
Ecological Modelling 488 (2024) 110590

Available online 6 December 2023
0304-3800/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Mechanistic simulations of kelp populations in a dynamic landscape of 
light, temperature, and winter storms 

Tim M. Szewczyk a,*, Pippa J. Moore b, Dan A. Smale c, Thomas Adams d, Michael T. Burrows a 

a The Scottish Association for Marine Science, SAMS, Dunbeg, Oban, Argyll PA37 1QA, UK 
b The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK 
c The Laboratory, Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK 
d Scottish Sea Farms Ltd, Barcaldine, Argyll PA37 1SB, UK   

A R T I C L E  I N F O   

Keywords: 
Disturbance 
Biomass 
Laminaria hyperborea 
Detrital production 
Matrix model 
Stochastic 

A B S T R A C T   

Kelp forests are widely distributed across the coastal ocean, support high levels of biodiversity and primary 
productivity, and underpin a range of ecosystem services. Laminaria hyperborea is a forest-forming kelp species in 
the Northeast Atlantic that alters the local environment, providing biogenic structure for a diversity of associated 
organisms. Populations are strongly affected by light availability, temperature, and storm-related disturbance. 
We constructed a stage-based, two-season model of L. hyperborea populations along the coast of Great Britain and 
Ireland to predict biomass across a range of depths, drawing on extensive surveys and data from the literature. 
Population dynamics were driven by wave exposure, historic winter storm intensity, and simulated interannual 
variation in temperature and depth-attenuated light intensity, with density-dependent competition for light and 
space. High biomass was predicted in shallow depths across the domain on suitable substrate, with populations 
extending deeper in the north and west where light penetration was greater. Detritus production was heavily 
skewed across years, particularly at greater depths, with 10 % of years comprising more than 50 % of detritus on 
average below 10 m depth. Annual fluctuations in light and storm intensity produced opposing population os-
cillations with a ~6-year period persisting for up to a decade but diminishing sharply with depth. Interannual 
variation in temperature had minimal impact. Biomass was most sensitive to survival and settlement rates, with 
negligible sensitivity to individual growth rates. This model highlights the need for an improved understanding 
of canopy and subcanopy mortality, particularly regarding increasingly frequent heatwaves. Estimations of kelp 
forest contributions to carbon sequestration should consider the high variability among years or risk under-
estimating the potential value of kelp forests. Process-based simulations of populations with realistic spatio-
temporal environmental variability are a valuable approach to forecasting biotic responses to an increasingly 
extreme climate.   

1. Introduction 

Kelp forests are among the most productive ecosystems on Earth, 
hosting diverse communities of microbes, flora, and fauna as well as 
forming key habitat for many socioeconomically important species 
(Bertocci et al., 2015; Christie et al., 2003; King et al., 2023; Steneck 
et al., 2002; Teagle et al., 2018). Found throughout temperate and 
subpolar coastlines, these large brown macroalgae provide important 
ecosystem services including nutrient cycling, carbon transfer, storm 
defence and fisheries habitat (Pessarrodona et al., 2018; Smale, 2020). 
In some regions, various species of kelp are harvested for commercial or 
personal use (Gouraguine et al., 2021; Steen et al., 2016; Westermeier 

et al., 2019). It is therefore important to understand the dynamics 
driving kelp forest structure and their resilience to disturbance events 
such as storms. 

In the Northeast Atlantic, the kelp species Laminaria hyperborea 
forms extensive forests on subtidal (1–40 m below chart datum) rocky 
reefs on all but the most wave sheltered coastlines. The biomass of in-
dividual plants and the standing stock of the wider forest is highly 
variable over time and is influenced by natural growth cycles as well as 
environmental factors. Notably, winter storms driven by the North 
Atlantic Oscillation (Feser et al., 2021, 2015) cause increased frond 
erosion and dislodgement of whole plants (Filbee-Dexter and Schei-
bling, 2012; Kitching, 1937; Krumhansl and Scheibling, 2012; 
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Pessarrodona et al., 2018; Smale et al., 2021; Walker, 1954). Wave 
disturbance can be extreme during intense storms and appears to drive 
local species distributions, with the more tolerant L. hyperborea occu-
pying more exposed locations and the less tolerant L. ochroleuca and 
Saccharina latissima dominant in more sheltered areas (Smale and 
Vance, 2016). An emerging threat is the increase in marine heatwaves, 
which can lead to high mortality among cold-water kelp species such as 
L. hyperborea, particularly following repeated warming events (Filbee--
Dexter et al., 2020; Hereward et al., 2020; Smale, 2020). Harvesting also 
introduces disturbance where techniques such as trawling are used 
(Burrows et al., 2018; Steen et al., 2016). 

Light conditions within kelp forests are highly dynamic. For a given 
population, the light that reaches the canopy depends on the surface 
irradiance, depth, and light attenuation through the water. The light 
that reaches the substrate is further dependent on the canopy. Canopies 
are in constant movement in wave-exposed environments, increasing 
the light that reaches the subcanopy and substrate relative to compa-
rable canopy densities in more wave-protected areas. Population dy-
namics are highly sensitive to light conditions due to canopy shading 
leading to intraspecific competition (Burgman and Gerard, 1990; 
Duarte and Ferreira, 1997; Nisbet and Bence, 1989; Pedersen et al., 
2012). Seasonally, fronds grow and erode, a process that partially sep-
arates the shading impact of the canopy from the number of individuals 
in a patch. Notably, L. hyperborea sheds the growth from the previous 
year each spring in an event known as ‘May cast’. Erosion occurs 
chronically throughout the year, though the rate may vary with envi-
ronmental conditions (Aberg, 1992; Filbee-Dexter and Scheibling, 2012; 
Krumhansl and Scheibling, 2012; Pessarrodona et al., 2018). The 
resultant increase in light penetration through the thinned canopy 
drives an increase in successful recruitment and subcanopy growth 
(Duarte 1997). 

Matrix model structures have been described for a range of detailed 
kelp life histories, including gametophyte and sporophyte stages, 
different sexes, and separation of discrete episodes of growth, repro-
duction, senescence, and regeneration (Ang and De Wreede, 1990). For 
kelp species with a dominant sporophyte stage, information on game-
tophyte dynamics is often sparse, and reproduction simplified to 
emphasize the sporophyte, with size- or age-based classification 
following available data (Aberg, 1992; Duarte and Ferreira, 1997; Nis-
bet and Bence, 1989; Pedersen et al., 2012) [but see (Burgman and 
Gerard, 1990; Pereira et al., 2017)]. Further, frond area is often the 
primary focus as fronds are centrally important to photosynthesis and 
carbon dynamics, and largely govern the proportion of light within the 
forest that reaches beyond the canopy, which in turn regulates estab-
lishment of new recruits and growth within the subcanopy (Broch et al., 
2019; Broch and Slagstad, 2012; Krumhansl et al., 2014; Venolia et al., 
2020). 

Environmental stochasticity, widely recognised as an important 
factor in population dynamics (Shoemaker et al., 2020; Terry et al., 
2022), is often included in population models as random noise about 
demographic rates (Morris et al., 2003). In part, this represents envi-
ronmentally driven variation in these rates. In spatially explicit models 
where demographic parameters are linked to environmental conditions, 
however, such an implementation may overlook important realism. 
Directly implementing stochasticity via a dynamic environmental 
landscape incorporates spatiotemporal autocorrelation into the de-
mographic rate variability, which propagates through to the population 
dynamics. Further, a given environmental variable may affect multiple 
demographic rates. A stochastic environmental landscape captures the 
resulting interannual correlation among those rates which would 
otherwise require careful treatment of suitably comprehensive datasets. 

Here, we model populations of L. hyperborea on the coasts of Great 
Britain and Ireland to predict the dynamics of biomass across a range of 
environments and depths, aiming to improve our understanding of kelp 
population dynamics and to develop an empirical model to help inform 
management approaches. We draw on recent population surveys as well 

as data from the literature to construct a stage-based model driven by 
light availability, wave exposure and sea surface temperature, incor-
porating light-dependent growth and seasonal dynamics of canopy frond 
area. We explore the impact of annual variation in temperature and light 
regimes, as well as disturbance based on historical storm intensity in the 
North Atlantic. 

2. Materials and methods 

2.1. Study system 

Laminaria hyperborea is a dominant kelp species found in the subtidal 
zone through much of the rocky coastline in the northeast Atlantic, 
including nearly all of the UK and Ireland (Kain, 1979, 1962; Pessar-
rodona et al., 2019; Smale et al., 2020). Its regional distribution is 
heavily shaped by temperature, while local variation is driven largely by 
light availability and wave exposure (Bekkby et al., 2019; Smale et al., 
2020; Smith et al., 2022). L. hyperborea is composed of a holdfast that 
attaches to the substrate and a single rigid but flexible stipe that holds 
the single palmate frond up toward the water surface. Most growth oc-
curs between January and June (Kain, 1976a, 1976b; Pessarrodona 
et al., 2019). Reproduction occurs primarily during the winter, involving 
the release of zoospores which attach to suitable rock surfaces, develop 
into gametophytes, and produce sperm and eggs that develop into spo-
rophytes following successful fertilization (Kain, 1975). 

To parameterize the model, we used a combination of L. hyperborea 
surveys and data previously published in the literature (Fig. A.1). Recent 
surveys were performed at a total of 22 locations, including sites along 
the southern, western, eastern, and northern coasts and islands of the UK 
(Catherall, unpublished; Smale et al., 2016; Smith et al., 2022). Surveys 
consisted of counting the number of canopy and subcanopy L. hyperborea 
individuals within 1 m2 quadrats and collection of individuals for 
morphological measurements (e.g., total length/biomass, blade 
length/width/biomass, age) across a series of depths (2 – 15 m or where 
the kelp forest ended) at each site. 

2.2. Model description 

Kelp population dynamics were simulated using a size-based discrete 
time model, with recruits, subcanopy, and canopy classes, and density 
dependent growth and reproduction (Fig. 1, Table 1). All newly settled 
individuals were classified as recruits for their first year, after which 
surviving individuals grew into the subcanopy. Categorization into 
subcanopy or canopy was determined by stipe length. Light penetration 
through the canopy is a major determinant of L. hyperborea population 
dynamics (Bekkby et al., 2019; Desmond et al., 2017; Harrer et al., 2013; 
Smale et al., 2020; Smith et al., 2022; Wing et al., 1993). Because frond 
area – and consequently light limitation – varies through the year 
(Pessarrodona et al., 2019), we modelled frond dynamics interactively 
with population density and the stage distribution. 

Annual population dynamics were partitioned into two transition 
matrices, representing seasonal timesteps with a population census at 
each transition. These matrices represent the primary growing season 
(January through June), during which nearly 90 % of growth occurs 
(Kain, 1976a; Pessarrodona et al., 2019), and the non-growing season 
(July through December) for L. hyperborea in the region. Growing season 
dynamics include growth in stipe length and frond area, as well as 
mortality. Non-growing season dynamics include loss of frond area, 
mortality, and reproduction. Simulations were thus performed with two 
time steps per year. 

Canopy height varies dramatically throughout the geographic range 
of L. hyperborea (Pessarrodona et al., 2018), with shorter plants at 
warmer temperatures. Canopy height was predicted in each cell using a 
linear regression with average environmental conditions instead of 
emerging from simulated growth (Table A.1), with the height of the 
subcanopy calculated as a proportion of the canopy height. We assume 
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that individual growth rates are identical among populations, and 
consequently individuals are expected to reach the canopy at a younger 
age in warmer waters where canopy height is shorter (Kain, 1963). 

2.2.1. Growing season 
Population processes during the growing season consist of stipe 

growth, frond growth, and survival. The transition between recruit, 
subcanopy, and canopy stages is governed by stipe growth (Duarte and 
Ferreira, 1997). The transition probability from stage i to stage j during 
the growing season is calculated as: 

pji = gjisi  

gji =
γi

(
1 − κθ

FAI,t

)

δji  

where si is the probability of survival, gji is the probability of growth 
from stage i to stage j, γi is the maximum growth rate, κFAI,t is FAIt

FAIK 
rep-

resenting the canopy Frond Area Index at the start of the growing season 
as a proportion of the predicted maximum FAI given environmental 
conditions, δji is the stipe length increase necessary to reach class j, and θ 
is a shape parameter for the effect of canopy density on the growth rate, 
following the form of theta-logistic population growth (Gilpin and 
Ayala, 1973). We assume asymmetric competition for light, such that 
the frond area of the canopy limits the growth of the subcanopy and 
recruit stages. The expected maximum FAI in each cell, FAIK, is pre-
dicted by light availability and wave exposure (Table A.1). 

The probability of remaining in the same stage is: 

pii = si − pji  

where pji = 0 for canopy plants. We assume the survival rate is constant 
within a stage and unaffected by density. Subcanopy individuals may 
thus persist under dense canopy for years, consistent with field obser-
vations (unpublished). 

When individuals reach the canopy, initial frond area is calculated 
allometrically based on the midpoint of the stipe length (Kain, 1977). 
Subsequent dynamics are modelled based on frond growth and erosion. 
The frond area of the canopy at the end of the growing season is 
calculated as the sum of the net growth in frond area of surviving in-
dividuals and the frond area of the individuals that grew from the sub-
canopy to the canopy: 

FAIt+1 = Ncnpy,tpcnpy,cnpyω
(
1 − κFAI,t

)
+ Nsbcnpy,tpcnpy,sbcnpyAcnpy  

where FAIt+1 is the canopy Frond Area Index at the end of the growing 
season, N is abundance at the start of the growing season, ω is the 
maximum frond area growth rate, and A is the allometrically calculated 
frond area per individual. Because ‘May cast’ occurs during the growing 
season, the frond area remaining at the end of the growing season is 
composed only of new growth. Additionally, chronic erosion of the 
lamina occurs throughout the year (Pessarrodona et al., 2018), which is 
accounted for in the maximum growth rate ω. 

2.2.2. Non-growing season 
Dynamics during the non-growing season are characterized by 

mortality, erosion of the frond, and reproduction. While stipe lengths 
remain constant, frond area is lost, reducing the canopy cover more than 
would be expected based solely on survival. We assume that erosion of 
the frond occurs proportionally to the frond area: 

FAIt+1 = FAIt
(
pcnpy,cnpy − ε

)

where ε is the proportional chronic erosion rate which is constrained to 
[0, pii]. As during the growing season, frond dynamics are only modelled 
for the canopy. Since no stage transitions occur, pii = si for all stages. In 
contrast to the invariant survival rates during the growing season, sur-
vival and erosion rates during the non-growing season are determined 
by winter storm intensity which varies among years (Fig. A.4). 

Fig. 1. Model structure. Kelp density and frond dynamics were modelled using three stages (recruits, sub-canopy, canopy), with each year divided into growing (Jan- 
Jul) and non-growing (Jul-Jan) seasons. Growth between stages was regulated via light limitation by the canopy, while recruitment was limited both by light and 
abundance. During the non-growing season, survival and frond erosion were driven by historic storm severity. 

Table 1 
List of population dynamics equations. See text for detailed descriptions.  

Equation Description 

pji = gjisi Transition probability from i to j 

gji =
γi(1 − κθ

FAI,t)

δji 

Probability of growth from i to j 

pii = si − pji Probability of remaining in i 
FAIt+1 = Ncnpy,tpcnpy,cnpyω(1 − κFAI,t) +

Nsbcnpy,tpcnpy,sbcnpyAcnpy 

Canopy frond area index during the 
growing season 

FAIt+1 = FAIt(pcnpy,cnpy − ε) Canopy frond area index during the 
non-growing season 

Nrcr,t+1 = z(1 − max(κFAI,t , κN,t)) Realized settlement rate  
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Recruitment is assumed to occur with open settlement, such that 
zoospores are well-mixed on relevant spatial scales through the ocean 
currents (Roughgarden et al., 1985). Consequently, the number of po-
tential recruits is constant and unrelated to local densities. However, the 
realized settlement rate is dependent on the availability of light and 
space: 

Nrcr,t+1 = z
(
1 − max

(
κFAI,t, κN,t

))

where z is the potential number of recruits and κN,t is 
Ncnpy,t

NK 
representing 

canopy abundance at the start of the non-growing season as a proportion 
of the predicted maximum canopy abundance given environmental 
conditions. The expected maximum abundance in each cell, NK, is pre-
dicted by light availability, sea surface temperature, and wave exposure 
(Table A.1). Recruitment in any given year is thus constrained by the 
most limiting factor. 

2.3. Landscape 

We simulated populations on a 0.1º grid around the coast of Great 
Britain, including all areas with depth less than 40 m within 5 km of the 
coast (GEBCO, 2021). For each simulated depth in each cell, dynamics of 
L. hyperborea were driven by wave exposure, photosynthetically avail-
able radiation (PAR), sea surface temperature, and winter storm in-
tensity (Fig. 2; Fig. A.6). 

Wave exposure was included as log-10 transformed wave fetch 
calculated on a 200 m grid (Burrows, 2012; Burrows et al., 2008) 
restricted to locations with a depth less than 40 m, and then averaged 
within each grid cell. Average wave fetch was used as a continuous 
variable in linear regressions. For survival and recruitment rates, the 
average wave fetch within each grid cell was categorized as low or high 
using thresholds calculated from the site locations provided in Pedersen 
et al. (2012) to align with the categorized source data (Fig. A.7). Slope 
was additionally calculated based on bathymetry but was highly 
correlated with fetch once aggregated to the grid (r = 0.96) and there-
fore not included. 

Temperature and depth-specific light availability were estimated 
using MODIS-Aqua products (annual average for Jan-June 2003–2021; 
resolution 4 km (NASA, 2018)). Specifically, we used the daytime sea 
surface temperature at 11 µm, the surface PAR, and the diffuse coeffi-
cient for downwelling irradiance at 490 nm. Within each grid cell, we 
first calculated the Jan-June mean by year for each variable, then the 

mean and standard deviation across years. The PAR at each depth d in 
each cell was then calculated as PARd = PAR0e− KDd, with surface radi-
ation PAR0 and diffuse attenuation coefficient KD. 

The intensity and frequency of winter storms varies among years, 
driven in large part by the North Atlantic Oscillation (Feser et al., 2021, 
2015). Increased storms are expected to impact kelp populations both 
through increased frond erosion and through increased mortality via 
dislodgement of entire plants. To simulate interannual variation in 
storms, we used a standardized storm index based on the 95th percen-
tiles of geostrophic wind speed in the North Atlantic for a 76-year 
timeseries from 1943 to 2018 (Feser et al., 2021) (Fig. A.3). The 
non-growing season survival and erosion rates were calculated in each 
year by applying the storm index quantile to the respective distributions, 
such that a higher storm index translated to commensurately higher 
frond loss and mortality (Fig. A.4). Survival rates during the growing 
season were unaffected. 

Environmental stochasticity was incorporated through the genera-
tion of a dynamic environment (Fig. 2b) (Denny et al., 2009; Morris 
et al., 2003). In each year, sea surface temperature, surface PAR, and 
attenuation were generated for each cell using the mean across years and 
the covariance matrix to account for correlation among cells, with 
attenuation coefficients treated on a log scale. Values were simulated 
from a multivariate normal distribution for each variable across years, 
preserving the spatial correlation observed in each variable. We 
assumed that environmental variables fluctuated across years indepen-
dently of one another. We simulated 200 landscape timeseries, each 
corresponding to the 76-year length of the storm severity timeseries. 

2.4. Parameterization 

We estimated parameter values (Table A.2, Fig. A.5) and fit re-
gressions (Table A.1, Fig. A.2) using L. hyperborea survey data collected 
across five regions of the UK as well as data from the literature (Fig. A.1), 
with a preference for UK localities where possible. In each case, we 
estimated distributions representing plausible ranges of values, or used 
Bayesian methods to incorporate uncertainty in the relationships via the 
posterior distributions (Fig. 2a). For best estimates used in the simula-
tions, we used the means of the corresponding parameter distributions 
and the mean of the posterior distributions from the Bayesian models. 

Maximum stipe growth rates for each stage, γi, were calculated using 
data from a clearing experiment which reported average daily growth 

Fig. 2. Methodology overview. (a) Kelp population parameters were estimated from several data sources using statistical methods corresponding with each data type 
(Table A.1, A.2). (b) Annually dynamic landscapes were simulated using cell means and correlations among cells based on satellite derived products. (c) Population 
simulations used best estimates of each population parameter and 200 independent simulated landscape timeseries. (d) The sensitivity analysis used the mean 
landscape with varying population parameter values to identify the relative influence of each parameter on the canopy biomass in each cell and depth. 
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rates by date (Kain, 1976a). Data were reported by age and were 
therefore categorized to approximate stage with recruits as age 0, sub-
canopy as ages 1–3, and canopy as ages 3–4. Seasonal totals were esti-
mated by fitting loess lines to each stage and integrating under the curve 
from January through June. The uncertainty was estimated using the 
standard error of the loess regression. We explored a range for the 
density effect shape parameter, θ, that centered on a linear effect of 
density on growth rates but spanned from concave to convex. 

Maximum frond growth rate for the canopy, ω, was calculated 
similarly, by integrating over the growing season under a loess regres-
sion line fitted to data from the same clearing experiments of daily frond 
area growth rates per individual (Kain, 1976a). The same age ranges as 
for stipe growth were used to categorize ages into stages. 

The survival rate for each stage, si, varied by exposure category 
following values from populations in Norway (Pedersen et al., 2012). 
Sites were categorized by wave fetch, with original medium and high 
exposure sites combined to better correspond with the distribution of 
exposure in the UK (Fig. A.6, Fig. A.7). We used bootstrapping to 
generate densities and mortalities for each stage and exposure, then fit 
beta distributions to estimate survival rates. 

Settlement rates, z, for each exposure category were estimated 
similarly to survival rates using the same data source and aggregation 
(Pedersen et al., 2012). We then fit normal distributions truncated at 
0 for each exposure category. 

The chronic erosion rate, ε, was estimated based on monthly loss and 
accumulation rates for L. hyperborea in southwest England (Pessarro-
dona et al., 2019). We used bootstrapping to generate distributions of 
loss as a proportion of growing season accumulation, excluding months 
with elevated loss indicating May cast. We then fit a beta distribution to 
estimate the erosion during the non-growing season as a proportion of 
the growing season accumulation. 

Bayesian regressions were used to link height-based stages to 
biomass and frond dynamics, incorporating environmental relationships 
with previous support in the literature (Table A.1). Stipe weight was 
calculated from stipe length and wave fetch, allowing relatively stouter 
stipes in more exposed environments with increased wave action 
(Bekkby et al., 2014; Duggins et al., 2003; Koehl et al., 2008; Sjøtun and 
Fredriksen, 1995; Wernberg and Vanderklift, 2010). The relationship 
between frond weight and area was contingent on PAR, as frond thick-
ness has been found to decrease with depth, presumably the result of 
decreased illumination (Kain, 1977, 1963). All relationships were 
modelled as linear on a log-log scale. 

2.5. Analysis 

We analysed several aspects of the population simulations with dy-
namic landscapes (Fig. 2c). For each cell and depth, the mean and 
standard deviation of canopy biomass across years was calculated to 
assess general spatial patterns. 

To assess the impact of environmental drivers on population dy-
namics through time, we performed simple linear regressions of canopy 
biomass with each environmental variable, lagged from 1 to 15 years. 
All variables were standardised within each cell and depth to allow for 
direct comparison of effect magnitudes. For each cell and depth, we 
calculated the amplitude of the effect of each variable as the difference 
in the maximum and minimum slopes across lags. 

Annual winter detritus production was calculated for each cell and 
depth as the difference in canopy mass between the start and end of each 
non-growing season. Detritus thus includes both frond erosion and 
dislodgement of whole plants. The percent loss was calculated using the 
canopy biomass at the start of the non-growing season. Within each cell 
and depth, years were classified into deciles based on mass of detritus. 
The proportional distribution of total detritus among deciles was then 
calculated. 

2.6. Sensitivity analysis 

To assess the effect of each parameter on the population dynamics, 
we performed a global sensitivity analysis (Fig. 2d) (Aiello-Lammens 
and Akçakaya, 2017; Prowse et al., 2016; Szewczyk et al., 2019). For 
each parameter (survival rates, settlement, erosion rate, frond growth 
rate, and stipe growth rate), we identified data-driven 90 % plausible 
ranges (Table A.2, Fig. A.5). In a global sensitivity analysis, all param-
eters are varied simultaneously and independently such that the effect of 
each is marginalized across all others to capture potential interactions. 
For computational purposes, the sensitivity analysis was performed 
using a static landscape of mean values. We drew 1000 sets of param-
eters, simulated populations, and calculated mean and standard devia-
tion across years for canopy biomass. 

To assess the relative importance of each parameter, we used boosted 
regression trees (BRTs), including all varied parameters as predictors 
and with separate analyses for each population metric in each cell (Elith 
et al., 2008; Prowse et al., 2016; Szewczyk et al., 2019). BRTs are a 
machine learning approach that creates an ensemble model of regression 
trees optimized for predictive performance. The relative influence of 
each parameter can be calculated based on the weights of the regression 
trees included in the ensemble model (Elith et al., 2008). We assessed 
tree complexities of 1, 3, and 5, and fit each BRT with bootstrapped 
subsets of the simulations using cross-validation deviance and relative 
influence stability across subsets to ensure adequate exploration of the 
parameter space (Prowse et al., 2016; Szewczyk et al., 2019). 

2.7. Modelling details 

We simulated populations at 2, 5, 10, 15, and 20 m depth in each cell 
of the landscape for 76 years. Data processing, simulations, and analysis 
were performed in R 4.1.2 using the R packages sf (1.0.7), raster 
(3.5.15), stars (0.5.5), lubridate (1.8.0), fitdistrplus (1.1.8), mvtnorm 
(1.1.3), parallel (4.1.2), dismo (1.3.5), gbm (2.1.8), and brms (2.16.3), as 
well as those included in tidyverse (1.3.1). All code is available at 
https://doi.org/10.5281/zenodo.8205599. 

3. Results 

In shallow water, Laminaria hyperborea canopy biomass (Fig. 3a) was 
predicted to be high across the domain on suitable substrate (2 m mean: 
12.0 kg/m2, middle 90 %: 5.44–17.8 kg/m2). Mean biomass was higher 
along the northern and western coasts and islands, and somewhat lower 
in the south and east. Biomass declined with depth, but less dramatically 
on the west coast of Scotland, Orkney, and Shetland. Interannual vari-
ability in canopy biomass generally followed an inverse relationship 
with mean biomass, such that populations with lower mean biomass 
showed higher proportional variability among years (Fig. 3b, Fig. B.1). 
Interannual variability was also higher among more wave exposed 
populations. Turnover of canopy biomass was high during the non- 
growing season, with an average loss of 35.0–39.4 % across depths 
due to mortality (dislodgement) and frond erosion, though with high 
variability among years and cells (2 m mean: 4.75 kg/m2, 39.4 %; 
middle 90 %: 0.674–10.8 kg/m2, 15.4–67.4 %; 5 m mean: 2.44 kg/m2, 
37.4 %; middle 90 %: 0.0323–7.2 kg/m2, 15.2–63.0 %). Skewness 
among years increased with depth, such that the most extreme 10 % of 
years accounted for an average of 23.7 % of total loss at 2 m, but 51.5 % 
at 10 m (Fig. 4; Fisher’s moment coefficient of skewness, mean among 
cells at 2m: 1.18, at 10m: 3.95). 

In this model, populations developed within a dynamic landscape 
with annual variability in winter storm intensity, depth-attenuated PAR, 
and sea surface temperatures. The impact of variation in each environ-
mental variable depended on the depth of the kelp population. Fluctu-
ations in the environmental conditions initiated population oscillations 
that persisted for up to a decade (Fig. 5). Annual variation in SST had 
minimal effect, while PAR and storm intensity showed opposing effects 
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of comparable magnitude, each driving oscillations with a period of 
approximately 6–8 years. That is, high PAR caused initial increases in 
canopy biomass while high storm intensity caused initial decreases; in 
years 4–6, canopy biomass then decreased or increased, respectively, as 
the oscillations dampened. The sensitivity to both variables declined 
sharply with increased depth. 

The effects of environmental variability also depended on 
geographic location (Fig. B.4). The largest amplitude of the oscillatory 
effect (i.e., difference between the maximum and minimum across lags) 
occurred in response to storm intensity at shallow depth in the north and 
west of Scotland. In this region, storm effect amplitude was higher for 
low exposure cells. Response to PAR was less geographically variable, 
though tended to be somewhat stronger in the north and west as well, 
particularly for deeper populations. Subcanopy abundance showed 
similar relative patterns, with somewhat greater PAR effect amplitudes 
(Fig. B.3b, Fig. B.4b). In contrast, recruit abundance was extremely 
responsive to fluctuations in PAR along the east coast of the UK and 
minimally impacted elsewhere (Fig. B.3a, Fig. B.4a). 

Across all populations, mean biomass was most sensitive to settle-
ment rate (z: 22.5 ± 6.9 %; mean relative influence ± sd) and survival 
rates (s: recruits: 14.5 ± 4.0 %; subcanopy: 21.4 ± 13.2 %; canopy: 18.6 
± 12.3 %), with moderate sensitivity to the chronic erosion rate (ε: 9.2 
± 8 %) and the density effect shape parameter (θ: 7.6 ± 3.7 %) (Fig. 6). 
Biomass showed little sensitivity to stipe or frond growth rates (γ, ω: < 2 
%). As depth increased, the relative influence of canopy survival 
increased, and that of subcanopy survival decreased. Interannual stan-
dard deviation in biomass was driven by the same parameters, though 
with less sensitivity to depth. 

Sensitivity to each parameter also varied across geography, depen-
dent on the environmental conditions at each location (Fig. 7). Shallow 
populations in the east and south tended to show greater sensitivity to 
the canopy survival rate compared to northern or western populations 
which were more sensitive to subcanopy survival. Further, wave- 
sheltered populations were more sensitive to canopy survival, particu-
larly at greater depths, and to subcanopy survival across all depths 
(Fig. B.5). More wave-exposed populations showed higher relative in-
fluence of the settlement rate and density effect shape parameter 
compared to less exposed populations. In high exposure populations, 
sensitivity to the erosion rate declined with depth, while it increased on 
average with depth in low exposure populations. Similarly, the relative 
importance of recruit survival increased with depth at high exposure and 
decreased somewhat with depth at low exposure. 

Fig. 3. Geographic patterns in predicted biomass. (a) Mean canopy biomass in July is high across the domain at shallow depths, decreasing with depth particularly in 
the east and south. (b) Interannual standard deviation in July biomass generally increases with depth, with typically greater variability in southwestern England. 

Fig. 4. Interannual variation in detritus production. (a) Shallower populations 
produced more detritus, reflecting the higher canopy biomass. (b) Detritus 
production became increasingly skewed among years with increased depth. 
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4. Discussion 

Laminaria hyperborea canopy biomass was predicted to be high in 
shallow waters on suitable substrate throughout the UK, decreasing with 
depth more rapidly in the south and east than in the north and west. This 
geographic difference was largely driven by the combination of rela-
tively high light availability in the north at greater depths (Fig. A.6c) 
and the taller, heavier individuals that compose the canopy at colder 
temperatures (Fig. A.2e). These broad patterns are consistent with 
empirical patterns in the UK (Smith et al., 2022) and previous findings 
regarding the environmental drivers of L. hyperborea (Bekkby et al., 
2019). 

Photosynthetically active radiation (PAR) and storm intensity were 
major drivers of temporal variability in canopy biomass, each producing 
oscillations with a period of 6–8 years. While the effects of storms and 
PAR were comparable on average across the landscape, the most envi-
ronmentally responsive populations exhibited greater sensitivity to 
storm intensity. These high biomass populations, concentrated in the 

north and west of Scotland, were also particularly sensitive to survival 
rates, which are directly linked to storm intensity and only indirectly to 
PAR. 

This response mirrors the high canopy abundances observed in 
L. hyperborea forests approximately 3 years after clearances in the UK 
(Kain, 1976a) and Norway (Christie et al., 1998; Sjøtun et al., 2006). 
Within kelp forests, high canopy survival rates and correspondingly long 
lifespans maintained canopy densities with only limited recruitment. 
Following canopy clearing, however, the resultant increase in light led 
to increased recruitment and subcanopy survival (Sjøtun et al., 2006). 
The model presented here replicates this resilience and suggests a high 
potential for ephemeral populations to persist in areas where conditions 
are, on average, marginal via temporal variability in environmental 
conditions creating adequate conditions periodically allowing successful 
establishment (Christie et al., 2019; Dayton, 1985). Note, however, that 
communities associated with L. hyperborea forests were not modelled, 
and would almost certainly re-establish considerably more slowly as has 
been seen in experimental trawling of L. hyperborea where epiphytes had 

Fig. 5. Lagged effect of environmental variables on median biomass. The os-
cillations caused by interannual variation in environmental drivers diminish 
with depth. 

Fig. 6. Sensitivity analysis landscape summary. Relative influence of each 
parameter on biomass mean and interannual standard deviation across pop-
ulations (point: median; thick bar: middle 50 %; whiskers: middle 90 %). 
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not fully recovered after 6 years (Christie et al., 1998). 
The average simulated annual detritus production aligned well with 

observations in the UK (Smale et al., 2021). While modelled carrying 
capacities incorporated observations from these locations, survival and 
chronic erosion rates were estimated from independent sources. As 
highly productive ecosystems, kelp forests may contribute to the 
removal of carbon via the generation of detritus that is then transported 
to sink locations such as the deep ocean (Krumhansl and Scheibling, 
2012; Pedersen et al., 2021; Smale et al., 2021). The ultimate fate of the 
detritus thus depends heavily on the marine hydrodynamic landscape 
which varies intra- and interannually (van Sebille et al., 2018). Dynamic 
simulations of kelp populations, situated within ocean hydrodynamic 
models, offer an opportunity to align the high dislodgement rates 
associated with winter storms in the UK with expected transport of the 
debris (Aleynik et al., 2017; Broch et al., 2022). Detritus production in 
our simulations was highly skewed across years, particularly in deeper 
populations. Calculations of the potential contribution of kelp forests to 
carbon storage would benefit from accounting for this interannual 
variability, as values calculated from a short timeseries are unlikely to 
capture the high-production years that account for a large proportion of 
the long-term detritus production of L. hyperborea forests. 

Recruitment was assumed to be open, with the number of potential 
recruits unrelated to the local population size. The constant supply of 
potential zoospores aided in rapid recovery of the canopy (~3 years) 
following a disturbance. While recovery of the physical forest structure 
within 3–6 years is consistent with observed recoveries following 
trawling (Christie et al., 1998), the generalizability of this timescale 
depends on the spatial scale of the disturbance, as well as the combi-
nation of currents, bathymetry, and the distribution of kelp populations 
in the surrounding area. In fact, there is quite a lot of variability in the 
literature regarding zoospore dispersal distances. L. hyperborea zoo-
spores were found to be abundant in the water column as far as 200 m 
from the nearest populations (Fredriksen et al., 1995), and have been 
found up to 5 km from the nearest known adult plants (Norton, 1992). 
Dispersal kernels are thus quite fat-tailed, leading to more rapid recov-
ery and colonization than may otherwise be expected by average 
dispersal distances. For instance, despite mean dispersal distances of 25 
m (Capdevila et al., 2018), Macrocystis pyrifera spores have been found 
to travel several kilometers, allowing ready recolonisation of patches as 
far as 3.5 km from the nearest known source (Reed et al., 2006, 2004). 
For L. hyperborea in wave exposed locations of the UK and Ireland, 
winter storms in particular may greatly increase transport distances 
(Norton, 1992; Reed et al., 1988). The assumption of open recruitment 
in L. hyperborea is therefore reasonable at moderate spatial resolutions 
and at seasonal timescales, during which sporadic long-distance 

dispersal events are likely to occur. 
Mean canopy biomass showed highest sensitivity to survival and 

reproduction, with intermediate sensitivity to the chronic frond erosion 
rate and shape of the density dependence parameter, and minimal 
impact of stipe or frond growth rates. Further, sensitivity to survival 
rates varied by depth, such that shallow populations were more sensitive 
to subcanopy survival rates while deep populations were more sensitive 
to canopy survival rates. This depth-dependence reflects the impact of 
interannual variation in light availability. In deep water, conditions are 
favourable for recruitment only occasionally. These infrequent cohorts 
that become established allow the population to persist for several years 
depending on the canopy survival rate. In contrast, shallow populations 
see consistent recruitment across years. The subcanopy survival rate 
thus determines the density of individuals present to grow into a 
clearing in the canopy. The sensitivity analysis indicates that future 
work on L. hyperborea would be most improved by more extensive data 
relating to survival and recruitment rates rather than individual growth 
rates. 

Though temperature drove an increase in canopy biomass with 
latitude via its effect on canopy height, interannual variability in tem-
perature had little impact on canopy biomass, reflecting its modest 
slopes in the vital rate regressions. Nevertheless, heatwaves are known 
to cause mortality in cold water kelp species such as L. hyperborea (Fil-
bee-Dexter et al., 2020; Hereward et al., 2020; Smale, 2020). There are 
three likely reasons why these simulations failed to capture such events. 
First, data limitations prevented including temperature as a predictor of 
survival. Second, heatwaves may be short-term events that are not 
captured by seasonal averages. Third, given that these populations fall 
within the range center of L. hyperborea, which extends southwards to 
the Iberian Peninsula, absolute temperatures experienced may not be 
stressful enough to manifest as changes in population structure. The 
minimal effect of temperature thus reflects data-based compromises 
within the model, highlighting a key area for future research particularly 
given the sensitivity of canopy biomass to canopy and subcanopy sur-
vival rates. Process-based simulations offer a promising approach for 
incorporating cumulative effects of heat stress, intra- and inter-annual 
environmental variability, and the potential for local adaptation, given 
corresponding empirical work. For species or systems where appropriate 
data are available, this modelling framework is amenable to including 
chemical aspects of the environment like nutrients which have estab-
lished physiological links to kelp growth (Bolton and Lüning, 1982). 

These simulations imposed environmental stochasticity via stochas-
tic variability in the environment rather than in the parameters. Vari-
ability in environmental conditions drove variability in biological 
processes, which in turn produced biomass dynamics. This approach, 
where a process-based model is combined with a stochastic environ-
ment, captures correlation in vital rates that would otherwise require 
stricter assumptions for simulating covariance or potentially burden-
some experiments to parameterize (Hilde et al., 2020; Shoemaker et al., 
2020). For example, recruitment success and subcanopy growth rates 
each depend on light availability (Desmond et al., 2017; Kain, 1969), 
and would thus be expected to covary based on interannual variation in 
PAR. Here, each parameter was predicted based on PAR and other 
relevant variables, creating an implicitly correlated deterministic 
component with residual error simulated via Bayesian posterior distri-
butions. Further, realistic spatial correlation is much simpler to capture 
in environmental conditions using satellite-derived products as opposed 
to geographically extensive field experiments. This approach could be 
especially valuable when simulating future population trajectories to 
incorporate more realistic impacts of interannual variability in the 
context of shifting averages. 

5. Conclusions 

Here, we leverage a diversity of data sources to simulate the dy-
namics of a key kelp species in the Northeast Atlantic in a realistic 

Fig. 7. Geographic variation in parameter relative influence. Maps of relative 
influence for mean July biomass at 2 m and 10 m depth. Only parameters with 
relative influence > 10 % in at least one population are shown (frond erosion 
rate ε, density dependence shape θ, settlement rate z, and survival rates s). 
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landscape of light, temperature, and winter storms. Combining a 
spatiotemporally dynamic environment with process-based population 
dynamics illustrated the interplay between demographic rates, life 
stages, and persistent environmental impacts. Fluctuations in storm in-
tensity and light availability each induced population oscillations with a 
period of ~6 years, suggesting the potential for resilience following 
disturbance, provided the depleted population is within the range of 
dispersal of neighboring populations. Further empirical work on sur-
vival and recruitment is likely to be most impactful, particularly with 
regard to increasingly frequent and intense marine heatwaves. These 
simulations further illustrate the importance of considering spatiotem-
poral variation in growth and detritus production in the context of 
carbon budget calculations. As the climate continues to change, process- 
based models that include realistic environmental variation will become 
increasingly important tools for understanding and predicting biological 
change. 
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