
TYPE Policy and Practice Reviews
PUBLISHED 07 December 2023
DOI 10.3389/focsu.2023.1298800

OPEN ACCESS

EDITED BY

Louis Celliers,
Climate Service Center Germany
(GERICS), Germany

REVIEWED BY

Yolanda Pazos,
Instituto Tecnolóxico para o Control do Medio
Mariño de Galicia (INTECMAR), Spain
Natacha Nogueira,
Governo Regional da Madeira, Portugal

*CORRESPONDENCE

Yolanda Sagarminaga
ysagarminaga@azti.es

RECEIVED 22 September 2023
ACCEPTED 08 November 2023
PUBLISHED 07 December 2023

CITATION

Sagarminaga Y, Garcés E, Francé J, Stern R,
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Marine harmful algal blooms (HABs), caused by various aquatic microalgae, pose
significant risks to ecosystems, some socio-economic activities and human health.
Traditionally managed as a public health issue through reactive control measures
such as beach closures, seafood trade bans or closure of mollusc production
areas, the multifaceted linkages of HABs with environmental and socio-economic
factors require more comprehensive ecosystem-based management approach
tools to support policies. This study promotes a coordinated understanding and
implementation of HAB assessment and management under the Marine Strategy
Framework Directive (MSFD), targeting the achievement of Good Environmental
Status (GES) in European marine waters. We introduce two novel tools: GES4HABs
(GES for HABs) decision tree, and MAMBO (environMental mAtrix for the
Management of BlOoms), a decision support matrix. These tools aim to streamline
HABs reporting and prioritize resource allocation and management interventions.
The GES4HABs decision tree defines a sequence of decision steps to identify
HABmanagement strategies according to their state (evaluated against predefined
baselines) and causes (anthropic or natural). MAMBO is proposed to address
di�erent HABs and their interaction with human and environmental pressures.
The matrix utilizes two axes: natural trophic status and level of human influence,
capturing major aspects such as nutrient supply. While acknowledging the
limitations of this simplified framework, MAMBO categorizes marine regions into
quadrants of varying management viability. Regions with high human influence
and eutrophic conditions are identified as most suitable for e�ective management
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intervention, whereas regions withminimal ormixed human influence are deemed
less amenable to active management. In addition, we explore and describe
various indicators, monitoring methods and initiatives that may be relevant to
support assessments of HAB status and associated pressures and impacts in
the MSFD reporting. Finally, we provide some recommendations to promote
the consideration of HABs in ecosystem-based management strategies, intensify
e�orts for harmonizing and defining best practices of analysis, monitoring
and assessment methodologies, and foster international and cross-sectoral
coordination to optimize resources, e�orts and roles.

KEYWORDS

decision support tools, ecosystem-based management, indicators, marine monitoring,

eutrophication, marine biotoxins, environmental assessment, pressures and impacts

1 Introduction

The term “harmful algal blooms” (HABs) refers to ecologically,
socio-economically or health-related detrimental events caused by
a wide range of taxonomically, physiologically, and ecologically
distinct microalgae and macroalgae. Focusing on microalgae, of
the approximately 3,400 to 4,000 known species worldwide, only
a mere 1–2% are categorized as harmful (Shumway et al., 2018).

Although HABs are best known for their adverse impacts
on public health, aquaculture, fisheries, infrastructure, and
recreational and tourism activities (Anderson et al., 2012; Brown
et al., 2019; Kouakou and Poder, 2019; Young et al., 2020; Karlson
et al., 2021; Lenzen et al., 2021), several adverse effects on marine
organisms, including molluscs, fish, seabirds, reptiles and marine
mammals, are increasingly documented (Landsberg, 2002; Zohdi
and Abbaspour, 2019; Rattner et al., 2022). All these impacts
significantly contribute to changes in marine ecosystems, their
associated services, and human wellbeing (Masó and Garcés, 2006).

HABs are typically classified into three broad categories based
on their “mechanisms of harm”: (i) low biomass toxin-producers,
which can contaminate seafood, water, and generate aerosols
even at low biomass levels, (ii) high-biomass toxin-producers,
which can produce similar harmful effects when reaching high
concentrations, and (iii) high-biomass non-toxic species, that can
cause either hypoxic/anoxic conditions or unpleasant/nuisance
foam or gelatinous masses, among other effects (Anderson
et al., 2017; Karlson et al., 2021). A comprehensive list of the
most frequently described adverse effects (impacts) of HABs
on ecosystem services has been compiled in the Supplementary
material (Supplementary Table S1).

Identifying the causative factors behind HAB events is a
complex endeavor. Most HABs are natural phenomena that have
historically occurred in various regions worldwide before human
activities altered coastal and marine ecosystems (Hallegraeff et al.,
2003). HABs involve a change of phytoplankton assemblages,
which can arise are in response to chemical, biological or
habitat alterations (Smayda, 2008). Various ecological mechanisms
have been suggested to elucidate HABs, including biological
life strategies such as mixotrophic behavior, swimming ability,
allelopathy effects, multi-resource competition, and prey avoidance
(Choi et al., 2023). In some instances, certain types of HABs from
across the globe have been associated with distinct anthropogenic
pressures, such as nutrient loads (Riegman et al., 1992; Glibert et al.,

2005; Heisler et al., 2008; Harrison et al., 2012), intensified human
activities (e.g., aquaculture and navigation, see Hallegraeff et al.,
2021), habitat modifications (Garcés and Camp, 2012), and climate
change (Anderson, 2014;Wells et al., 2015; Glibert and Burkholder,
2018; Glibert, 2020).

The first legislations on HABs appeared in the mid-1990s:
for instance, the local Galician Government legally established
the monitoring network for marine biotoxins in bivalve molluscs
grown in rafts in the Galician Rías (NW Spain) in 1995 (Pazos
and Maneiro, 1999), and the US “Harmful Algal Bloom and

Hypoxia Research and Control Act” was enacted in 1998. In
Europe, HABs are currently managed primarily as a public health
issue (Food and Hygiene Regulations [Regulation (EC) 853/2004,
2004; Regulation (EC) 2074/2005, 2005; Regulation (EU) 2019/627,
2019; Regulation (EU) 2021/1709, 2021]), Bathing Water Directive
(BWD) (European Commission, 2006), but are also considered
within the Water Framework Directive (WFD) (European
Commission, 2000). These regulations mandate the monitoring
of marine biotoxins and toxic phytoplankton while establishing
specific thresholds to trigger control measures, such as beach
closures or seafood trade bans (European Food Safety Authority
(EFSA), 2009; Serret et al., 2019). Nevertheless, the significant
interconnections between HABs and various environmental and
socio-economic issues (see Supplementary material 1) highlight
the need of a holistic, ecosystem-based approach to manage
HABs through appropriate instruments and policies. Furthermore,
neglecting HABs management in environmental policies may lead
to future environmental challenges if affected socio-economic
actors resort to unregulated mitigation measures such as algicide
application, ultrasound, clay disposal or biological treatment
(Silliman, 2022).

In this context, the European Marine Strategy Framework
Directive (MSFD; European Commission, 2008) represents
a significant milestone by introducing an ecosystem-based
management approach (EBMA) for the sustainable utilization
of marine resources and ecosystem services across Europe. The
MSFD aims to ensure that, through its implementation by the EU
Member States, in coordination with the Regional Sea Conventions
(RSCs), a “Good Environmental Status” (GES) of the EU’s marine
waters is achieved by 2020 (now, 2026) (European Commission,
2020).

In practice, the MSFD is implemented through a six-year
adaptive management cycle, starting with (i) an initial assessment
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of the status of the marine environment and its essential features
and characteristics, (ii) an analysis of the prevailing pressures and
impacts, and (iii) an economic and social analysis of the sea use
(Art. 8MSFD). In parallel, the determination of GES (Art. 9MSFD)
and a set of environmental targets and associated indicators (Art.
10 MSFD) was established. GES is defined by eleven descriptors
that elucidate the conditions indicative of GES attainment. The
indicators and reference values are used to assess compliance
with GES and to establish adapted monitoring programmes (Art.
11 MSFD) and programmes of measures (Art. 13 MSFD) for
preserving or restoring GES conditions. The six-year management
cycle allowsMember States to periodically review the suitability and
effectiveness of their GES determination, environmental targets,
indicators, and measures.

HABs received limited attention in the 2012 MSFD initial
assessments (Palialexis et al., 2014). In the 2018 reporting
phase, only few Member States initiated reporting on HABs
(cyanobacteria in the Baltic Sea and southern North Sea, Noctiluca
scintillans in the Black Sea, and Phaeocystis spp. in the southern
North Sea) (Tornero Alvarez et al., 2023). Although progress
is being made, the diverse array of environmental and socio-
economic problems associated with HABs in European coastal
and offshore waters is inadequately reflected in the reporting
(Tornero Alvarez et al., 2023). Indeed, in the European Seas, abiotic
conditions such as nutrient availability and hydrodynamics vary
significantly between the open sea and coastal areas. This leads
to differences in the types of phytoplankton species present and
the frequency of their blooms, which can range from seasonal
to unpredictable (Garcés and Camp, 2012). The nearshore zones,
covered by the WFD assessment, frequently exhibit signs of
eutrophication due to substantial nutrient inputs are often sites
of phytoplankton blooms and the presence of harmful algal (HA)
species (Bricker et al., 2008). Although most of the potential HAB
impacts are expected to occur in nearshore areas designated under
the WFD and MSFD, some may extend and impact to offshore
regions exclusively covered by MSFD.

In this context, the aim of this study is to pave the way for
the integration of HABs into EBMA, with a specific focus on the
MSFD (without forgetting lessons learnt from WFD). The main
objective is to provide policy- and decision-makers with technical
guidance and tools that can enhance the monitoring, assessment
and management of HABs in marine environments.

The study outcomes include the proposal of two new
conceptual decision support tools (a decision tree and a conceptual
matrix), an exploration of existing and alternative indicators
and monitoring methods potentially useful for HABs, and
recommendations for fostering EBMA strategies.

2 Proposed conceptual decision
support tools for guiding HAB
management

Within theMSFD framework we found the following principles
as most relevant for contextualizing HABs (European Commission,
2017, 2020, 2022):

• The MSFD primarily focuses on assessing the overall
environmental status of marine ecosystems, with a particular
emphasis on evaluating the impacts of human activities.

• GES is not conceived to reflect a pristine status but should

encompass prevailing environmental conditions, including
natural variability, climate change, past human activities, their
pressures and impacts as well as the ecosystem’s resilience and
capacity for recovery (Claussen et al., 2011).

• Climate change should be regarded as a “shifting baseline”

to be integrated into GES determination (Elliott et al.,
2015). Even if climate change is acknowledged as a significant
pressure across all European marine regions (European
Commission, 2020), assessing climate change effects is not
a specific objective of the MSFD. Thus, it is important to
distinguish wider climate-change impacts frommore localized
effects caused by other anthropogenic pressures.

• Member States can, based on risk analysis, focus their

efforts on the main problems and areas. The exclusion
of low-risk areas and issues does not preclude the
maintenance of surveillance monitoring for early detection of
future deviations.

• The new MSFD framework requires the setting of
quantitative “threshold values” grounded in the best
available science, aiming for consistent and comparable
outcomes among Member States (European Commission,
2017).

• The (re)use of existing monitoring, standards, and methods

stipulated in other EU legislation is recommended to avoid
redundant processes and unnecessary reporting burden on
member states (European Commission, 2020).

Considering these requirements, we have developed a
decision tree, hereafter referred to as GES4HABs, and a
decision support matrix, hereafter referred to as MAMBO

(environMental mAtrix for the Management of BlOoms).
GES4HABs breaks down complex decisions into a sequence of
more manageable steps, rendering the decision-making process
easier to understand and follow (Figure 1). MAMBO is nested
within GES4HABs and assists in identifying HABs that are
more amenable to management actions, thereby directing efforts
and resources efficiently (Figure 2). Hereafter, the consecutive
steps and criteria encompassed in GES4HABs, and MAMBO
are described.

2.1 GES4HABs entry point: the initial
assessment

Although reactive local control measures and regulatory limits
will always be necessary to mitigate the impacts and risks of
HABs [e.g., Food and Hygiene Regulations [(EC) 853/2004;
(EC) 2074/2005; (EU) 2019/627; (EU) 2021/1709], Serret et al.
(2019); Bathing Water Directive (European Commission, 2000)]
(Figure 1), upstream management based on EBMAs, such as the
MSFD, can assist in identifying the causes and impacts of HABs,
assess their status against the expected prevailing conditions, and
define appropriate management measures. Ultimately, EBMA aims
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FIGURE 1

GES4HABs Decision tree to guide policy makers and Marine Strategy Framework Directive (MSFD) stakeholders on the steps and decisions to support
management and MSFD reporting actions related to di�erent Harmful Algal Blooms (HABs) in their jurisdiction areas. GES, Good Environmental
Status; EBM, Ecosystem-Based Management; RSC, Regional Seas Conventions; ICES, International Council for the Exploration of the Sea; EEA,
European Environment Agency; EFSA, European Food Safety Authority; Eurostat, Statistical o�ce of the European Union; MSP, Maritime spatial
planning; WFD, Water Framework Directive; UWWTD, Urban Waste Water Treatment Directive; Nitrates, Nitrates Directive; HD and BD, Habitats
Directive and Birds Directive; BWD, Bathing Water Directive; CFP, Common Fisheries Policy; MAMBO, environMental mAtrix for the Management of
BlOoms (see Figure 2).

Frontiers inOcean Sustainability 04 frontiersin.org

https://doi.org/10.3389/focsu.2023.1298800
https://www.frontiersin.org/journals/ocean-sustainability
https://www.frontiersin.org


Sagarminaga et al. 10.3389/focsu.2023.1298800

FIGURE 2

Top: Representation of some marine geographical regions in the MAMBO (environMental mAtrix for the Management of BlOoms) matrix according
to their associated trophic state (X axis) and anthropic influence level (Y axis). Bottom: Representation of some examples of Harmful Algal species
occurrences in relation to the European marine geographical regions previously represented (Top). The examples added are not meant to hold a
comprehensive list of HAB events in European seas but to provide di�erent examples of harmful algae presence and/or events in Europe and
exemplify their position in the MAMBO matrix. More examples can be found in Supplementary Table S2.

to preserve or enhance ecological integrity, resilience, the provision
of ecosystem services, stakeholder engagement and accountability,
and transdisciplinary integrated management (Delacámara et al.,
2020).

The first step in implementing this approach involves
leveraging the local experts’ background knowledge of HABs,
along with existing monitoring data and infrastructure, to
conduct an initial/preliminary assessment (Figure 1). During
this initial assessment, appropriate indicators, reference
conditions (e.g., those corresponding to the prevailing

environmental conditions that determine GES), and thresholds
(e.g., those indicating the boundaries between GES and non-
GES) should be established to assess HAB events in a given
area (WG GES, 2011).

This initial phase could also serve to identify inadequate or
inconsistent monitoring efforts and techniques needed to establish
effective indicators and reference points (Zampoukas et al., 2014).
This may be particularly relevant in the context of rapidly
changing conditions due to climate change and the expanding
and intensifying human footprint in the assessed areas (e.g., due
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to aquaculture, coastal modifications, shipping, mining, fishing,
and recreation).

The required indicators for this initial assessment can focus on
the status of HABs (e.g., phytoplankton biomass, taxa composition,
frequency, extent, and duration of blooms) or their impacts
(e.g., biotoxin concentrations, frequency and number of closed
mariculture sites, and organism mortality) (Figure 1). This choice
should be driven by the characteristics of the HABs occurring
in the area, the available monitoring networks, and possibilities
for inter-comparison (see Section 3 for further information on
HAB-related indicators).

While this initial assessment is challenging and resource-
intensive, it is essential to (i) identify and account for HAB
occurrences in the assessed areas, (ii) determine whether HABs
deviate from prevailing conditions, and (iii) anticipate potential
new HABs or shifts in baselines due to global change.

The second step commences with a new reporting phase,
during which the HABs recorded in the reporting period should
be compared to the reference values for prevailing conditions
(GES thresholds) set in the initial assessment (Figure 1). If HABs
fall within these thresholds, reporters can confirm compliance
with GES, justify the lack of need for additional management
measures, and maintain the existing surveillance monitoring and
response control measures. Conversely, if the assessment indicates
a departure fromGES, a potential concern arises, leading to the next
question: Are these HABs (likely) linked to anthropogenic causes
and therefore manageable within the policy framework? (Figure 1).

2.2 Use of MAMBO to address the
complexity of environmental factors and
human influence in the management of
HABs

At present, establishing clear links between HABs and
anthropogenic pressures is challenging due to several factors: (i)
the complexity of the mechanisms that trigger HABs, (ii) the
interaction of multiple pressures, both human and natural, and
their cumulative effects (additive, synergistic, or antagonistic), and
(iii) changing conditions due to climate change.

In this context, MAMBO is proposed to pragmatically delineate
the manageable environment within which policy makers and
environmental managers can direct their efforts and resources.
MAMBO intersects the natural trophic status of marine waters,
ranging from oligotrophic to highly eutrophic systems (X axis),
with their level of anthropic influence (Y axis) (Figure 2). For the
quantitative application of MAMBO, these axes can be customized
with different metrics. The ’trophic state’ axis could be determined
by average chlorophyll a concentration values or any other metric
deemed appropriate to represent prevailing conditions. Similarly,
different metrics could be chosen for the cumulative anthropic
pressure axis. This choice may be based upon user preferences, data
availability, and regional characteristics (e.g., freshwater content,
land use indices, or other anthropic indicators).

These axes were chosen because most connections between
human activities and HABs are related to nutrient status. Although
the link with over enrichment of nutrients is more often

associated with high-biomass HABs, the effect of nutrients in
promoting HABs (including toxic HABs) is neither uniform nor
straightforward (Masó and Garcés, 2006; Smayda, 2008; Gowen
et al., 2012). Establishing a direct link between trophic status and
HABs is challenging, especially when attributing this status to either
natural or anthropogenic sources is required. In addition, this link
is often context dependent with the co-occurrence of other factors
or pressures (Smayda, 2008; Davidson et al., 2014). For instance,
nutrient reduction policies leading to oligotrophication could
increase Paralytic Shellfish Poisoning (PSP) events in warm shelf
systems (Walsh et al., 2011) and Mediterranean lagoons (Collos
et al., 2009). Additionally, changes in nutrient stoichiometry may
favor some harmful species, as observed in areas of intensive
bivalve cultivation (Brown et al., 2019) or after dam construction
(Humborg et al., 1997). Apart from climate change, other anthropic
pressures may also contribute to HABs, such as the transmission
of species via ballast waters (Brown et al., 2019; Karlson et al.,
2021), the decline of top predators due to fishing (Walsh et al.,
2011), the introduction of cysts in the water column due to
dredging operations (Carrada et al., 1991; Feki et al., 2022), and
the construction of structures that affect hydrodynamics, such
as harbors and dikes (Garcés and Camp, 2012; Karlson et al.,
2021). These pressures may even interact to produce larger effects
(Ferreira et al., 2011).

Recognizing that the selected axes do not fully capture the
complex interactions between different pressures and HABs but
only the most relevant ones, MAMBO can depict different
quadrants associated with different levels of management viability.
When different geographical marine regions and different HAB
species occurrences are represented in MAMBO (Figure 2),
those falling within highly anthropized and eutrophic quadrants
(quadrants numbered 5, 6, 8 and 9) have the potential for effective
management intervention. In the remaining quadrants (1, 2, 3,
4 and 7), active management interventions would be less viable
because HABs are more likely to be driven by natural phenomena
occurring in areas with mixed or no anthropogenic pressures.

Several examples of HABs in European geographical areas,
found in the reviewed literature, have been placed within the
MAMBO matrix quadrants (Figure 2) and briefly described in
Supplementary Table S2 to illustrate MAMBO functionality. For
example, in quadrants 2 and 3, where HABs have a natural origin,
there is the occurrence of Gymnodinium catenatum blooms in
Portugal and the Galician Rias in Spain. The G. catenatum blooms
are triggered at the end of the coastal upwelling seasons when
nutrient-depleted, warm surface water is found offshore, while
coastal upwelling keeps the nearshore waters cold, nutrient-rich,
and with a rich community of diatoms. When the upwelling
subsides, warmer offshore waters move toward the coast, resulting
in a temperature increase that favors the blooms ofG. catenatum. In
some cases, an inshore poleward current may transport populations
of dinoflagellates to the Rias from waters off northern Portugal
(Sordo et al., 2001; Pitcher and Fraga, 2015). These natural triggers
place these blooms outside the scope of management, making
monitoring and early warning systems the most appropriate tools
for mitigating their impacts.

Alexandrium taylori and Gymnodinium litoralis blooms, which
are influenced by both natural and anthropogenic factors, are
illustrative examples of quadrant 5. These are common in
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Mediterranean coastal waters, and result from a combination
of factors, including nutrient enrichment, enhanced growth,
and limited water renewal. Nutrients are mainly supplied by
groundwater, rivers and seasonal Mediterranean streams, while
local summer winds maintain high cell densities in coastal
waters (Garcés et al., 1999; Basterretxea et al., 2005; Reñé et al.,
2011; Garcés and Camp, 2012). Both increased growth rates and
reduced wind-driven water renewal are critical in modulating these
blooms. While nutrient inputs can be controlled, hydrographic
mechanisms cannot.

In quadrant 9, the harmful algal species Prorocentrum cordatum

has traditionally been associated with eutrophication, mainly
from riverine nutrients exported to the coast (Glibert et al.,
2008). The authors demonstrate that the species is prevalent
in regions with high levels of dissolved inorganic nitrogen and
phosphorus significantly originated from anthropogenic sources,
such as fertilizers and manures.

It is worth highlighting that a single HAB species or groups
may appear in different quadrants. For example, Pseudo-nitzschia
is a genus of diatoms that exhibits remarkable adaptability, thriving
in a variety of environmental conditions (Hasle, 2002; Hubbard
et al., 2023). Even if commonly found in upwelling systems,
such as the Galician Rias, it also thrives in eutrophic areas
where excess nutrients from human activities create favorable
conditions for its growth, such as Alfacs Bay in the Mediterranean.
This diatom genus even appears in open waters with an
oligotrophic status, demonstrating its ability to bloom in diverse
environments. This adaptability illustrates MAMBO’s effectiveness
in defining manageable conditions for the same microalgae
involved, emphasizing that the bloom’s origin is often more
pertinent than the species involved.

Moreover, the ecosystem positions in MAMBO are dynamic.
For example, European assessments of eutrophication indicate that
phosphorus levels in rivers are decreasing, thereby reducing fluxes
to coastal areas such as the Mediterranean and southern North Sea
(Ludwig et al., 2009). Therefore, as WFD measures take effect, the
trophic status of areas within the MAMBO matrix may shift away
from anthropogenic influences. However, the gaps of knowledge on
these changes hinder our ability to predict what will be the trends
of the trophic status and generation of HABs in the European seas.
For example, in the offshore Mediterranean Sea, oligotrophication
is expected to continue due to reduced continental inputs and
increased water column stability under global change. However,
the extent to which these processes will be influenced by extreme
weather events or increased atmospheric deposition is not known.

Anyhow, the outcomes from MAMBO will define the next
steps in the GES4HABs decision flow (Figure 1): HABs identified
as manageable should be included in a comprehensive assessment
informing on their status, their related pressures and impacts
(MSFD Article 8.1b) and the human activities involved (Article
8.1c). This assessment will support the designation of appropriate
measures to restore GES conditions (Articles 10, 13, 11). For
HABs located in quadrants 1 to 3, an exception (Article 14)
could be considered for the implementation of new management
measures, justifying the likely natural and unmanageable nature of
the identified GES deviation. In cases with insufficient evidence to
rule out or confirm HAB linkages with anthropogenic pressures,
additional investigative monitoring should be supported to clarify

these questions. Alternatively, a precautionary approach can be
adopted, assuming probable linkage to anthropogenic causes, and
initiate a full assessment and management cycle as in the first case.
The following sections provide a list and brief descriptions of the
indicators andmonitoringmethods that can be used to achieve this.

3 Currently used indicators and
alternatives

For both initial assessment and the subsequent reporting cycles,
it is essential to identify suitable indicators under the relevant
MSFD descriptors and criteria that evaluate the state, associated
pressures and impacts of HABs. Although the MSFD currently
addresses HABs solely within the eutrophication descriptor (D5C3
criterion) and their potential impacts on the “D1C6-pelagic broad
habitat” state criterion (European Commission, 2017), it formally
omits HABs unrelated to anthropic eutrophication (European
Commission, 2022). This omission occurs despite their evident
connections with other ecological challenges (e.g., mass mortalities
or disruption of ecosystem services). Further details on these
connections betweenHABs and theMSFD descriptors are provided
in Supplementary Table S3.

In addition to the thematic context, indicators should be

defined alongside quantifiable metrics or indices and their

associated thresholds to ensure operational, transparent, and
efficient assessments.

Criteria for indicator selection within a normative framework
should: (i) have limited sensitivity to natural variation (Heink
and Kowarik, 2010), (ii) reflect pressure-state-impact linkages with
other indicators (Dale and Beyeler, 2001; Niemeijer and de Groot,
2008; Marques et al., 2009; Birk et al., 2012), (iii) consider the
feasible/required sampling and analysis capabilities, (iv) account
for the temporal, spatial, and taxonomic resolutions of underlying
data and their associated uncertainties (Racault et al., 2014), and (v)
allow for intercomparison and intercalibration at the pan-European
level (Poikane et al., 2014). Threshold values, Ecological Quality
Ratios (EQRs), trends, or supplementary information are crucial
for properly interpreting the indicator results (Cusack et al., 2008).

3.1 Indicators for pressures causing HABs

The main abiotic pressures identified to cause HABs, as for
phytoplankton in general, are nutrients (both macronutrients
and micronutrients), light, temperature, water column stability
(Anderson et al., 1998; Litchman and Klausmeier, 2008; Facey
et al., 2019), pH (Shapiro, 1984; Raven et al., 2020) and oxygen
concentration (Heisler et al., 2008; Ryan et al., 2009; Kudela
et al., 2010; Pitcher and Fraga, 2015; McCabe et al., 2016;
Xiao et al., 2019). The conditions that trigger HABs can result
from changes in the seabed and hydrography, as well as species
translocations caused by human activities. Thus, criteria and
indicators used under MSFD descriptors other than D5 (e.g., D2,
non-indigenous species; D4, food-webs; D6, seafloor integrity; and
D7, hydrography) could be relevant for assessing the pressures
contributing to HABs. However, currently used indicators may
require adaptation to appropriately assess HAB causes.
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For instance, many HABs are associated with certain inorganic
nutrient ratios, forms or composition regardless of the total
nutrient availability (Glibert and Burkholder, 2006; Heisler et al.,
2008). Some mixotrophic or heterotrophic harmful algal species,
seem to be stimulated by the availability of organic forms of
nitrogen or phosphorus (Herndon and Cochlan, 2007; Cochlan
et al., 2008; Kudela et al., 2008, 2010; Loureiro et al., 2011; Davidson
et al., 2014), whereas other HAB forming species consume
predominantly particulate rather than dissolved nutrients (e.g.,
Jeong et al., 2005). Another example is the ability of some harmful
algal species to fix and convert gaseous nitrogen, enabling them
to succeed and grow in nitrogen-depleted conditions (Litchman,
2023).

The development of HABs is often also related with the
dynamics of the whole ecological system and the adaptive
strategies of certain species (e.g., against predation) (Flynn, 2008).
Therefore, multiparametric indicators or methods have been also
proposed based on the multitrait characteristics associated with
different HABs (Litchman, 2023), the combinedmixing-irradiance-
nutrient conditions (Smayda and Reynolds, 2003), or interestingly,
indicators focusing on other ecological groups like zooplankton
to improve forecasting of biotoxins from harmful algae blooms
(Trapp et al., 2021).

Other abiotic indicators on irradiance levels (at the surface
or reaching the seabed), or on the dissolved oxygen profiles,
could be interesting if linkages between particular conditions and
certain HABs are revealed. Finally, to report on hydrographical
or seabed alterations potentially promoting HABs, indicators
reflecting these changes (anomalies, inflection points) or special
conditions (extreme events, stratification or upwelling indices,
residence times, etc.) could be eligible.

3.2 Indicators for HAB state

These indicators parallel those used to assess phytoplankton,
but are specialized to address potentially harmful phytoplankton
taxa. They also take into account the frequency or probability
of their associated occurrence (e.g., seasonal, occasional,
potential). The commonly used indicators for phytoplankton
and phytobenthos provide information on their composition,
structure or functions, as detailed in Supplementary Table S4.

Indicators addressing composition commonly rely on metrics
such as presence, abundance or biomass of phytoplankton and
phytobenthos taxa, often quantified as the cell counts per volume
or weight. For certain toxigenic HABs, the identification to species
level is required to differentiate between toxic and non-toxic species
within the same genus (e.g., Alexandrium and Pseudo-nitzschia).
However, the mere presence of a HAB species does not necessarily
indicate an outbreak, or a toxic event. Moreover, if the HABs
anthropogenic origin is inconclusive, the indicator may not suffice
to trigger management actions, according to GES4HABs (Figure 1).

The presence and abundance of phytoplankton toxic species
are currently reported under various regulatory frameworks such
as Food Regulation (EU) 2019/627, Bathing Water Directive, as
well as in OSPAR assessments from 2003, 2008 and 2017 (OSPAR
Commission, 2003, 2008, 2017). SomeMember States also reported

data for abundances of noxious taxa, such as Phaeocystis spp.
and Noctiluca spp., under the MSFD, while HELCOM assessments
include data on bloom-forming cyanobacteria genera. Most of
these abundance indicators have associated thresholds, sometimes
established at the national level (e.g., Chorus, 2012; Funari et al.,
2015; Serret et al., 2019), which are periodically revised for accuracy
and relevance. These thresholds serve as benchmarks for initiating
regulatory actions and are adaptable to align with updated scientific
knowledge and environmental conditions.

Indicators related to phytoplankton structure include
information on the coexistence of different phytoplankton
groups. These groups can be structured either taxonomically (i.e.,
diatoms/dinoflagellates), by size (microplankton, nanoplankton,
picoplankton, etc.), based on their pigment signatures (Bustillos-
Guzmán et al., 2004; Havskum et al., 2004; Not et al., 2007;
Hayward et al., 2023), or according to their functional traits such
as autotrophs-to-heterotrophs ratios or ecological assemblages
(Nogueira and Figueiras, 2005; Weithoff and Beisner, 2019;
Lehtinen et al., 2021; Litchman, 2023). This structuring of
indicators offers a multifaceted approach to understanding
phytoplankton communities and their ecological roles.

A high variety of multi-metric indices that incorporate
phytoplankton community information are utilized in
eutrophication assessments, including national WFD reporting
(Tett et al., 2008; Devlin et al., 2009; Giordani et al., 2009; Spatharis
and Tsirtsis, 2010; Lugoli et al., 2012; Facca et al., 2014; Ní
Longphuirt et al., 2019), and HELCOM, OSPAR, or UNEP-MAP
assessments. These indices often come with established thresholds
and are linked to nutrient levels and other eutrophication pressures.

Finally, indicators focusing on bloom frequency, amplitude,
peak, spatial extent, and phenology are rarely used because the high
temporal resolution required for phytoplankton data. However,
such indicators do exist for variables like chlorophyll a.

Chlorophyll a (chl-a) concentration, due to its ease of sampling
and measurement, as well as its correlation with nutrient inputs,
is the most used proxy of phytoplankton biomass. While it may
be unsuitable for determining the abundance at species level, this
indicator can be useful in depicting the extent and frequency of
phytoplankton blooms and contextualizing the relation between
widespread coastal eutrophication and the increase of HABs
(Heisler et al., 2008; Xiao et al., 2019).

3.3 Indicators for HAB impacts

The indicators addressing the impact levels of different HABs
should clearly address the corresponding types of impacts they
produce (see Supplementary Table S1).

3.3.1 Impacts on ecosystems and marine wildlife
Indicators addressing impacts on ecosystems can only be

efficient if the occurrence and extent of HAB events are directly
connected with the ecosystem status. On a global scale, there
have been numerous wildlife mortality events associated with
HABs (Rattner et al., 2022) but only in a few cases, robust
evidence of direct causation has been provided (e.g., domoic acid:
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Fritz et al., 1992; Work et al., 1993; microcystin: Miller et al.,
2010; aetokthonotoxin: Breinlinger et al., 2021). So far, there is
no historical evidence of lasting population level consequences
associated with persistent HABs (Rattner et al., 2022).

The controlled studies of algal toxin effects in wildlife have
focused on acute impacts such as mass mortality events involving
marine mammals, seabirds and charismatic megafauna, but far
more data and studies are needed to assess the hazard of various
algal toxins to wildlife. In this context, diagnostic guidance
or protocols (toxic doses, target organs, molecular biomarkers,
microscopic lesions, signs of intoxication, etc.) for linking algal
toxin exposure to morbidity and mortality of different species or
groups, would be a valuable resource to define suitable indicators
and thresholds. It is noteworthy that such information (e.g.,
tissue residues, molecular biomarkers, histopathological lesions,
behavioral effects, delineation of various intoxication syndromes)
is available for domoic acid and other toxins in marine mammals
(Lefebvre et al., 2012; Cook et al., 2015; Broadwater et al., 2018).
In the interim, toxin content in water or seafood vectors might
be employed to predict risk to wildlife. Analyses of toxins on
stranded dead animals or ongoing stomach content analyses for
litter assessments [OSPAR Ecological Quality Objective (EcoQO)]
could be an opportunity for that.

Using indicators addressing the abundances of some vector
species serving as “sentinels” or “bio-indicators” like filter-feeding
invertebrates, top predators or confined fishes could also help
to support early detection of toxic HAB episodes or record the
cumulative effects of their occurrence given their often ephemeral
and local frequency (Backer and Miller, 2016).

For eutrophication impacts, some phytoplankton species have
also been tested as bio-indicators in the Baltic Sea, due to
their positive linear relationship with nutrient concentration
(Höglander et al., 2013), e.g., Cyclotella choctawhatcheeana and
Cylindrotheca closterium (Jaanus et al., 2009), and Planktothrix

agardhii (Carstensen and Heiskanen, 2007).
Impacts on biodiversity may also be caused by high biomass

and mucilage/foam producing HABs, by reducing water column
oxygenation, light penetration and viscosity inducing mass
mortalities to benthic communities and species like gorgonians,
corals, and sponges. In these cases, the status of the potentially
affected species may be assessed to monitor these impacts (Özalp,
2021).

3.3.2 Impacts on human health
Most of the monitoring and management efforts on HAB

impacts are related to human health either by direct exposition or
toxic seafood consumption. The European Commission has already
established specific laws for the toxin content of bivalves of planktic
origin entering the market for human consumption and the marine
toxin limits allowed before legal sale [Regulation (EC) 853/2004,
2004]. These regulations are applicable by seafood producers and
by food security administrations.

The detection of marine biotoxins in other seafood vectors
(rarely covered by the monitoring programs) is already being done
in European countries such as Portugal, UK, Croatia and Spain
(Ben-Gigirey et al., 2012, 2020; Silva et al., 2013, 2018, 2020; Dean

et al., 2020), to prevent further seafood intoxications. For example,
the possible presence of PSP toxins in cephalopods, echinoderms
and tunicates and the increased interest in the exploitation
of marine live resources other than bivalves have promoted
a revision of monitoring strategies introducing non-traditional
vectors [Regulation (EC) 853/2004, 2004]. These regulations
also include the maximum PSP toxin concentrations allowed in
echinoderms, tunicates and marine gastropods. However, more
studies are needed to evaluate the potential risks they could pose for
human health as well as their impacts on food webs. On top of that,
more data on the presence of emerging marine toxins in the EU
marine invertebrates are also necessary for risk assessment studies
on these non-traditional vectors (Ruiz-Villarreal et al., 2022).

The impacts of HABs on human health can also be evaluated
as societal costs that in precedent studies (Sanseverino et al.,
2016) have focused on medical costs (medical cares and medical
investigations) and individual expenses (lost wages, lost vacation
time, transportation of patients to the hospital, etc.).

3.3.3 Impacts on socio-economic activities
Indeed, while substantial research is directed toward

understanding, quantifying, and forecasting HAB occurrences
(HAB state indicators), less attention has been given to
understanding, quantifying, and preparing for the socio-economic
impacts that these events generate each year (Trainer, 2020). There
are some examples of comprehensive assessments of the economic
losses due to HABs (including direct and indirect costs) (Hoagland
and Scatasta, 2006; Sanseverino et al., 2016; Martino et al., 2020;
Karlson et al., 2021). While reasonable estimates are often possible
for harvest and job or wage losses associated with decreased
yields of seafood products (direct losses), as well as the medical
costs associated with acute poisonings (induced losses), other,
often much larger costs are more difficult to assess. These include
impacts on associated industries, which may turn to alternate
sources or activities to partially compensate for HAB-related losses
in revenue, changes in seafood availability including losses of
subsistence harvest potential, losses in recreational and tourism
revenues, and losses of consumer confidence in the safety or quality
of the product that undercuts demand and thus the price (Trainer,
2020).

Many articles analyzed the consequences of seafood trade
bans at different scales (Basti et al., 2018). Dyson and Huppert
(2010) used an Input-Output model to estimate the detrimental
impact of beach closures on recreational razor clam fisheries. Díaz
et al. (2019) studied the economic loss of the salmon farming
industry in South Chile caused by HAB events, where the economic
damage was deemed particularly strong in PSP outbreaks. Red
tides are also largely studied through their economic impacts on
different industries, using monitoring data (Larkin and Adams,
2007). More recently, Theodorou et al. (2020) evaluated the
consequences of HAB-related mussel farming site closures in the
Mediterranean Sea and concluded that the risk depends on the
season (summertime being the most critical) when it occurs, with
a limited financial risk at certain non-critical periods. Park et al.
(2013) studied the economic impact and mitigation strategies of
HABs in Korea, where the aquaculture industry suffered a total
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loss of USD $121 million from the early 1980s to the early 2010s,
with a predominance of Cochlodinium polykrikoides events since
1990. In Southern Europe, Rodríguez Rodríguez et al. (2011)
looked at mussel cultivation in Galicia in the presence of red
tides. They estimated the correlation between the time length of
area shutdowns and the quantity of unsold output. They showed
that there was no systematic effect: losses depend on specific
market circumstances and authors highlighted the importance
of organizational solutions to mitigate commercial risks. More
recently, Martino et al. (2020) used a production function to
investigate the effect of HABs on the Scottish shellfish market. They
showed a significant but non-linear relationship between DSP and
shellfish production.

Most of the available studies on socioeconomic losses on
tourism caused by HABs are found in the US (Sanseverino et al.,
2016). However, indicators like the number of beach closures,
the expenditures on foam cleaning or barriers deployments in
recreational waters, or the decrease of visitors may be useful
to assess these impacts. Some of this information is already
collected by public national or European statistical agencies
(i.e., EUROSTAT) and/or other stakeholders like civil protection
servants. On the contrary, information on damages caused by
HABs on infrastructures like pumping systems or desalination
plants may be more difficult to gather.

Considering the need for further monitoring and research
to fill research gaps and assessment requirements related with
HABs (Guillotreau et al., 2021) an evaluation of monitoring costs
could evidence the benefits of such investments when compared
to the accumulated costs of their negative impacts. Often, when
considering the total costs of environmental management, from
monitoring to management programs, monitoring costs constitute
only a small proportion that becomes even smaller when adding the
benefits achieved from efficient management (Nygård et al., 2016).

4 Current and novel monitoring
programs and methods

The selection of indicators related to HABs will be highly
reliant on the monitoring methods employed (including sampling
and analysis procedures), and the required/feasible spatio-temporal
extents and resolutions. Anderson et al. (2019) examined several
regional programs in the USA, European Union, and Asia and
concluded that there is no one-size-fits-all approach.

HABs occur in sunlit pelagic oceans, at the surface or at
subsurface in open seas, coastal and upwelling regions and
estuaries. Traditional phytoplankton sampling employs discrete
in situ water samples, collected using Niskin bottles or nets at
various depths that are filtered and preserved for laboratory analysis
through multiple analytical techniques (Karlson et al., 2010). In
their guidelines for monitoring the toxin-producing phytoplankton
in bivalve mollusc harvesting areas, Serret et al. (2019) recommend
sampling the full range of depths where shellfish are grown.

Non-motile resting cysts of HAB species that settle and
accumulate in seabed, are collected using devices like sediment
grabs, cores or pumps. Comprehensive guidelines for HABs and
cyst sampling can be found in Hallegraeff et al. (2003). Such cysts
are often found in finer grain sediments, with low wave and wind

exposure like protected harbors and bays. Recent formed cysts are
found in the surface sediment layers with progressively older cysts,
sometimes, decades older, found with increasing depth.

No standard procedures exist for benthic HAB sampling due to
the diversity of substrates that cells grow on (macroalgae, seagrass,
sand, pebbles, rocks, coral, and coral rubble). Tracking their growth
is challenging due to planktonic/benthic alternation stages and
high spatio-temporal variability (Berdalet et al., 2017). Commonly,
cells are shaken off the substrates and filtered to collect detached
cells (Yasumoto et al., 1980; Hoppenrath et al., 2023). The use of
artificial substrate to recruit benthic cells over 24 hours followed
by counting as a proxy measurement of benthic HAB species
abundance has been recommended (Tester et al., 2014; Jauzein
et al., 2016; Mangialajo et al., 2017).

Samples are processed in the laboratory for the identification
and abundance quantification of different taxa. Currently, the
most prevalent technique employs morphological identification
through optical microscopy, conducted by expert microalgae
taxonomists. This method is time-consuming, expensive, and
limited to identifying larger phytoplankton species (>5µM).
Additionally, there is a declining pool of expert taxonomists,
further complicating the process (McQuatters-Gollop et al.,
2017). In this sense, advanced open international training
courses and certificates in phytoplankton taxonomy, such as
those organized by the IOC-UNESCO, are essential to promote
the availability of qualified taxonomists and interlaboratory
intercalibration exercises.

In any case, new approaches for more rapid, cost effective
and precise microalgae cell counting and identification are being
continuously developed and proposed to support HABmonitoring.

4.1 Analyses for HAB identification and cell
abundance estimation

There are extensive reviews for the established detection
methods for harmful microalgae found in Anderson et al. (2001),
Hallegraeff et al. (2003), and Liu et al. (2022), and detailed
methodological guide by Karlson et al. (2010). The described
methods include morphological structure-based detection

methods (optical microscopy, inverse optical microscopy and
scanning electron microscopy, automated image identification
and classification), analytical detection techniques (high-
performance liquid chromatography, absorption spectral analysis
and fluorescence spectral analysis), immunofluorescence assay,
immunosensing assay, enzyme-linked immunosorbent assay;
and nucleic acid-based detection methods (fluorescence in situ

hybridization, sandwich hybridization assay, polymerase chain
reaction techniques, metabarcoding, isothermal amplification
technology, and microarrays). Liu et al. (2022) also provided
information on the principles, advantages, weaknesses and
suitability of these methods for the detection and identification of
harmful microalgae.

The analytical detection or chemotaxonomic analysis may
contribute to study the distribution and composition of different
phytoplankton classes with specific pigment signatures (Schlüter
et al., 2000; Henriksen, 2002). It is rarely used now for HABs
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monitoring as pigment signatures do not specifically relate to
taxonomic identity. However, Bustillos-Guzmán et al. (2004) found
that 76% and 84% of dinoflagellate and diatom cell density was
explained by their specific pigment signature variation suggesting
that pigment analysis could be very useful in delineating taxa or
potential toxin-producing groups, particularly in combination with
remote sensing near real-time or predictive models.

FlowCAM (Sieracki et al., 1998) is an automated identification
device that includes a flow cytometer with a camera and a
microscope which is widely used in several studies for analyzing
fixed and fresh phytoplankton samples both in the laboratory or
onboard ships. It is effective at detecting some harmful algae by
image, often using an imaging training set (Buskey and Hyatt,
2006). For toxigenicAlexandrium catenella, it was shown that mean
abundances as defined by FlowCam were comparable to those
defined by molecular-probe and microscopy (Ayala et al., 2023).
However, it is limited to microscopic-level species distinction. This
method is still in development for harmful algae detection, so there
is much heterogeneity in methodological reporting (e.g., FlowCam
unit, sample preparation, run settings, improved post-processing
of images). Harmonized protocols and guidelines are needed to
enhance the quality, interpretability, and repeatability of FlowCam
results (Owen et al., 2022).

Molecular methods are frequently used for quantifying
marine organisms including toxin-producing microalgae via
species-specific qPCR/droplet digital PCR (dPCR) methods,
or to determine phytoplankton community biodiversity (with
metabarcoding or amplicon sequencing methods) (Scorzetti et al.,
2009; Pearson et al., 2021). This trend is likely to continue thanks
to improved standardization and technological development
(Goodwin et al., 2016; Medlin and Orozco, 2017; Jerney et al.,
2023), lower sample processing costs, and relatively straightforward
sample collection and preservation from water filters (Jerney
et al., 2023) or phytoplankton net or sediment samples. Species-
specific PCR or dPCR based methods are relatively accurate and
sensitive but require specialist knowledge of the relevant species (or

toxin genes), and assays (primer pairs) targeting these species (or
genes). Extensive public sequence databases exist from Genbank,
PR2, BOLD, Midori or Phyto (Murray et al., 2011; Casabianca
et al., 2014; Pearson et al., 2021; Yarimizu et al., 2021). Routine
monitoring using qPCR or dPCR is already used in the French
Atlantic and Mediterranean coasts, the Bay of Biscay, UK, Ireland,
the US and New Zealand to provide HAB early warnings (Drouet
et al., 2021; Pearson et al., 2021). Metabarcoding methods have also
been already widely used to study the dynamics of HAB species
and their spatial distribution (Dzhembekova et al., 2022; Gaonkar
and Campbell, 2023). Both qPCR/dPCR (Perini et al., 2019) and
metabarcoding (Wang et al., 2022) can also be successfully applied
to assess the distribution and abundance of toxic dinoflagellate cysts
(Perini et al., 2019).

Biosensor technology is applied to all these methods to
miniaturize platforms for the detection of multiple targets, for in
situ rapid detection to increase detection frequency and reduce
manual costs (Medlin et al., 2020; Chin Chwan Chuong et al., 2022;
McNamee et al., 2023).

Most of the above methods, in addition to the requirement
for high-tech equipment and trained staff, depend on (i)

the development/availability of ancillary data (like libraries of
genes, taxonomic images, or pigment signatures), (ii) powerful
algorithms/models to reliably identify microalgae species based on
the features analyzed, (iii) standardized protocols or guidelines
[e.g., Karlson et al., 2010; U. S. Integrated Ocean Observing System
(IOOS), 2017; Serret et al., 2019] and (iv) intercomparisons of
results from differentmethods (e.g. Not et al., 2007;McNamee et al.,
2023).

4.2 Analysis methods for HAB toxin
detection and quantification

In Europe, an official Standard Operating Procedure (SOP)
exists for the determination of several biotoxins in live bivalve
molluscs: the amnesic shellfish poisoning toxin (Commission
Regulation, 2005), the okadaic acid, as well as some azaspiracids
and yessotoxins (Commission Implementing Regulation (EU)
No 2019/627), and the PSP toxins ordered by the Commission
Implementing Regulation (EU) 2021/1709. The SOP establishes
the reference methods to use by official authorities for seafood
at any stage of the food chain and for internal checks by food
business operators (FBO). These methods were validated under
the coordination of the European Union Reference Laboratory
for marine biotoxins (EU-RL) in an inter-laboratory validation
study carried out by the Member States. However, the recent
findings of the presence of emerging azaspiracids, spirolides,
pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins,
and tetrodotoxins in European coastal seas require additional
monitoring, analytical guidelines and regulatory guidance to
face new potential risks caused by these substances (Otero and
Silva, 2022). There are already ongoing activities to develop and
validate workflows for the identification and characterization of
emergent marine toxins, and the organisms producing them, in
environmental samples based on the next-generation sequencing
(NGS), shotgun metagenomic sequencing and computational
analysis for OneHealth surveillance and food safety risk assessment
(García-Cazorla and Vasconcelos, 2022).

Other non-bivalve marine organisms such as echinoderms,
tunicates and marine gastropod species may act as toxin vectors
in the marine food web (Ben-Gigirey et al., 2020) and have
already been responsible for some past poisoning incidents (Costa
et al., 2017). Regulation (EC) 853/2004, 2004 stipulates that testing
requirements for live bivalve molluscs should apply equally to live
echinoderms, live tunicates and live marine gastropods. However,
the accumulation of toxins in marine food web is incomplete, and
there is still a need to revise which animals act as toxin vectors, and
improve recommended guidelines for toxin determination across
a wide range of complex variable matrices, including the required
sample size and sampling frequency, the highest toxin levels per
group, etc.

Emerging studies are also investigating the analysis of
concentrations of marine biotoxins in seawater (Bosch-Orea et al.,
2021), in aerosols (Ciminiello et al., 2014) and in sediments
(Liu et al., 2019) as a toxin reservoir and potential accumulation
paths for benthic organisms. Recent advances have been made
for portable toxin sensing and biosensing assays for on-site rapid
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detection of different chemicals including some marine biotoxins
(Sohrabi et al., 2021).

4.3 Automated sampling methods and
platforms

Significant progress has been made in the development of
automated sampling devices that can increase spatial coverage and
frequency of sampling (Boss et al., 2022; Nichols and Hogan, 2022)
required for an indicator-based assessment of GES on the number,
extent, and duration of HABs.

Automated (discrete or continuous) sampling and sensing
technologies can be mounted on scientific survey ships, ships-of-
opportunity, moored platforms and buoys, land based, remotely
operated aerial and underwater platforms, or in autonomous
surface or underwater vehicles (Ruiz-Villarreal et al., 2022).

For instance, the Continuous Plankton Recorder (CPR),
although originally designed for zooplankton sampling (∼270µm
mesh) in 1931, filters 3 m3 of water that retain high densities
of phytoplankton trapped in the mesh (Batten, 2003; Richardson
et al., 2006). Although there are very few HAB genera that can be
effectively sampled using the CPR, a recent study has demonstrated
its value in characterizing changing temporal and spatial patterns
of Pseudo-nitzschia species using high- throughput sequences from
DNA of CPR samples in the North Pacific (Stern et al., 2018). Six
decades of data from the CPR have revealed distinct North Sea
phytoplankton community events (Bresnan et al., 2013), showing
Atlantic-scale decline in harmful dinoflagellates and stable or
increasing harmful diatoms, in line with overall dinoflagellate and
diatom trends linked to ocean temperature and wind (Hinder et al.,
2012). The limitations of CPR data include its collection only
of subsurface samples at 4–10m with poor taxonomic resolution
of some harmful algae taxa. However, samples collected by the
CPR Survey since 1958 are stored and carefully curated, providing
a bank of samples available for future analysis using new and
innovative methodologies.

The MBARI Environmental Sample Processor (ESP) (Moore
et al., 2021) collects and analyses seawater samples to identify the
presence of organisms and/or biological toxins. The instrument
uses an electromechanical fluidic system to autonomously collect
and filter water samples. Then it either preserves and archives
the sample for use after the ESP is recovered or directly applies
molecular detection technology to investigate the biology of the
sample in near real-time. ESPwas deployed in the PacificNorthwest
to provide near real-time surveillance of growth and toxicity of
Pseudo-nitzschia (Scholin et al., 2009), as well as Alexandrium

catenella and Domoic acid by ELISA (Ryan et al., 2011). The ESP
device can now be deployed on long-range AUVs for extended
spatial sampling and post-collection eDNA sequencing (Truelove
et al., 2022).

The Imaging FlowCytobot (IFCB) is an in situ automated
submersible imaging flow cytometer that generates high resolution
images of particles in-flow taken from the aquatic environment. An
IFCB deployed in Rhode Island has been recently used to generate a
daily-resolution time series of Pseudo-nitzschia spp. and Dinophysis
spp. (Agarwal et al., 2023). Other flow cytometers and Imaging

Flow Cytometers have been deployed in US (Fischer et al., 2020),
Scandinavia (Kraft et al., 2021), Hong Kong (Guo et al., 2021),
France, and Scotland (Davidson et al., 2021; Ruiz-Villarreal et al.,
2022).

The Scripps Plankton Camera system1 is an underwater
microscope with real-time image processing and object detection,
A classifier has been developed to find potential HABs. Seven
potential HAB formers were detected with an image classifiermodel
(Orenstein et al., 2020).

Autonomous Surface Vehicles (ASVs) or Autonomous

Underwater Vehicles (AUVs) encompass a wide range of surface
and subsurface platforms but suffer from limited payload space for
complex instruments required to process samples although there
are some new prototypes proposed for sample collection (e.g.,
Zhang et al., 2019; Truelove et al., 2022). These ASVs typically
include sensors to acquire physical and/or chemical data, and/or
aggregated biological variables such chl-a, phycocyanin pigments,
UAVs can also be equipped with multispectral (Becker et al.,
2019) or hyperspectral sensors (Shang et al., 2017), digital cameras
(Cheng et al., 2020; Chan et al., 2022) or echosounders (Benoit-Bird
et al., 2018). AUVs and ASV have been tested for surficial water
sampling in continental andmarine waters (e.g., Hanlon et al., 2022;
Ruiz-Villarreal et al., 2022). These data can be eligible to support
indicators related with some abiotic and biotic pressures on HABs.

However, although very promising for high frequency data,
these complex systems have significant constraints related to
the acquisition and maintenance costs, staff training, and data
management and subsequent data processing notably:

• In situ deployed systems may require two or three equipment
units for continuous monitoring including maintenance,
calibration or training. Land based systems exist, with
seawater being continuously pumped with easier access for
maintenance (Ruiz-Villarreal et al., 2022).

• Real-time analysis options require a physical link to land
(cables) or a wide bandwidth network or radio connection and
access to significant data processing capability.

• The sensors onboard these autonomous platforms need to
be light (miniaturized) and low power demanding. While
performant probes are already available for some physical
parameters (Sun et al., 2021) like temperature, pressure, light,
and fluorescence (Roesler et al., 2017), challenges remain to
produce accurate, long-range, and sensitive data for salinity
(Gu et al., 2022), dissolved oxygen (Wei et al., 2019), or pH
(Okazaki et al., 2017). Finally, measurement of nutrients is
the most challenging to be measured by in situ sensors (even
when not miniaturized), due to their low stability. Sensors
for marine nutrients are classified into colorimetric, optical
and electrochemical devices. However, most of these devices
present several weaknesses as the low accuracy, short duration,
narrow detection concentration range and poor repeatability
(Liu et al., 2023), Many novel and higher performance sensors
are under development to overcome the above-mentioned
weaknesses. For instance, Beaton et al. (2022) propose low-
cost nutrient analyzers that during the tested in-field profile

1 https://spc.ucsd.edu/
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measurements yielded results comparable to laboratory-
based analyses.

Despite all these challenges, technological innovation and product
development are advancing very rapidly to make these technologies
more reliable and widely accessible to users.

Besides the in situ sensing devices, remote sensing

technologies on board aerial and satellite platforms can also
provide useful information for indicators or drivers related
to HABs. These include Sea Surface Temperature (SST) from
infrared sensors, and ocean-color based products such as chl-a and
turbidity (Groom et al., 2019; Nichols and Hogan, 2022). These
parameters are measured over large areas at higher temporal ranges
and frequencies, that can assess temporal dynamics (seasonality,
anomalies, extreme events, trends, etc.), and spatial distribution
and evolution (i.e., blooms and river plumes extensions). The main
limitation of remote sensing is that cloud or ice coverage obscuring
image acquisition in some areas and seasons (above all in winter
and in northern and equatorial latitudes), and lack of subsurface
data. Whilst parameters like SSTs are reliable, the estimation of
chl-a and other ocean-color metrics are often uncertain in optically
complex waters found mainly near the coast. New algorithms
and processing methods are continuously being proposed to
overcome these difficulties and provide improved products not
only for chl-a but also for the identification of HAB risk areas. For
instance, a web alert system to track the development, magnitude
and spread of HABs (Karenia mikimotoi, Phaeocystis globosa,

Pseudo-nitzschia spp.) in the French-English Channel with satellite
data has been developed within the INTERREG-VA FCE project
S-3 EUROHAB2 Preliminary results indicate that HAB risk maps
of Karenia mikimotoi and Phaeocystis globosa from the NASA
satellite MODIS-Aqua are comparable to in situ cell abundances,
whereas the Pseudo-nitzschia risk maps are less accurate. Similar
studies using satellite data for HAB risk identifications have
been proposed for P. globosa and K. mikimotoi in the southern
North Sea and western English Channel (Kurekin et al., 2014), for
Pseudo-nitzschia in the Galician upwelling area (Torres Palenzuela
et al., 2019), for Karenia brevis in the Gulf of Mexico (Stumpf
et al., 2003; Cannizzaro et al., 2008; Carvalho et al., 2011), for
Cochlodinium polykrikoids in the Persian Gulf (Ghanea et al.,
2016), for diatom blooms in the East China Sea (Tao et al., 2015),
and for distinct phytoplankton assemblages (Smith and Bernard,
2019, 2020), and cyanobacterial-dominance blooms (Matthews
et al., 2012) in the Benguela upwelling area. Remote sensing data
is used for calculating the cyanobacterial bloom index pre-core
indicator in the HELCOM region of the Baltic Sea for reporting
GES status (HELCOM, 2018).

Besides physico-chemical parameters, other remote sensing
products can be useful to support indicators on human print like
coastline changes (Murray et al., 2019) or location of aquaculture
sites (Themistocleous, 2021) from high resolution true-color
images, or vessel densities and fishing effort from Automatic
Identification Systems (AIS) (Robbins et al., 2022).

2 https://www.s3eurohab.eu/portal/

4.4 Integrated approaches: models and
early warning systems

Many of the above monitoring approaches are often included
or complemented in more complete monitoring and research
frameworks to integrate information on different biological and
environmental features related to HABs. Often this information
is integrated in modeling tools than can help to (i) investigate,
characterize and quantify the links between different parameters,
HABs and their impacts, (ii) discern the contribution of natural
vs. anthropogenic causes, (iii) delineate areas with higher risks
for HABs based on historical data, (iv) predict, in real- or near
real-time, the risk of HABs, and (v) make climatic projections.

There are a multitude of differentmodel types and approaches
potentially useful to support HAB research and management,
such as ecological and food web models, biogeochemistry models,
statistical and machine learning models, physical numerical
models, Lagrangian particle tracking models, spatial plan models,
etc. (Glibert et al., 2010; Fernandes-Salvador et al., 2021).
These models can, at different reliability levels, assess areas
with the highest risk likelihood of HAB events over short
periods, help to optimize monitoring plans (e.g., with less
sampling effort in situations of low probability of HABs),
assess/manage the compatibility of different marine uses, aid the
preparedness for contingency responses, or extrapolate in situ

observations/indicators within the grid to better depict the spatio-
temporal variability of the pelagic habitat (Magliozzi et al., 2023).

Although models can be very practical tools, it is important
to bear in mind that they cannot substitute monitoring data,
especially when public health is compromised. Models are a form
of secondary monitoring that use multiple data sources. Their
reliability depends on accurate and representative data for their
development and calibration, implementation, and validation.

Ralston and Moore (2020) provide a large review of statistical
and process-based models that have been developed for different
HAB species in different areas of the world. An example of benthic
harmful algae model comes from Asnaghi et al. (2017), using
Quantile Random Forests model to predict the concentration
of Ostreopsis ovata in the Ligurian Sea. Valbi et al. (2019)
developed a Random Forest model trained with molecular data
to predict the presence of A. minutum in the NW Adriatic Sea.
Cheng et al. (2021) developed an iterative Random Forests along
the California coast to identify phytoplankton abundance and
microbial community structure in response to coastal conditions
and land-sea nutrient fluxes.

Early warning systems (EWS) incorporate region-specific
knowledge of HAB risk, observations and/or models, which
are operationalized (nowcast or forecast modes) to provide
communication, by an official source, of authoritative, timely,
accurate, and actionable warnings on the likelihood of HAB
occurrence and the risk of potential HAB-related impacts of
concern. These should consider preparedness protocols at all
relevant levels to respond to early warnings with timely actions
(FAO, 2023).

Different EWS for HABs exist in Europe (Ireland, Scotland,
England, France, Spain and Portugal) ranging fromweekly bulletins
based on expert analysis and identification systems. EWS can
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involve particle tracking models and/or remote sensing data
(Lin et al., 2021), statistical (e.g., Generalized Additive Models,
GAMs) and machine learning models, or mechanistic full-low
trophic ecosystem models (Fernandes-Salvador et al., 2021). One
such example is ShellEye3 that combine remote sensing, modeled
hydrographic data, local algae and biotoxin modeled data to
forecast water quality for Scottish shellfisheries that can benefit
science-based development of harmful algae indicators.

Very recently, FAO (2023) published a Technical Guidance
for the Implementation of Early Warning Systems for HABs that
includes examples of several case studies of HABs and EWSs,
but mostly provides a complete roadmap for authorities and
institutions in countries or regions to commence building an EWS
or expand the existing ones.

4.5 International cooperation, monitoring
synergies and data management

The information collected in the former sections evidence
that there are already several scientific studies and monitoring
programs related to HABs that involve different stakeholders
(scientists, regulators, managers, industry, and general public)
and organizations (European Commission, EFSA, RSCs, ICES,
FAO, IOC, etc.). Nevertheless, the resources and initiatives are
still quite disconnected among the three main foci of concern
for marine HABs: seafood toxins and aquaculture, cyanobacteria
and eutrophication, and recreational water quality. Bridging these
areas could serve to optimize monitoring efforts and plans,
analysis methods and protocols, and information exchange and
maintenance (raw data, indicators and metadata).

So far, collective databases with relevant data for HABs can be
found in:

• The IOC-ICES-PICES Harmful Algal Event Database

(HAEDAT)4 (Bresnan et al., 2021). Developed in the
1990s it contains more than 8,000 entries on harmful algal
events associated with monitoring programmes and ad

hoc reports from across the globe. It is a part of the IOC
International Ocean Data exchange (IODE), and collects,
harmonizes, stores and publishes HAB events reported on
a voluntary basis by a variety of scientific working groups
including the ICES-IOC Working Group on Harmful Algal
Bloom Dynamics (WGHABD). The “harmful algal events”
considered in HAEDAT must be associated with a negative
impact or management action. This information is sensitive
to monitoring and reporting effort and efficiency and requires
expert interpretation.

• To complement the records of HAEDAT, in 2017,
international HAB experts were trained to report on
occurrences of toxic algae from scientific publications in
the OBIS (Ocean Biodiversity Information System), which
now supports HAB OBIS5, a global database with 18,864

3 https://www.shelleye.org/

4 http://haedat.iode.org/

5 https://obis.org/node/33dec23c-af65-4fb1-a437-79543c562ef0

harmful algae occurrences reported incorporating databases
mentioned in this review. Such data address questions on the
probability of change in HAB frequencies, intensities, and
geographic ranges. HAEDAT and HAB OBIS data supported
the first Global HAB Status Report (Hallegraeff, 2021). While
the results and conclusions are likely to be modified as more
data become available, these databases encourage reporting
and further contribute to these initiatives.

• Databases for RSCs’ assessments (HELCOM, OSPAR, UNEP-
MAP, BSC) collect and harmonize data provided by
different contracting parties. These are made publicly
available alongside supporting indicators. In addition to
the raw data, some regional sea conventions have made
progress in harmonizing indicators and assessment metadata
and documentation including guidelines for monitoring,
analysis, data processing, quality control, and thresholds.
Zampoukas et al. (2014) provide details on phytoplankton
monitoring programs (among other elements), related to
RSCs (HELCOM, OSPAR, UNEP-MAP) and other marine
related EU legislation. All the monitoring guidelines of
HELCOM are public6.

• There are currently 120marine LTERs (Long-termEcological

Research Sites) in European seas measuring key microscopic
phytoplankton and in situ chl-a on a regular basis among
other environmental parameters. The data collected in
these LTERs conform to LTER European data policy, of
which one of the guiding principles is to “focus on Open
Source products as well as to foster an Open Access policy
wherever possible and useful” (Kunkel et al., 2019). As
such, LTER data can be of inestimable value also for
HAB characterization. Phytoplankton, Zooplankton, ocean
hydrography and nutrients for Northern European countries
are compiled and available at ICES7, including historic data.

• TheCoastal andOceanic Plankton Ecology, Production and

Observation Database (COPEPOD)8, developed by the US
National Marine Fisheries Service provides quality-reviewed,
globally distributed plankton (phytoplankton, zooplankton
and microbial) data with co-sampled environmental
hydrographic and meteorological data. Although it includes
193,696 worldwide observations on phytoplankton since the
mid-nineties, it was last updated in 2019 and, moreover,
much of the historical phytoplankton data is only qualitative
(“absent/present/rare/common”). However, it has the
great advantage of discovering many phytoplankton
historical surveys and monitored sites and providing time
series visualizations of phytoplankton and concurrent
environmental conditions. Access to raw data often needs to
be requested to contributors.

• EMODnet Biology9 provides open and free access to
interoperable data and products on marine species
(angiosperms, benthos, birds, fish, macroalgae, mammals,

6 https://helcom.fi/action-areas/monitoring-and-assessment/

monitoring-guidelines/

7 https://www.ices.dk/data/dataset-collections/Pages/Plankton.aspx

8 https://www.st.nmfs.noaa.gov/copepod/about/databases.html

9 https://emodnet.ec.europa.eu/en/biology
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reptiles, phytoplankton, zooplankton). It also includes
nutrient data. Although EMODNET collects data from
different providers (RSCs, research institutes, OBIS, etc.), it
also releases maps on the temporal and spatial distribution of
species/taxa and species traits in European regional seas.

• Toxin datasets from Food Operators could be very valuable
to support assessments and scientific studies beyond their
primary objectives for seafood controls especially if combined
with phytoplankton counts. In many cases the food operators
are reluctant to release these data, especially in real-time,
and in some member states toxin data is not available.
These hampers investigations linking harmful algae and toxin
production. Moreover, toxins are not measured by agencies
during the closing periods for cost reasons and because public
health is already guaranteed. As a result, information on
new appearing toxins, toxin maxima values or detoxification
kinetics is not available.

• Phytoplankton and toxin data reported for the BWD
in bathing waters with HAB risks are made publicly
available through different national portals on recreational
water quality.

Besides the effort needed to collect HAB related data, it is
important to think on coordinated work for finding common data
models and formats, distribution mechanisms and repositories,
metadata content (quality controls, lineage, authorship, etc.) and
formats, etc. All these best practices should be in line with the Open
Science and FAIR (Findable, Accessible, Interoperable, Reusable)10

principles meant to optimize the reuse of data. To meet these
demands, the data management efforts should benefit from the
participation of professional data management and IT experts,
and sustained resources to ensure the good continuity of these
collaborative initiatives.

Minelli et al. (2021) concluded from their study on open
access to research projects and data that, despite the initial and
still existing mistrust, it is more than just a best practice because
it improves the transparency of research (thus increasing the
credibility of researchers, the reproducibility of science and the
re-use of products), supports many international initiatives and
regulations, and encourages collaboration between scientists from
different fields and laboratories. However, the (re)use of these data
in a regulatory context needs to be carefully evaluated for relevance
and reliability, ideally by using the same criteria for the different
studies producing them (Brock et al., 2021).

5 Conclusions and recommendations
to move forward

HABs (like pests or storms) are natural phenomena, but their
changing patterns are often a reflection of an ecosystem alteration.
Therefore, HABs cannot be eliminated, but only prevented or
mitigated. While conventional management focuses on mitigating
local impacts, a shift toward EBMAs is essential to prevent to
some extent and counteract HAB crises more effectively and cost-
efficiently.

10 https://www.go-fair.org/fair-principles

The MSFD stands as a milestone in ecosystem-based marine
management in Europe, with the aim of achieving GES. Despite its
holistic approach and two concluded reporting cycles, HABs have
so far received limited attention from Member States (Palialexis
et al., 2014; Tornero Alvarez et al., 2023). However, current efforts
aim to build on the lessons learned from the WFD and the two
reporting cycles of the MSFD, and to promote best practices
for integrating HABs into MSFD assessments, recognizing their
relevance to marine ecosystems and socio-economic issues.

To improve HAB monitoring, assessment, and management,
we have developed new tools and compiled several
key recommendations.

5.1 Local tailored solutions with
harmonized best practices

There are many different cases of HABs, with different impacts
on socio-economic and/or ecosystem components and triggered
by different and often combined causes. Therefore, there is no
one single solution for the assessment and management of marine
HABs in different affected areas, and specific tailored solutions
are needed.

Indeed, most of the proposed phytoplankton indicators for
eutrophication are site-specific due to the heterogeneous response
of marine phytoplankton to nutrient loads and the different
monitoring approaches used by Member States. This heterogeneity
poses a challenge for comparing results across regions (Garmendia
et al., 2013), as demonstrated in the WFD intercalibration exercise
(Poikane et al., 2014), where only chl-a was found suitable for
biomass-based indicators in coastal and transitional waters by most
member states (European Commission, 2018).

However, this does not preclude the need for international
and cross-sectoral coordination to (i) share knowledge and
data, and (ii) define harmonized or standardized best practices
to support joint large-scale assessments and synergistic and
optimized strategies. These best practices may relate to monitoring
programmes, monitoring methods, analysis protocols, indicator
metrics, assessment methods, data management and flows, division
of responsibilities, etc.

5.2 Monitoring needs for better
understanding HABs, their causes and their
impacts

Although the understanding of HABs has increased rapidly
over the last two decades, there are still many gaps in our
knowledge of their specific causes, toxicity triggers, frequency,
extent, duration, impacts on biodiversity, etc.

To meet these knowledge needs, sustained long-term
monitoring programmes with appropriate strategies are essential.
Monitoring of HABs should have appropriate temporal, spatial and
taxonomic resolution, and the spatial distribution of monitored
areas should be designed/adapted to avoid: (i) over-representation
bias due to the concentration of monitoring sites (e.g., in
aquaculture areas), and (ii) spatial gaps in under-monitored areas
with potential risk of HABs. The data generated must be long-term
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(10-year horizon), quality controlled and stored according to
international data and metadata standards.

In addition to the detection of HABs, sustained monitoring
efforts will enable the establishment of baselines of environmental
factors and biodiversity components, the rate and extent of
environmental change, the detection of hazards and environmental
disturbances, and the estimation of recovery times.

Traditional methods of monitoring HABs, involving in situ

sampling and taxonomic identification and cell counting in
laboratories, are currently the best available option but remain
costly, time-consuming and inadequate for the vast geographical
scope of the MSFD. New technologies are being developed to
provide more cost-effective solutions, such as genomic methods,
automated samplers, remote sensing, early warning systems,
artificial intelligence models, etc. The future use of the results
of these novel techniques will need to undergo intercalibration
processes in order to be reliably used in the assessment and
management processes (Stauffer et al., 2019).

5.3 Integration with the MSFD framework

To consider the principles of the MSFD, this study proposes a
GES4HABs decision matrix to assist MSFD reporters in deciding
whether to include HABs in the MSFD and adopt management
decisions. Within this process, the MAMBO matrix helps to
distinguish between manageable and unmanageable circumstances
around HAB outbreaks. If HABs are found suitable for inclusion
in the MSFD assessment cycles, then the full assessment procedure
should be engaged. In this context, it is extremely important to
identify, demonstrate and quantify the links between HABs, the
pressures causing them and their impacts on public health and
on the different components of the ecosystem and socioeconomic
activities, and to select the most appropriate indicators and
thresholds to reflect these links. This remains an important
prerequisite for targeting the best management measures to
effectively reduce the occurrence of HABs and their impacts.

To date many of these management measures proposed by
European environmental instruments (like MSFD, WFD, ND,
UWWTD, etc) have focused on nutrient reduction objectives but
have largely overlooked measures to counter habitat degradation
in coastal areas. This oversight contributes to the simplification of
European coastal habitats and ecosystems, allowing harmful algal
blooms to persist.

5.4 International and cross-sectoral
cooperation to increase synergies and
optimize resources and e�orts

Cooperation fora and roles need to be better defined to
integrate new knowledge on different HABs and scale up from
multiple national assessments to regional or global observing
system for HABs (Anderson et al., 2019). To this end, the
complementarities between the resources and organizations
currently dedicated to HAB management (food safety and
public health authorities, environmental managers, scientific
organizations, food producers, marine spatial planners, etc.) should

be closely examined to build bridges of cooperation, avoid
duplication, optimize efforts, and focus new resources to fill the
identified gaps.

5.5 Preparedness and anticipation for
adaptability and sustainability of
ecosystems

Although the general perception of a global increase of HABs
needs further and more refined substantiation (Hallegraeff et al.,
2021), the rapidly changing environmental conditions due to
climate change and the expansion of the human footprint in
European coastal and marine waters strongly support the need
to actively intensify efforts toward ecosystem based management
strategies that although complex and challenging can provide
solutions to avoid increasing vulnerability to future changes,
and reinforce our preparedness and anticipation capacities
for adaptability.
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