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A B S T R A C T   

Mangrove ecosystems have been hypothesised as a potential sink of microplastic debris, which could pose a 
threat to mangrove biota and ecological function. In this field-study we establish the prevalence of microplastics 
in sediments and commercially-exploited Anadara tuberculosa (black ark) and Ucides occidentalis (mangrove crab) 
from five different zones in the mangrove ecosystem of Tumbes, Peru. Microplastic were evident in all samples, 
with an average of 726 ± 396 microplastics/kg for the sediment, although no differences between the different 
zones of the mangrove ecosystem were observed. Microplastic concentrations were 1.6± 1.1 items/g for the 
black ark and 1.9 ± 0.9 microplastics/g for the mangrove crab, with a difference in the microplastic abundance 
between species (p < 0.05), and between the gills and stomachs of the crab (p < 0.01). Human intake of 
microplastics from these species, for the population in Tumbes, is estimated at 431 items per capita per year. The 
outcomes of this work highlight that the mangrove ecosystem is widely contaminated with microplastics, pre-
senting a concern for the marine food web and food security.   

1. Introduction 

Marine plastic is a global pollutant that can have negative impacts on 
ecosystems, ecosystem services, the economy and society (Clark et al., 
2016; Iroegbu et al., 2021; Napper and Thompson, 2019). Of widespread 
environmental concern are microplastics, describing small plastic par-
ticles (0.1 um - 5 mm diameter) that are either intentionally manufac-
tured to be microscopic in size, or derive from physical, chemical and 
biological fragmentation of macroplastics (Cole et al., 2011; John et al., 
2022; Maghsodian et al.,2022). Given their small size, microplastics can 
be consumed by an array of marine biota, exposing them to plastic- 
associated chemical compounds such as UV stabilizers, pigments, anti-
oxidants, plasticizers and flame retardants (Crawford and Quinn, 2017; 
Hamilton et al., 2022; Kühn et al., 2020). There is widespread evidence 
that microplastics can cause adverse health effects in exposed organisms 
(Doyle et al., 2022). 

Coastal mangroves are “blue carbon” ecosystems valued for their 
high productivity, biodiversity and their role in carbon sequestration 
(Alongi, 2020; Hilmi et al., 2021; Rovai et al., 2022; Taillardat et al., 

2018). However, the ecosystem services provided by mangroves are at 
risk from anthropogenic activities and pollution, such as plastic (Deng 
et al., 2021). Field studies have demonstrated that macroplastic debris 
can become entrapped in aerial roots or the interior scrub zone of the 
mangrove (Garcés Ordóñez et al., 2019; Meera et al., 2022). Further, 
there is some indication that microplastics can accumulate in underlying 
sediments and be ingested by or adhere to the gills or appendages of a 
wide range of aquatic organisms, including commercially exploited 
invertebrate species (Cordova et al., 2021; Maghsodian et al., 2022; 
Meera et al., 2022). 

In Peru, the Tumbes mangroves span 5974 ha from the Ecuadorian 
border (International Channel) to Playa Hermosa (Tumbes) providing 
refuge to an array of commercially exploited species (INRENA, 2007). In 
the Rural and Tourist Central Zone, mangroves have been removed to 
allow for shrimp farms and rural urbanisation, with beaches and tourism 
in the crocodile (Crocodylus acutus) vivarium being major anthropogenic 
influences of plastic (INRENA, 2007). The mouth of Tumbes river is 
located in the Lower Zone, (Fig. 1); here the river water is highly 
contaminated by heavy metals such as lead, exceeding water quality 
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Fig. 1. a. Location of field sampling sites for the collection of sediments, mangrove crab (Ucides occidentalis) and black ark (Anadara tuberculosa). b. (A) The Tumbes 
mangrove ecosystem and their principal commercial species: (B) the black ark (Anadara tuberculosa) and (C) the mangrove crab (Ucides occidentalis). 
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standards (from 0.05 mg/L to 0.3174 mg/L), adversely affecting the 
inhabitants and the native fauna in this area (Gavilanez Garcia, 2016). 
Anthropogenic activities (e.g. aquaculture, tourism) can adversely 
impact on the mangroves (Dioses Puelles, 2020). As such, inside the 
Channel Upper Zone and Coastal Upper Zone (Fig. 1), the National 
Sanctuary Los Manglares (SNLMT) was created, under the RAMSAR 
Convention on Wetlands of International Importance Especially as 
Waterfowl Habitat 1997 (Angulo, 2014; INRENA, 2007; Martínez, 
2021). 

The edible invertebrates Anadara tuberculosa (black ark) and Ucides 
occidentalis (mangrove crab) are of highest commercial value in Tumbes 
mangroves and support the nutrition and socio-economic wellbeing of 
inhabitants in the region (INRENA, 2007). A. tuberculosa are filter- 
feeding bivalve shellfish with distinctive dark hairy periostracum that 
live buried at a depth of 1–20 cm in muddy-silty sediments in the low 
intertidal zone associated with the red mangrove Rhizophora mangle 
(Lazarich Gener et al., 2008) (INRENA, 2007) (Fig. 1b.B). U. occidentalis 
is a detritivorous crab that feed on R. mangle leaves and organic matter 
in the mangrove sediment, which burrow in muddy-silty sediments 
below red mangrove roots in the high intertidal zone (Alemán and 
Ordinola, 2017; Cabanillas et al., 2016; Ordinola et al., 2010; Zambrano 
and Meiners, 2018) (Fig. 1b.C). The black ark and mangrove crabs are 
manually extracted by fishermen, commonly called “concheros” and 
“cangrejeros”, in a sustainable manner which is recognised as part of the 
‘Cultural Heritage of the Nation’ in Peru since 2022 (N◦ 000036-2022- 
VMPCIC/MC) (Ordinola et al., 2019; Martínez, 2021). These 
mangrove species are typically eaten whole (i.e. gills, digestive tract is 
consumed) in traditional dishes such as black ark ceviche, crab carapace, 
crab chupe and Tumbesian majarisco (Martínez, 2021). Aguirre-Sanchez 
et al. (2022) evidenced the presence of microplastics in the gills and 
digestive tract of 30 mangrove crabs collected from local markets in the 
city of Tumbes, noting this may pose a risk to food security (Caruso, 
2019). For this reason, the primary objective of this field-study is to 
establish the prevalence of microplastics in sediments and 
commercially-exploited A. tuberculosa and U. occidentalis of the 
mangrove ecosystem of Tumbes, Peru, and estimate dietary exposure to 
microplastics in local populations. 

2. Materials and methods 

2.1. Sampling design 

In November 2021, mangrove crabs (U. occidentalis), black arks (A. 
tuberculosa), and mangrove sediment were collected from 22 sampling 
sites located throughout the mangrove ecosystem of Tumbes (Fig. 1; S3). 
The sampling sites were located within five different geographical 
zones: 1) The Channel Upper Zone, located in the National Sanctuary 
and close to the International Channel between Peru and Ecuador; 2) the 
Coastal Upper Zone, located between the shore and the National Sanc-
tuary with shrimp farms in the area; 3) the Rural Central Zone, located in 
an area with only shrimp farms in it; 4) the Tourist Central Zone, located 
in Puerto Pizarro bay near the crocodile vivarium being the most tour-
istic zone in the Peruvian mangrove ecosystem; and 5) the Lower Zone 
which is located in the mouth of Tumbes river. 

Invertebrates were collected using the Cultural Heritage of the 
Nation technique (Peruvian article No. 000036-2022-VMPCIC/MIC). At 
each site 3 specimens of each species were collected between the tidal 
channel and mangrove canopy. Mangrove crabs (45 individuals across 
15 sites) and black arks (42 individuals across 14 sites) were stored in a 
cooler covered with aluminium foil, and transported to the IMARPE 
coastal laboratory for further processing. 

Discrete sediment samples (750 cm3) were collected from the top 5 
cm of intertidal sediment between the shore and canopy (n = 22) using a 
stainless-steel shovel. Sediment samples were stored in a handmade 
aluminium box (R. Li et al., 2020), and transported to the IMARPE 
coastal laboratory where the pH of the samples was evaluated using a 

portable potentiometer (HI99121/Hanna) at a controlled temperature 
(22 ◦C). The average pH of the sediment from every zone was 6.5 ± 0.6. 
Sediments were stored at 0 ◦C until further treatment. 

2.2. Digestion of the soft tissue and isolation of microplastics for the 
mangrove crab (Ucides occidentalis) and the black ark (Anadara 
tuberculosa) 

In the laboratory, soft tissues were excised using stainless-steel 
tweezers, scissors and scalpel and their wet-weight recorded (Ohaus 
Adventurer AR3130 analytical balance). The gills and stomachs of the 
mangrove crabs and the soft tissue of the black arks were individually 
wrapped in aluminium foil and stored at 0 ◦C prior to microplastic 
extraction (Naji et al., 2018). Potassium hydroxide (KOH) is a strong 
base that can effectively remove biological material without damaging 
microplastics (Dehaut et al., 2016; Kühn et al., 2017; Lusher et al., 
2017). In this study, soft tissues were placed in 50 mL Falcon tubes with 
50 mL of 10 % KOH, maintained in an incubator (INCUCELL 111/MMM 
Medicenter) at 60◦ for 48 h, intermittently manually shaking the tubes 
to facilitate digestion (Aguirre-Sanchez et al., 2022). Subsequently, the 
supernatant was filtered through a 45 μm nylon mesh filter (47 mm 
diameter). Owing to the muddy habitat in which the invertebrates live, 
sediment was found in all samples. Therefore, digests underwent 
density-separation, whereby digests were rinsed back into their original 
Falcon tube with 25 mL of 1.2 g/mL sodium chloride (NaCl), shaken 
manually and then left to rest for 20 min. Finally, the supernatant was 
filtered through a nylon mesh filter with 45 μm The filter was immedi-
ately placed in a labelled Petri dish and sealed with Parafilm (Coppock 
et al., 2017). 

2.3. Processing the matrix: Sediment 

To separate microplastic from mangrove sediment, a multi-step 
protocol was applied. First, sediment samples were dried at 50 ◦C for 
72 h (Coppock et al., 2017), due to the presence of clay and silt in the 
sediment, it had to be manually ground using a mortar and pestle to 
homogenise the sample. Next, 40 g of dry sediment was digested in 50 
mL of 20 % KOH at 60′C for 48 h. Then the supernatant was filtered 
through a 45 m nylon mesh filter. Per the density-separation protocol of 
Coppock et al. (2017), the digested sediment was added to a Sediment- 
Microplastic Isolation (SMI) unit with 700 mL of brine. For this study, 
the brine was hypersaline NaCl solution (1.2 g/cm3), which is both cost- 
effective and environmentally benign, with the capacity to float-out 
commonly used polymers including polypropylene, polyethylene and 
polystyrene. Following density-separation, the upper layer of the brine 
was filtered sequentially through 300 μm and 45 μm nylon mesh filters, 
and filters then stored in a Petri dish sealed with Parafilm. 

2.4. Visual identification 

A stereomicroscope (Olympus SZX16) was used to visualise putative 
microplastics on each mesh filter. Putative microplastics were identified 
based on their shape, colour and size. For each particle, their shape, size 
and optical properties (colour) was recorded (Lusher et al., 2020). 
Particle shape were classified as foam, film, fibre, pellet, microbead and 
fragment (Kovač Viršek et al., 2016). Particle size (longest dimension) 
was measured using CellSens(R) (Olympus). Given weather and KOH 
digestions can result in colour leaching (Bråte et al., 2018), particle 
colours were categorised broadly (e.g pink, violet, lilac as red) (Lusher 
et al., 2020). 

2.5. FT-IR analysis 

Following morphological and optical classification, a randomly 
selected subsample (N = 213) of the putative particles were selected for 
polymeric analysis. Per Cole et al. (2023), putative microplastics were 
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placed on pre-labelled divots on aluminium-coated slides, and analysed 
using Fourtier-transform infrared (FT-IR) spectroscopy (Spotlight 400, 
PerkinElmer) at Plymouth Marine Laboratory (UK). Scans were per-
formed in reflectance mode (4000–600 cm-1; 10 scans). Resultant 
spectra were compared with in-house and commerically-available 
polymer libraries with matches of ≥65 % considered acceptable (Fu 
et al., 2021). Owing to the challenges of differentiating natural and 
anthropogenic cellulose, particles with spectra matches to cellulosic 
materials were considered plastic if their colour was red or blue. The 
percentage of putative microplastics confirmed to be anthropogenic 
polymers was 60 %, and this value was used as a conversion rate to 
calculate microplastic concentrations based on the number of putative 
microplastics identified in each sample. 

2.6. Quality assurance (QA) and quality control (QC) 

Microplastics contamination can stem from airborne deposition, 
clothing and consumer products (Henry et al., 2019; Jarosz et al., 2022; 
van Wezel et al., 2016). To minimise potential contamination of sam-
ples, and account for any contamination that may occur during sampling 
and processing a number of steps were taken to limit contamination 
during sampling, use of protective equipment made of cotton was 
encouraged. In the laboratory and field, the majority of apparatus and 
storage vessels were replaced with glass or metal, and samples covered 
with aluminium foil (Prata et al., 2021). To prevent airborne contami-
nation, all laboratory equipment was washed, rinsed with 70 % alcohol 
and stored in a laminar flow hood, and rinsed three times with filtered 
distilled water before used and between the samples (Li et al., 2022; 
Prata et al., 2021). All solutions (e.g. KOH, NaCl) were filtered through a 
0.5 um glass fibre filter and stored in clean glass bottles prior to use 
(Prata et al., 2021). Lastly, procedural blanks and open filters 
(comprising 45 μm nylon mesh filter) were used to account for 
contamination. Analysis of blanks showed an average of 2±2 micro-
plastics per sample, with a detection limit of the method of the minimum 
size of plastic that can be detected is 1.1 μm,and this metric was used to 
adjust microplastics concentrations in samples accordingly. 

2.7. Human exposure to microplastics assessed by shellfish consumption 
in Tumbes 

The annual intake of mangrove crab and black ark per capita in 
Tumbes region was obtained using the following formula (Eq. (1)), with 
a regional population of 179,900 inhabitants aged 10 years (INEI, 2018) 
and an annual extraction for direct human consumption of 31.4 tons for 
mangrove crab and 12.7 tons for black ark (Ordinola Zapata, 2022). 
Subsequently, the average number of microplastics in soft tissue was 
used to estimate the approximation of human intake of microplastics 
from U. occidentalis and A. tuberculosa (Eq. (2)). 

Intake of shellfish per year per capita (g/inhabitant)

=
annual production of shellfish (g)

number of inhabitant in the region (inhabitants)
(1)  

Micropastic intake by human per year per capita (MP items/year/capita)=
average of MP items in the soft tissue of the organism (MP items/g) x intake of
shellfish per year per capita (g)

(2)  

2.8. Statistics 

The normal distribution of the data and the homogeneity of vari-
ances were verified using Shapiro-Wilk and Levene’s test. Non- para-
metric data was transformed using log. The non-parametric data of the 
microplastic concentration between species and tissues in the mangrove 
crab was compared using Mann-Whitney-Wilcoxon test. Two-way 
ANOVA and post hoc Tukey test was used to compare the average 

number of microplastics per species among the different zones of the 
Tumbes mangrove and one-way ANOVA and Kruskal-Wallis tests were 
used to compare microplastic abundance in the sediment, black ark and 
mangrove crab among the zones. The Pearson correlation analysis was 
used to calculate the correlations between variables. Statistics were 
executed in RStudio program (R Core Team, 2020). 

3. Results 

3.1. Microplastic abundance in the mangrove crab and the black ark 

In the black ark, microplastic concentrations were 1.56 ±1.12 items/ 
g (4.9±2.18 items/ind). In the mangrove crab, microplastic concentra-
tions were 1.94 ± 0.87 items/g (7.8 ± 3.14 items/ind). Across all sites 
the mangrove crabs showed significantly greater microplastic concen-
trations in their gills and stomach than observed in the soft tissues of the 
black ark (Mann-Whitney-Wilcoxon, p-value = 0.02; Fig. 2A). Micro-
plastic averages differ significantly between species (two-way ANOVA, 
p-value = 0.01; Tukey post hoc, p-value = 0.01) but not between zones 
(p-value = 0.19) or in the interaction between species and zones (p- 
value = 0.3362). Microplastic concentrations in the crab gills were 4.1 ±
2.41 items/g, which is significantly greater than the 0.8 ± 0.7 items/g 

Fig. 2. (A) Microplastic abundance (items/g) between the mangrove crab and 
the black ark differ significantly (Mann-Whitney-Wilcoxon, p-value = 0.02). (B) 
Microplastic abundance between the tissues of the mangrove crab differ 
significantly (Mann-Whitney-Wilcoxon, p-value = 8.47e− 12). 
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observed in the crab stomach (Mann-Whitney-Wilcoxon test, p-value =
8.47e− 12, S1, S2, Fig. 2B). No significant difference was evident be-
tween the abundance of microplastic particles (items/g) for the black 
ark among different zones of the Tumbes mangrove ecosystem (Kruskal- 
Wallis, p-value = 0.18)(Fig. 3A) or for the mangrove crab among 
different zones (Kruskal-Wallis, p-value = 0.97) (Fig. 3B). 

3.2. Microplastic abundance in mangrove sediments 

Microplastics were identified in all sediment samples tested with 
concentrations ranging 480 ± 342.5 to 870 ± 591.9 items/kg. No sig-
nificant differences between the abundance of microplastic particles 
(items/kg) was evident among different zones of the Tumbes mangrove 
ecosystem (one-way ANOVA, p-value =1.02) (Fig. 3C). 

3.3. Relationship between microplastics in the sediments and in the 
invertebrates 

No significant linear relationship were detected between the abun-
dances of microplastics in the sediment and in the mangrove crab 
(Pearson: R = -0.02; p-value >0.05) and in the black ark (Pearson: R =
0.03; p-value>0.05). The abundances of microplastics in the in the black 
ark also demonstrate no significant relationship with the abundances in 
the mangrove crab (Pearson: R = 0.07;p-value >0.05). 

3.4. Putative microplastic characteristics 

Putative microplastics comprised microbeads, fragments, fibres and 
films (Fig. 4a). Fibres and films were the most common categories of 
microplastics in the black ark (80.6 %, 11.1 %), mangrove crab (82.3 %, 
6.6 %) and sediment (33 %, 63 %) (Fig. 4b). 

The particle sizes were binned into four size classes: 1–249 m, 
250–499 m, 500–999 m and 1000–5000 m. Putative microplastics in the 
size class of 1–250 m were most prevalent in the black ark (36.6 %), 
mangrove crab (30.9 %) and sediment (85.6 %). Larger microplastics 
(>500 m) were the least prevalent size classes in biota and sediments 
(Fig. 4c). 

Putative microplastics in both invertebrates and the sediment were 
predominantly transparent (black ark: 45.7 %, mangrove crab: 55.7 %, 
sediment: 22.7 %), blue (black ark: 32 %, mangrove crab:27.1 %, sedi-
ment:8.1 %) and red (black ark: 12.6 %, mangrove crab:8.5 %, and 
sediment:10.9 %) (Fig. 4d). 

The polymers found in the subsamples were Cellophane, Poly-
ethylene (PE), Polyester (PL), Polyvinyl chloride (PVC), Polystyrene 
(PS), Polyacrylamide (PAM), Polypropylene (PP), Enzacryl polyacetal, 
Phenol resin, Nylon (NY-Poly caprolactam), Polyacrylic acid (PAA) and 
Polyacrylonitrile (PAN) (Fig. 5). 

3.5. Estimated intake of microplastics by Tumbes inhabitants 

The ingestion of microplastics by local inhabitants from consuming 
black ark and mangrove crab was estimated as 431 microplastics/cap-
ita/year (Table 1). 

4. Discussion 

4.1. Sediment 

This study provides the first data relating to microplastics in Peru-
vian mangrove ecosystems, with microplastic concentrations of 
726±395.9 items/kg sediment. In Peru, few studies have addressed the 
presence of microplastics in coastal sediments (Canchari Madueño and 
Iannacone, 2022; Dávila and Vasquez, 2021; De-la-Torre et al., 2020; 
Iannacone et al., 2020; Losno Prado, 2020; Manrique Muñante, 2019; 
Purca and Henostroza, 2017; Contreras et al., 2022; Zárate and Ianna-
cone, 2021). On sandy beaches, the highest abundance of microplastics 

per square meter was found in the Lima region (between 43 and 522 
items m2) (Purca and Henostroza, 2017, 2017; Contreras et al., 2022; 
De-la-Torre et al., 2020), and the highest abundance of microplastics per 
kilogram of sediment was found in Carpayo beach with 202.02 ± 10.28 
particles/kg (Zárate and Iannacone, 2021). Elsewhere, Canchari 
Madueño and Iannacone (2022) found microplastic concentrations of 
567 microplastics/kg in the irrigation channel of Yuncaypara, Manrique 
Muñante (2019) identified 90 items/kg from the sediments located in 
the mouth of the river Jequetepeque, and Losno Prado (2020) found 64 
items/kg in Los Pantanos de Villa wetland mud. As such, the concen-
trations found in the mangroves is higher than observed elsewhere in 
Peru, suggesting the mangroves are accumulating microplastics. 
Mangrove roots and pneumatophores promote sedimentation of sus-
pended particles without resuspension (Cozzolino et al., 2020), and we 
hypothesise this effectively supports the deposition and degradation of 
plastic particles in the sediment (Komiyama et al., 2008; Maghsodian 
et al., 2022; Martin et al., 2019). 

The microplastic abundance in this study (726±395.9 items/kg) was 
below those reported in mangrove sediments collected from Indonesia - 
2358 items/kg (Hastuti et al., 2019), Malaysia - 3500 items/kg and 4000 

± 29.174 items/kg (Hamid et al., 2020; Tan and Mohd Zanuri, 2023), 
China with the highest abundance of 7900 items⋅kg1 (Zuo et al., 2020), 
Colombia with a maximum concentration of 2745 ± 1978 items/kg 
(Garcés Ordóñez et al., 2019) and Brazil with 10,782 ± 7671 items/ kg 
(da Paes et al., 2022). However, our microplastics concentrations were 
greater than reported for mangrove ecosystems in Iran (34.5 items/kg) 
(Naji et al., 2019) and Singapore (62.7 ± 27.2 items/kg) (Mohamed Nor 
and Obbard, 2014). Differences in microplastic concentrations may stem 
from differing levels of human activities in the study area, riverine 
catchment and connected via oceanic currents, the ubiquity of plastics 
used in the local area, as well as the methods used to isolate and identify 
microplastics. Sampling within mangroves is challenging owing to the 
protected status of such ecosystems, difficulties in accessing sampling 
sites and the complexity of isolating microplastics from fine sediments 
(Garcés Ordóñez et al., 2019; Duan et al., 2021; Maghsodian et al., 
2022). 

Within this study, there was no significant difference in microplastic 
concentration between the different zones of the Tumbes mangrove 
ecosystem (Fig. 4C). This is likely due to a high degree of anthropogenic 
pressure throughout the entire mangrove. The inadequate management 
of plastic in the National Sanctuary has previously been evidenced 
during the cleaning of the mangrove carried out by Conservación 
Internacional Peru (2023), where plastic bottles and bottle caps were 
widely evident. The upper zone is prone to waste stemming from the 
international channel between Peru and Ecuador, where the currents 
can carry litter dumped from both sides of the border (Montaluisa 
Balcázar and Sánchez Cuenca, 2021). In the Coastal Upper and Rural 
Central Zones shrimp aquaculture has resulted in the introduction of 
fishing nets, foam buoys, paddlewheels and nursery cages into the area 
(Lusher et al., 2017). Such plastic equipment can become abraded and 
fragmented via chemical, physical and biological processes, leading to 
the release of secondary microplastics into the mangrove ecosystem (Lin 
et al., 2022). The Tourist Central Zone, which had the highest micro-
plastic concentration of 933±364 items/kg hosts busy shipping ports 
and tourist hotels and beaches (Morán and Hidalgo, 2018). Previous 
studies have demonstrated that the bay of Puerto Pizarro in the Tourist 
Central Zone is polluted with other marine contaminants, with organ-
ophosphate levels in the sediment and water exceeding the Maximum 
Permissible Limits (Moran Avila, 2017). Similarly, in the Lower Zone 
overuse of insecticides, pesticides, and herbicides on plantain and rice 
farms in the river catchment have led to heightened metal and chemical 
concentrations in the Tumbes estuary (Tineo Nuñez and Periche Viera, 
2019). 

The presence and abundance of microplastics in the sediments can 
influence the levels of pH in the mangrove soil, increasing it 
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Fig. 3. (A) Microplastic median items/g (median ±SE) from the black ark among the zones did not differ significantly (Kruskal-Wallis, p-value = 0.18). (B) 
Microplastic median items/g (median ± SE) from the mangrove crab did not differ significantly between zones (Kruskal-Wallis, p-value = 0.97) (C) Microplastic 
average items/kg (mean ± SD) from the sediments among the zones did not differ significantly between zones (one-way ANOVA, p-value = 1.02). 
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(Maghsodian et al., 2022; Zhao et al., 2021). Polyethylene foams and 
films had a direct effect on increasing soil pH (Zhao et al., 2021). 
However, the presence of plants in the mangrove soil potentially miti-
gates the effects of microplastics on soil pH, this attributed to the in-
crease in aeration and porosity of the substrate when these polymers 
were adhered; likewise, the leaching of the additives that the micro-
plastic presents alters the microbiota and therefore an increase in pH 
occurs (Lozano et al., 2021; Zhao et al., 2021). Despite obtaining a total 
of 716 ± 395.9 items/kg, the pH was 6.54 ± 0.57 due to the presence of 
R. mangle roots in the sampling areas. This was also observed in the 
results of Maghsodian et al. (2021), where pH was inversely propor-
tional to microplastic abundance, with higher particle abundance when 
the pH was 6.86 compared to when it was 10. 

4.2. Mangrove and estuary crabs 

The pathways for microplastic uptake in crustaceans are the venti-
lation system (gills) and ingestion (stomach) (Daniel et al., 2021). In the 
present study there was a significant difference between the microplastic 
abundance found in both tissues with a mean of 4.1 ± 2.41 items/g for 
the gills and 0.8 ± 0.7 items/g for the stomach. The higher concentra-
tions on the gills may be a result of prolonged retention times as 
compared with the intestinal tract (D’Costa, 2022; Villegas et al., 2021). 
In laboratory studies, the crab Uca rapax retained polystyrene fragments 
on their gills for two months (Brennecke et al., 2015), and the crab 
Carcinus maenas retained polystyrene microspheres microplastics on 
their gills for 21 days (Watts et al., 2014). 

Feeding studies with crabs indicate microplastic abundance may be 
related to the feeding behaviour of the organism (D’Costa, 2022; Not 

et al., 2020; Villegas et al., 2021; Zhang et al., 2023). Among the com-
mercial mangrove and estuary crabs, the omnivorous Metopograpsus 
quadridentatus has been reported with the highest microplastic abun-
dance (33 items/g - 327.56 items/ind) (Mufti et al., 2020), while the 
herbivorous crab Chiromantes dehaani consumed the least amount of 
microplastic (0.74–4.96 items/ind) (Zhang et al., 2021). In Latin 
America, U. occidentalis has less items of microplastics in the gills and 
stomachs than C. angulatus and L. uruguayensis (Truchet et al., 2022). In 
contrast, N. granulata, C. sapidus and M. mercenaria presented lower 
values than U. occidentalis (Villagran et al., 2020; Capparelli et al., 2022) 
(Table 2). Although, there was no correlation between the number of 
microplastics in the mangrove crab and the sediment (Pearson: R =
-0.02; p-value >0.05), there’s a possibility that U. occidentalis interact 
with the presence of microplastics in the upper intertidal sediment from 
the Coastal Upper Zone, Channel Upper Zone, and Tourist Central Zone 
(Díaz-Jaramillo et al., 2021; Truchet et al., 2022) (S1 and S2A–C). 

U. occidentalis is a detritivorous species that mainly ingests decaying 
leaves from the mangrove Rhizophora mangle (Ariza Gallego et al., 2023; 
Not et al., 2020; Zambrano and Meiners, 2018) and therefore micro-
plastics within their stomachs likely stem from those found in the 
sediment and adhered to mangrove leaves. It has been shown that 
microplastics can be transferred through the food chain in different 
environments (Gutow et al., 2016; Chae et al., 2018; Chae and An, 
2020). For example, in terrestrial food chain microplastics transferred 
from the sediments to a primary producer Vigna radiata and then to the 
snail Achatina fulica (Chae and An, 2020), in marine food chain from the 
seaweed Fucus vesiculosus to the periwinkle Littorina littorea (Gutow 
et al., 2016) and in freshwater food chain from microalgae Chlamydo-
monas reinhardtii to Daphnia magna and finally to the fish Zacco 

Fig. 4. (a) Putative microplastic type according to their shape: A. blue microbead, B. green fragment, C. blue fibre and D. green film. Proportion of microplastic 
according to their (b) shape, (c)size and (d)colour. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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temminckii (Chae et al.,2018). 
The presence of microplastic in the gills and stomach may have 

physiological and chemical effects in the organism (D’Costa, 2022). For 
example: exposure to polypropylene fibres and polystyrene spheres 
reduced food consumption, gill function and scope for growth (i.e. 

energy) in the crab Carcinus maenas (Watts et al., 2014, 2015); a long 
term exposure to polypropylene fibres, polyethylene terephthalate 
fragments and microbeads led to weight loss in the crab Rhithropanopeus 
harrisii (Torn, 2020); polystyrene spheres increase the oxidative stress, 
decrease immune enzyme activity, immune-related gene expression and 
alteration in the intestinal microflora in the crab Eriocher sinensis (Liu 
et al., 2019; Yu et al., 2018); microplastics were shown to block the 
opening of the gastrointestinal tract preventing regurgitation and thus 
increase the retention of microplastics in the stomach in Eriocheir sinensis 
(McGoran et al., 2020); and the accumulation of microplastics in the 
gills of the crabs Leptuca festae and Minuca ecuadoriensis reduce gas ex-
change in the gill’s chamber and thus respiratory rate and osmoregu-
latory functions (Villegas et al., 2021). 

Crustaceans don’t have an adaptive immune system (D’Costa, 2022; 
Huang et al., 2020) Nevertheless, decapods have several mechanisms 
that might be used to eliminate microplastics from the gills and stomach 
(D’Costa, 2022). In the gills, crabs can remove the particles by brushing 
it with their chelipeds, by epipods on the thoracic appendages that cause 
filament jostle, and by a behaviour called “gill grooming” commonly use 
to expel microbes (D’Costa, 2022; Waite et al., 2018). The removal of 
microplastic from the stomach is through excretion and regurgitation as 
a result of stressful conditions (D’Costa, 2022; McGaw and Curtis, 2013). 

Fig. 5. FT-IR spectra from fibres showing (A) Polypropylene, (B) Polyester and (C) Cellophane spectrum.  

Table 1 
Estimated human intake of microplastics from the consumption of mangrove 
crab (Ucides occidentalis) and black ark (Anadara tuberculosa) from Tumbes 
region.   

Tumbes Region General population 
(≥ 10 years) 

Per capita mangrove crab consumption (g/ 
capita/year) 

174.5 

Per capita black ark consumption (g/capita/ 
year) 

70.6 

Human intake from mangrove crab (MP 
items/capita/year) 

332 

Human intake from black ark (MP items/ 
capita/year) 

99 

Human intake from both species (MP items/ 
capita/year) 

431  
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Depending on the species and its gut physiology, there would be dif-
ferences in the rates of microplastic elimination, which was shown in the 
crab Carcinus maenas who took over six times longer to expel micro-
plastics from the body compared to the typical excretory period (Watts 
et al., 2014). 

4.3. Mangrove and estuary bivalves 

In the present study the microplastic abundance in the soft tissue of 
A. tuberculosa was 1.56 ±1.12 items/g or 4.9 ± 2.18 items/ind, which is 
lower than observed in A. tuberculosa (4.65 ± 4.64 items/g or 35.39 ±
27.56 items/ind) from Buenaventura Bay, Colombia, A. flexuosa, G. 
erosa y P. viridis from Brazil, Indonesia and India (Table 2) (Ariza Gallego 

Table 2 
Comparison of microplastic abundance (items/g) in commercial invertebrates from mangrove and estuary ecosystems.   

Studied area Species Microplastic 
abundance (items/ 
ind) 

Microplastic 
abundance 
(items/g) 

Most common 
shape 

Most frequent 
size (m) 

Most common 
colour 

Reference 

Crabs Hong Kong, China Parasesarma bidens Average 60.5 – Fragments and 
beads 

> 10 Blue (87 %) Not et al. 
(2020)  

Paraleptuca 
splendida 

– Fibres  

Metopograpsus 
frontalis 

– Fragment and 
beads  

Thalamita crenata – Fragments, 
beads and 
fibres. 

Jakarta Bay, 
Indonesia 

Metopograpsus 
quadridentatus 

327.56 33 Fibres and Films – – Mufti et al. 
(2020) 

Beibu Gulf, China Chiromantes 
dehaani 

0.74–4.96 –    Zhang et al. 
(2021) 

Buenaventura Bay, 
Colombia 

Goniopsis pulchra 9.07 ± 3.7 4.57± 4.14 Fragments and 
fibres 

>9 Transparent 
and blue Ariza Gallego 

et al. (2023) 
Mangrove wetlands of 
Hainan, South China 

Uca vocans 0.22 – Fibres 0–1 mm Brown and 
blue 

Zhang et al. 
(2023) Uca arcuata 1.16 – 

Perisesarma bidens 1.07 – 
Uca dussuimeri 2.00 – 
Helicana wuana 0.78 – 
Sesarma plicata 1.36 – 

Bahía Blanca Estuary, 
Argentina 

Neohelice granulata – Gills: ≥ 5.80 
Digestive tract: ≥
0.24 

Fibres <500–1500 Blue Villagran et al. 
(2020) 

Bahía Blanca Estuary, 
Argentina 

Nohelice granulata – Gills: 0.17 ± 0.14 Fibre <0.5 mm Transparent 
and black 

Truchet et al. 
(2022) 

Cyrtograpsus 
angulatus 

– Gills: 0.11 ± 0.07 Fibre <0.5 mm Transparent 
and black 

Leptuca 
uruguayensis 

– Gills: 1 ± 1 Fibre <0.5 mm Transparent 
and black 

Laguna de Terminos, 
Mexico 

Callinectes sapidus – 37.9 Fragments and 
fibres 

≥ 0.9 mm Red and blue Capparelli 
et al. (2022). 

Menippe 
mercenaria 

– 76 Fragments ≥ 2 mm Blue 

Tumbes, Peru Ucides occidentalis 7.8 ± 3.14 Total: 1.94 ± 0.87 
Gills: 4 0.1 ± 2.41 
Stomach: 0.8 ±
0.7 

Fibres 500 Transparent 
and blue 

Present study 

Bivalves Pangkal Babu, 
Indonesia 

Anadara granosa 434± 97.05 9.8 ± 2.26 Fibres – – 
Fitri and Patria 
(2019) 

Buenaventura Bay, 
Colombia 

Anadara similis 17.8 ± 12.98 4.29 ± 4.09 Fragments and 
fibres 

>9 Transparent 
and blue Ariza Gallego 

et al. (2023)  Anadara 
tuberculosa 

35.39 ± 27.56 4.65 ± 4.64 

Jeneponto Coast, 
Indonesia 

Anadara granosa – 1.455–3.806 Line, fragments 
and films 

– Blue Daud et al. 
(2023) 

Mangrove wetlands of 
Hainan, South China 

Vignadula atrata 0.22 – Fibres  Brown and 
blue 

Zhang et al. 
(2023) 

Geloina erosa 0.23 –    
Saccostrea echinata 1.85 –    

Itapessoca estuary in 
Pernambuco, Brazil 

Anomalocardio 
flexuosa 

5.15 ± 3.80 3.66 ± 2.59 Fragments 17–1057 – Bruzaca et al. 
(2022) 

Situbondo, Indonesia Geloina erosa 15.55 ± 8.51 1.72 ± 1.58 Fibre – – Yona et al. 
(2023) 

Southwest Coast 
estuary, India 

Perna viridis – Digestive gland: 
5.6 
Gills: 8.5 

Fibre 1–2 mm Red Joshy et al. 
(2022) 

Tumbes, Peru Anadara 
tuberculosa 

4.9 ± 2.18 1.56 ± 1.12 Fibres 500 Transparent 
and blue 

Present study 

-: Not found. 
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et al., 2023; Bruzaca et al., 2022; Yona et al., 2023; Joshy et al., 2022). 
Other Anadara species have also been shown to have high levels of 
microplastic contamination (Table 2), including Anadara granosa (9.8 ±
2.26 items/g - 434 ± 97.05 items/ind) and Anadara similis (4.29 ± 4.09 
items/g - 17.8 ± 12.98 items/ind) from Indonesia and Colombia, 
respectively (Ariza Gallego et al., 2023; Fitri and Patria, 2019). The 
main pathway of microplastic uptake in mollusc is ingestion (Wang 
et al., 2021) with microplastics potentially accumulating in the gills and 
digestive glands (Green et al., 2019). Microplastics can also adhere to 
bivalves: pervading the shells, mantle and foot for a long period 
(Kolandhasamy et al., 2018). 

The abundance of microplastics in bivalves tend to vary following 
the variation of the microplastic number in the associated near-by ma-
trix (Joshy et al., 2022), however, in the present study there was no 
significant correlation between the abundances of microplastics in 
sediment and in the black ark. The main sources of microplastic pollu-
tion in bivalves are associated with anthropogenic activities such as 
tourism, aquaculture and artisanal fishing (Bruzaca et al., 2022). 
Notably the greatest abundance of microplastics in A. tuberculosa was in 
the Rural Central Zone and Tourist Central Zone (S1, S2B), which are 
surrounded by shrimp farms (Fig. 1). Microplastic exposure can cause an 
ecotoxicological risk for molluscs (Sussarellu et al., 2016). Studies under 
laboratory conditions, demonstrate an interference in the reproductive 
performance reducing sperm velocity and possibly lowering their ability 
to fertilize oocytes in the oyster Crassotrea gigas (Sussarellu et al., 2016); 
significantly decreases the growth rate of Mytilus spp. (Walkinshaw 
et al., 2023); presents inflammatory responses, lysosomal destabiliza-
tion and the formation of granulocytomas in Mytilus edulis (von Moos 
et al., 2012); in addition to cellular effects altering immunological re-
sponses, changes gene expression profile and genotoxicity in Mytilus 
galloprovincialis y Mytilus edulis (Avio et al., 2015; Cole et al., 2020). In 
recent years, there has been notable a decrease in the population of 
A. tuberculosa observed in Tumbes (Ordinola Zapata, 2022), which may 
be attributed to pollution, potentially including microplastics. 

Thus, Bivalves have an important role as environmental bio-
indicators to monitor microplastic pollution (Ding et al., 2021; Staichak 
et al., 2021). Due to their filter-feeding behaviour allowing the capture 
of significant amounts of microplastics in the wild and in laboratory 
environment (Staichak et al., 2021; Wesch et al., 2016). In addition, 
their easy with which they can be collected, the fact they are ubiquitous 
and that they interact with the surrounding environment (Ward et al., 
2019). 

4.4. Food security and human health 

The presence of microplastic in commercial species is a concern for 
human health (De-la-Torre, 2020). Consumers that eat microplastic- 
contaminated food, especially organisms that are consumed whole (i. 
e. including the gills and digestive tract where microplastics are prev-
alent) are at high risk of consuming microplastics (Mercogliano et al., 
2020; Smith et al., 2018). Microplastics have been identified in a wide 
array of beverages and foodstuffs including water, beer, salt, sugar, 
honey, marine finfish and shellfish (Afrin et al., 2022; Al Naggar et al., 
2023; Baechler et al., 2020; Lundebye et al., 2022; Senathirajah et al., 
2021). In Peru, both species can be consumed whole in traditional dishes 
(Azabache Cobeña, 2016; Aguirre-Sanchez et al., 2022). 

Various predictions have been made of how many microplastics 
might be consumed by humans through dietary means, European 
shellfish consumers are estimated to have an annual exposure of 11,000 
MPs/person/year (Li et al., 2021; Van Cauwenberghe and Janssen, 
2014) while the global average rate of microplastic intake through 
shellfish consumption is estimated at 2602–16288 items/capita/year 
(Senathirajah et al., 2021). In Tumbes, the estimated human intake of 
microplastics is 332 items/capita/year from the mangrove crab, 99 
items/capita/year from the black ark and 431 items/capita/year from 
both species (Table 1). However, food is just one route by which humans 

can be exposed to microplastics. For example, a number of studies have 
demonstrated the ubiquity with which microplastics are found in the air 
we breathe (Amato-Lourenço et al., 2021; Gasperi et al., 2018; Sridharan 
et al., 2021), with an estimated between 13.731 and 68.415 micro-
plastics per year per capita expected to settle on a plate during a meal 
exceeding those likely ingested from consuming the food on the plate 
(Catarino et al., 2018). The risks posed to humans by inhaling or 
ingesting microplastics may include oxidative stress (Deng & Zhang, 
2019), affectation of gene expression and cell morphology (Forte et al., 
2016), aggravating allergic diseases (Lu et al., 2022), genotoxic and 
neurotoxic effects (Oliveira & Almeida, 2019). Of additional concern is 
that microplastics may act as vectors of pathogenic microbes, metals or 
persistent organic pollutants (Caruso, 2019), human pathogens, such as 
bacteria (Ghosh et al., 2021), can colonize plastic surfaces (biofouling) 
when they come into contact with wastewater treatment plants (Kaiser 
et al., 2017; Oberbeckmann et al., 2015; Vethaak and Leslie, 2016). 

Additionally, these discarded polymers can retain stagnant water in 
the sediment, creating habitats for parasites and viruses like Dengue and 
Zika, posing a risk to densely populated and flood-prone areas (Vethaak 
and Leslie, 2016). The Tumbes region is vulnerable to the persistence of 
autochthonous Zika virus cases in infants, children, adults, and pregnant 
women since 2016 (Solis et al., 2018). Furthermore, the presence of total 
coliforms, thermotolerant coliforms, and Vibrio sp. in A. tuberculosa 
(Pernía et al., 2019; Zapata Vidaurre, 2017), as well as Escherichia coli, 
Salmonella spp., and Pseudomonas spp. in the meat of U. occidentalis 
(Guamán Quishpi, 2012), poses a risk to the health and food security of 
the inhabitants of Tumbes (Mercogliano et al., 2020). 

Further, microplastics may be trophically-transferred to natural 
predators in the food web (Maghsodian et al., 2022). The natural 
predators from U. occidentalis and A. tuberculosa include the great egret 
(Ardea alba), the tiger heron (Trigrisoma mexicanum), the little blue 
heron (Egretta caerulea) and the crab racoon (Procyon cancrivorus) which 
may ingest microplastics via consumption of the mangrove invertebrates 
(Diele and Koch, 2010; Maghsodian et al., 2022). 

4.5. Physicochemical properties 

The bioavailability of microplastics in mangrove species depends on 
their size, colour, and shape (Browne et al., 2008). The small sizes found 
in the crab (Fig. 4d) were due to the ability to fractionate their food in 
the cardiac stomach and prevent the passage of large particles through 
filtering silks in the pyloric stomach (Córdova-Ortiz, 2015). The buoy-
ancy of the fibres and the difficulty to remove them from the soft tissue 
(Zhang et al., 2020; Ziajahromi et al., 2017; Maghsodian et al., 2022) 
made them the most common shape of microplastic found in both 
commercial species (Table 2). 

The predominant microplastics in living organisms associated to the 
mangrove ecosystem have a bright colour (Fig. 4d), however, despite 
not being attractive to the biota, transparent microplastics can blend in 
with their environment and eventually be ingested (Ma et al., 2020a,Ma 
et al., 2020b). The polymers identified may stem from a wide range of 
sources, including packaging, abandoned, lost and discarded fishing 
gears (ALDFG) or wastewater very common in tourist zones as Puerto 
Pizarro Bay, which may be particularly problematic given the lack of 
wastewater treatment in Tumbes (SUNASS (Superintendencia Nacional 
de Servicios de Saneamiento), 2010). 

5. Conclusion 

Widespread anthropogenic activity, such as improper waste disposal, 
shrimp farms, tourism, agriculture and border trade, generate a homo-
geneous distribution of microplastics abundance throughout the region, 
which is accumulating in sediments throughout the Tumbes mangrove. 
Notably, microplastic concentrations within the mangroves represent 
some of the highest microplastic concentrations in Peru, indicating that 
mangroves are accumulating microplastics more readily than 
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unvegetated habitats. Microplastics were identified in the tissues of 
commercially exploited mangrove species. In the mangrove crab 
microplastics were more prevalent on the gills, indicating they are the 
main pathway of microplastic uptake and/or retained more readily on 
the gills than the digestive tract. The presence of microplastics in 
commercially exploited species poses a risk to consumers, including 
marine predators and humans. With the local population likely to ingest 
431 microplastics/capita/year from consuming black arc and mangrove 
crab. The outcomes of this work highlight that the mangrove ecosystem 
is widely contaminated with microplastics, and this may pose a risk to 
the marine food web and food security. 
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agua del canal internacional Zarumilla frente actividades antrópicas mediante 
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Truchet, D.M., Ardusso, M.G., Forero-López, A.D., Rimondino, G.N., Buzzi, N.S., 
Malanca, F., Spetter, C.V., Fernández-Severini, M.D., 2022. Tracking synthetic 
microdebris contamination in a highly urbanized estuary through crabs as sentinel 
species: An ecological trait-based approach. Sci. Total Environ. 837, 155631 https:// 
doi.org/10.1016/j.scitotenv.2022.155631. 

Van Cauwenberghe, L., Janssen, C.R., 2014. Microplastics in bivalves cultured for human 
consumption. Environ. Pollut. 193, 65–70. https://doi.org/10.1016/j. 
envpol.2014.06.010. 

Vethaak, A.D., Leslie, H.A., 2016. Plastic debris is a human health issue. Environ. Sci. 
Technol. 50 (13), 6825–6826. https://doi.org/10.1021/acs.est.6b02569. 

Villagran, D.M., Truchet, D.M., Buzzi, N.S., Lopez, A.D.F., Severini, M.D.F., 2020. 
A baseline study of microplastics in the burrowing crab (Neohelice granulata) from a 
temperate southwestern Atlantic estuary. Mar. Pollut. Bull. 150, 110686 https://doi. 
org/10.1016/j.marpolbul.2019.110686. 

Villegas, L., Cabrera, M., Capparelli, M.V., 2021. Assessment of microplastic and 
organophosphate pesticides contamination in fiddler crabs from a Ramsar site in the 
estuary of Guayas River, Ecuador. Bull. Environ. Contam. Toxicol. 107 (1), 20–28. 
https://doi.org/10.1007/s00128-021-03238-z. 

Waite, H.R., Donnelly, M.J., Walters, L.J., 2018. Quantity and types of microplastics in 
the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab 

Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 129 (1), 179–185. 
https://doi.org/10.1016/j.marpolbul.2018.02.026. 

Walkinshaw, C., Tolhurst, T.J., Lindeque, P.K., Thompson, R.C., Cole, M., 2023. Impact 
of polyester and cotton microfibers on growth and sublethal biomarkers in juvenile 
mussels. Microplastics and Nanoplastics 3 (1), 5. https://doi.org/10.1186/s43591- 
023-00052-8. 

Wang, R., Mou, H., Lin, X., Zhu, H., Li, B., Wang, J., Junaid, M., Wang, J., 2021. 
Microplastics in mollusks: research Progress, current contamination status, analysis 
approaches, and future perspectives. Frontiers in marine. Science 8. https://www. 
frontiersin.org/articles/10.3389/fmars.2021.759919. 

Ward, J.E., Zhao, S., Holohan, B.A., Mladinich, K.M., Griffin, T.W., Wozniak, J., 
Shumway, S.E., 2019. Selective ingestion and egestion of plastic particles by the blue 
mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica): implications for 
using bivalves as bioindicators of microplastic pollution. Environ. Sci. Technol. 53 
(15), 8776–8784. https://doi.org/10.1021/acs.est.9b02073. 

Watts, A.J.R., Lewis, C., Goodhead, R.M., Beckett, S.J., Moger, J., Tyler, C.R., 
Galloway, T.S., 2014. Uptake and retention of microplastics by the shore crab 
Carcinus maenas. Environ. Sci. Technol. 48 (15), 8823–8830. https://doi.org/ 
10.1021/es501090e. 

Watts, A.J.R., Urbina, M.A., Corr, S., Lewis, C., Galloway, T.S., 2015. Ingestion of plastic 
microfibers by the crab Carcinus maenas and its effect on food consumption and 
energy balance. Environmental science and technology 49 (24), 14597–14604. 
Scopus. https://doi.org/10.1021/acs.est.5b04026. 

Wesch, C., Bredimus, K., Paulus, M., Klein, R., 2016. Towards the suitable monitoring of 
ingestion of microplastics by marine biota: A review. Environmental Pollution 
(Barking, Essex: 1987) 218, 1200–1208. https://doi.org/10.1016/j. 
envpol.2016.08.076. 

van Wezel, A., Caris, I., Kools, S.A.E., 2016. Release of primary microplastics from 
consumer products to wastewater in the Netherlands. Environ. Toxicol. Chem. 35 
(7), 1627–1631. https://doi.org/10.1002/etc.3316. 

Yona, D., Mahendra, B.A., Fuad, M.A.Z., Sartimbul, A., 2023. Microplastics 
contamination in molluscs from mangrove forest of Situbondo, Indonesia. In: IOP 
Conference Series: Earth and Environmental Science, Vol. 1191, No. 1. IOP 
Publishing. https://doi.org/10.1088/1755-1315/1191/1/012016, p. 012016.  

Yu, P., Liu, Z., Wu, D., Chen, M., Lv, W., Zhao, Y., 2018. Accumulation of polystyrene 
microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. 
Aquat. Toxicol. 200, 28–36. https://doi.org/10.1016/j.aquatox.2018.04.015. 

Zambrano, R., Meiners, C., 2018. Notas sobre taxonomía, biología y pesquería de Ucides 
occidentalis (Brachyura: Ocypodidae) con ́enfasis en el Golfo de Guayaquil, Ecuador. 
Revista Peruana de Biología 25 (1). https://doi.org/10.15381/rpb.v25i1.13821. 
Article 1.  

Zapata Vidaurre, K. Y. (2017). Caracterizacion molecular de la microbiota asociada a la 
sangre y gonadas de la concha negra Anadara tuberculosa. [Tesis de Maestría] 
Universidad Nacional de Tumbes. https://repositorio.untumbes.edu.pe/handle/20. 
500.12874/492. 
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