
(root mean square error (RMSE) of up to 4.23 (Fig. 7);
APE = 195%). In addition, BB overestimated 
(SE = 1.38), while the linear regression line had the
smallest slope compared to other algorithms (Fig. 6).
The M algorithm estimates of  were in a relatively
narrow range (1.8–2.5 mgC (mgChl a)–1 h–1), and
were several times less than the actual . The BF and
MY-22 algorithms led to a similar distribution of
points however, the regionally selected algorithm
(MY-22) had a smaller linear regression line angle
(Fig. 6); the standard deviation (SD) was closer to
the in situ SD (Fig. 7), and the deviations of the
model estimates were low: SD = 1.03, SE = –0.01,
and APE = 36%. The MY-22 algorithm was distin-
guished by the minimum difference in terms of SD
and the minimum RMSE value out of the three algo-
rithms (BF, M, and MY-22) aligned almost in one line
according to the correlation coefficient in Fig. 7.

In addition to these algorithms, we should note
other suitable algorithms for each of three regions: the
M algorithm is also suitable for cold area 1 with low

; the BF and M algorithms are suitable for areas 3
and 4, where  was maximum at moderate water
temperatures (Table 6).

Based on our results, accounting for the photope-
riod does not contribute to more accurate estimates
of : the BB algorithm leads to relatively high over-
estimates of the in situ values. It should be noted that
the  dependence on SST in this algorithm is expo-
nential [6, 7]: the authors assumed that  would
decrease when moving from water areas with cold
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Fig. 6. Scatter diagrams of model and in situ  for area 4, n = 47. Solid line is correspondence line (1 : 1); dotted line is linear
regression line.
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N-saturated waters and longer daylight hours to those
with warm oligotrophic water, lack of N, and shorter

daylight hours [6]. The excess of model  estimates
over the in situ data was also noted by the authors of
the BB algorithm [6].
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The use of the Chl a concentration in the  algo-
rithms, in turn, makes sense in the areas where  is
closely related to this parameter (area 4) (Table 4). The
idea of joint use of the phytoplankton biomass and
SST, which can be estimated remotely, to determine
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Table 6. Estimated statistical relationship between modeled and in situ assimilation number ( ) (mgC (mgChl a)–1 h–1)
in areas 1, 3, and 4. Mathematical statistics: SD (Standard Deviation), RMSE (Root Mean Square Error), SE (Systematic
Error), and APE (Absolute Percentage Error, %). Most significant statistical values are highlighted in grey

B
mP

SD r p-level RMSE SE APE

in situ  ,1 aerA04.0 n = 25

BF 0.83 0.48 p < 0.05 0.71 0.76 74
BB 1.95 –0.50 p < 0.05 2.14 4.65 473
M 0.37 0.46 p < 0.05 0.38 0.28 40

MY-21 0.89 0.31 p > 0.1 0.82 –2.09 191
MY-22 0.20 0.46 p < 0.05 0.34 0.03 27

in situ  ,3 aerA97.0 n = 23

BF 0.65 0.67 p < 0.01 0.54 –0.14 11
BB 5.51 –0.71 p < 0.01 5.92 2.93 148
M 0.32 0.67 p < 0.01 0.59 –1.31 37

MY-21 0.70 0.56 p < 0.01 0.64 –3.30 100
MY-22 0.56 0.67 p < 0.01 0.54 –0.08 10

in situ  ,4 aerA60.2 n = 47

BF 1.26 0.84 p < 0.01 1.21 –0.25 46
BB 2.56 –0.71 p < 0.01 4.23 1.38 195
M 0.53 0.86 p < 0.01 1.61 –1.83 52

MY-21 0.86 0.61 p < 0.01 1.66 –3.38 83
MY-22 1.80 0.86 p < 0.01 1.03 –0.01 35
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 was proposed earlier [26]. The multiple linear
regression analysis made it possible to show that SST,
as the only predictor, largely explains the variability in

 (r2 = 0.56, n = 477) and adding the logarithmic
Chl a concentration does not greatly increase the cor-
relation when validating the algorithm (r2 = 0.57, n =
472). In this study,  obtained from the multiple lin-
ear regression equation using SST and Chl a (MY-21)
does not fit the in situ  well in area 1 (Northeast
Greenland waters). This can be explained by the envi-
ronmental conditions, which do not correspond to
those at the stations used in the algorithm developed.

In conclusion, the results obtained in this study
agree with the earlier studies that  algorithms based
on temperature can describe the variability in  up to
20–45% [7, 19, 23], and in individual regions of the
Global Ocean, up to 60% [26]. In addition, the simple
linear temperature algorithms of  proposed in this
study (MY-22) are more efficient than the seventh-
order polynomial (BF), and the fitted region-specific
linear equation coefficients provide the closest esti-
mates to in situ .
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CONCLUSIONS

This study assessed the variability in  in different
areas of the Atlantic Ocean that have both different
temperatures and phytoplankton species. Algorithms
of  were developed based on linear relationships
with temperature and chlorophyll a. The highest 
values were found in area 3, the Labrador Sea where
SST = 7.2 ± 2.7°С; area 4, Bank of Newfoundland
where the average SST = 9.2 ± 4.5°С. Both of the
areas were dominated by diatoms. In both regions and
by season,  was more highly correlated with SST
than chlorophyll a. The analysis of the correlation
relationship showed that  is more correlated with
SST than with chlorophyll a, both in the parts of the
Atlantic Ocean under study and in the analyzed sea-
sons as a whole. In connection with the above, the
development of regional algorithms using satellite data
was based on the temperature dependence.

New regional algorithms for  as a function of
SST were therefore developed for areas 1, 3, and 4
(Arctic latitudes, Labrador Sea, Bank of Newfound-
land), and were compared with other algorithms that
already exist for  and . The new regional empir-
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ical algorithm was closer to the in situ data, despite
their simplicity and in the absence of other input
parameters. This was because these algorithms were
developed for specific areas and account for the local
range in . In addition,  most closely correlated
with SST (r = 0.46–0.86) in these areas and can there-
fore be used easily with ocean remote sensing data.
Using regional empirical coefficients, these algo-
rithms explain 21–74% of the variability in .
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