
Citation: Theenathayalan, V.;

Sathyendranath, S.; Kulk, G.; Menon,

N.; George, G.; Abdulaziz, A.; Selmes,

N.; Brewin, R.J.W.; Rajendran, A.;

Xavier, S.; et al. Regional Satellite

Algorithms to Estimate

Chlorophyll-a and Total Suspended

Matter Concentrations in Vembanad

Lake. Remote Sens. 2022, 14, 6404.

https://doi.org/10.3390/rs14246404

Academic Editors: Yang Hong,

Jinsong Deng and Salah Elsayed

Received: 14 November 2022

Accepted: 10 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Regional Satellite Algorithms to Estimate Chlorophyll-a and
Total Suspended Matter Concentrations in Vembanad Lake
Varunan Theenathayalan 1, Shubha Sathyendranath 1,2,*, Gemma Kulk 1,2 , Nandini Menon 3, Grinson George 4 ,
Anas Abdulaziz 5 , Nick Selmes 1, Robert J. W. Brewin 6 , Anju Rajendran 4,7, Sara Xavier 4 and Trevor Platt 1

1 Plymouth Marine Laboratory, Plymouth PL1 3DH, UK
2 National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth PL1 3DH, UK
3 Nansen Environmental Research Centre, Amenity Centre, Kerala University of Fisheries and Ocean Sciences,

Cochin 682506, Kerala, India
4 Indian Council of Agricultural Research-Central Marine Fisheries Research Institute,

Cochin 682018, Kerala, India
5 Council of Scientific and Industrial Research-National Institute of Oceanography, Regional Centre, Cochin

682015, Kerala, India
6 Centre for Geography and Environmental Science, Faculty of Environment, Science and Economy, University

of Exeter, Penryn TR10 9FE, UK
7 Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
* Correspondence: ssat@pml.ac.uk

Abstract: A growing coastal population is leading to increased anthropogenic pollution that greatly
affects coastal and inland water bodies, especially in the tropics. The Sustainable Development Goal-
14, ‘Life below water’ emphasises the importance of conservation and sustainable use of the ocean and
its resources. Pollution management practices often include monitoring of water quality using in situ
observations of chlorophyll-a (chl-a) and total suspended matter (TSM). Satellite technology, including
the MultiSpectral Instrument (MSI) sensor onboard Sentinel-2, enables the continuous monitoring of
these variables in inland waters at high spatial and temporal resolutions. To improve the monitoring
of water quality in the tropical Vembanad-Kol-Wetland (VKW) system, situated on the southwest
coast of India, we present two regionally tuned satellite algorithms developed to estimate chl-a
and TSM concentrations. The new algorithms estimate the chl-a and TSM concentrations from the
simulated reflectance values as a function of the inherent optical properties using a forward modelling
approach. The model was parameterised using the National Aeronautics and Space Administration
(NASA) bio-Optical Marine Algorithm Dataset (NOMAD) and in situ measurements collected in the
VKW system. To assess model performance, results were compared with in situ measurements of
chl-a and TSM and other existing satellite-based models of chl-a and TSM. For satellite application,
two different atmospheric correction methods (ACOLITE and POLYMER) were tested and satellite
matchups were used to validate the new chl-a and TSM algorithms following standard validation
procedures. The results demonstrated that the new algorithms were in good agreement with in
situ observations and outperform existing chl-a and TSM algorithms. The new regional satellite
algorithms can be used to monitor water quality within the VKW system to support the sustainable
management under natural (cyclones, floods, rainfall, and tsunami) and anthropogenic pressures
(industrial effluents, agricultural practices, recreational activities, construction, and demolishing
concrete structures) and help achieve Sustainable Development Goal 14.

Keywords: water constituents; absorption; backscattering; forward modelling; ACOLITE; POLY-
MER; atmospheric correction; remote-sensing reflectance; water quality; inland waters; sustainable
development goals

1. Introduction

Coastal, estuarine, and inland waters are major carbon reservoirs [1–4]; support
diverse species in multiple habitats; provide a wide range of ecosystem services; and
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function as natural barriers for the protection of coastal areas from extreme climate events,
including floods, cyclones, and tsunamis [5]. However, anthropogenic activities, such as the
overexploitation of resources and pollution, have adversely affected many coastal aquatic
ecosystems and the livelihood of people living in the surrounding areas [6–10]. The United
Nations, through its Sustainable Development Goals-6 and 14, emphasise the importance
of clean water and sanitation, and the sustainable use of aquatic resources [11]. In this
context, monitoring water quality becomes an important step in our efforts to understand
the stresses on coastal and estuarine ecosystems that are associated with anthropogenic
activities, and to move towards sustainable management of their resources [12–14]. Some
of the most vulnerable of coastal and estuarine ecosystems are in the tropics [15–19], which
merit particular attention.

In this paper, we study the water quality of a tropical coastal, estuarine and lake
system, the Vembanad-Kol-Wetland (VKW) system, situated on the southwest coast of
India. VKW is a large ecosystem, adjoining some of the major towns of the state Kerala,
including Alappuzha, Kochi, Kottayam, and Thrissur. The population surrounding the
VKW system relies on the waterbody for many aspects of their life: provision of drinking
water, fishing, agriculture, transport, tourism, and aquaculture [20]. The shipyard and
port at Kochi benefit from the waterways of VKW. Despite the importance of the VKW
system, heavy loads of suspended particulate and dissolved matter and nutrients (which
determine the concentration of chlorophyll-a, the major pigment in phytoplankton), and the
prevalence of pathogenic organisms responsible for water-borne diseases have degraded
the water quality of the system [21–24]. The VKW is one of the most polluted wetland
systems in India, exposed to anthropogenic stresses that include the inflow of domestic
waste and sewage causing faecal contamination, and heavy metal contamination from
nearby industries [25–29]. Construction activities along its shorelines in violation of the
Indian coastal zone management regulations present yet another threat to the integrity
of the VKW ecosystem [30,31]. The ecological and economic importance of the VKW
system, and the multiple stresses it is currently facing, raise the need for regular monitoring
of its water quality, to enable recovery and restoration, and to achieve the sustainable
development goals. In situ observations of water quality are essential in this context, but
they are labour-intensive. Furthermore, the complex nature of the wetland system (about
100 km long, with many inlets and meanders) makes it costly to cover the entire lake by
local observations alone. Citizen science can help address some of these limitations [31,32].
However, another important avenue that we explore here is the use of satellite data as
a complement to in situ observations, for monitoring water quality on a sustained and
continuous basis.

Chlorophyll-a (chl-a) and total suspended matter (TSM) are two major water con-
stituents that affect water quality, and which are amenable to remote sensing. Many models
have been developed to estimate chl-a and TSM concentrations from satellite observations.
Among them, the model by O’Reilly et al. [33], which produces accurate results in the
open-ocean waters, has been widely employed to estimate chl-a concentrations. To estimate
high concentrations of chl-a (>100 mg m−3), especially in turbid, productive, and inland
waters, models based on the ratio of near-infrared (NIR) reflectances [34–37] have been
found to be more suitable. For the estimation of TSM, models based on reflectance at red
and infrared wavelengths [38,39] have performed well in sediment-dominated waters. The
VKW is an optically complex system with diverse types of water appearing in different
areas of the system [25]. Therefore, we cannot assume that the above-mentioned algorithms
would perform equally well throughout the system.

In this paper, we evaluate the performance of existing chl-a and TSM satellite retrieval
algorithms, and use a forward modelling technique to develop improved algorithms in the
study area. Though earlier studies have used satellite data to investigate the dynamics of
chl-a and TSM in Vembanad lake using existing algorithms [40–42], to our knowledge, this
is the first time that such algorithms have been validated using in situ-satellite matchup
data. Furthermore, satellite-derived water-leaving reflectance (ρw) values retrieved using
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two atmospheric-correction algorithms are fine-tuned using in situ observations. Using
Sentinel-2 MultiSpectral Instrument (MSI) data, we demonstrate that the performance of
the modified chl-a and TSM algorithms is better than those of existing algorithms for the
VKW system.

2. Materials and Methods

This study estimates reflectance as a function of the absorption and backscattering
coefficients based on the in situ observations from Vembanad Lake and the NOMAD dataset,
where the estimated reflectance was used to develop regionally tuned chlorophyll-a (B) and
total suspended matter (S) algorithms suitable for Vemabanad Lake (Figure 1, discussed
in detail in the following sections). The developed algorithms were applied on the MSI
data after the atmospheric signal was removed based on the two different atmospheric
correction methods, ACOLITE and POLYMER, and corrected using the satellite matchups
to of estimated reflectance.
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Figure 1. The present study workflow of the satellite-derived chlorophyll-a (B) and total suspended
sediment (S) concentrations in Vembanad Lake. In situ measurements from the Vembanad Lake
and NOMAD datasets were used to model absorption and back-scattering coefficients to obtain
model-derived reflectances (Re). The Re was then used to develop regional chlorophyll-a (B) and total
suspended matter (S) algorithms. The Re together with a satellite matchup dataset was used to correct
satellite-derived (ρw) reflectance, which were obtained from the ACOLITE- and POLYMER-processed
Sentinel-2 images. The bias-corrected satellite reflectance (ρw

′) was used as input to the regional
satellite-derived B and S.

2.1. Study Site

Vembanad Lake (VL) is a part of the Vemband–Kol–Wetland (VKW) system, which
is the second largest Ramsar site in India. The lake is ~100 km long and up to ~14 km
wide and is open to the Arabian Sea in the north, near Kochi (Figure 2). Its depth varies
from 1.5 to 6 m except near the port of Kochi, where a depth of 13 m is maintained by
dredging to make it suitable for shipping [25]. The lake receives freshwater input from six
major rivers [20]. The region experiences two monsoons: the south-west monsoon (June–
September) and the north-east monsoon (October–November), which form the wet season.
The dry season is during the winter (December–February) and the spring inter-monsoon
(March–May) [43].
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Figure 2. (a) Map showing the study site—Lake Vembanad with the locations of the 13 in situ
sampling stations (with VL07 located in the tributary of River Murinjapuzha) and adjacent cities in
Kerala; (b) the inset map shows the location of Lake Vembanad on the south-west coast of India.

Based on salinity and hydrological conditions, VL can be divided into a brackish-water-
dominated northern region (Stations VL01 to VL06, Figure 2) and a fresh-water-dominated
southern region (Stations VL08 to VL13, Figure 2) [22]. The northern region also becomes
dominated by freshwater during the monsoons. The Thanneermukkom Bund isolates the
southern region (stations–VL10, VL11, VL12, and VL13) of the lake from the incursion of
saltwater from the sea during the dry season.

2.2. In Situ Data from Vembanad Lake

In situ data, used for the development of regional satellite-algorithms (VL dataset,
Table 1), were collected in VL at 13 stations (VL01–VL13, Figure 2) during 15 field campaigns
between March 2018 and May 2019. Samples were collected for the analysis of bio-optical
properties, including the absorption coefficients (a), the concentrations of chlorophyll-
a biomass (B), and total suspended matter (S). Samples were filtered through 25 mm
Whatman glass-fibre filters (GF/F) with a 0.7 µm pore size to collect the algal and non-algal
particulate matter to determine the optical density (D) of phytoplankton biomass (DB),
non-algal suspended particles (DS) and coloured dissolved organic matter (CDOM), or
yellow substances (DY). The filters were analysed using a Shimadzu Ultraviolet-Visible
(UV) Spectrophotometer (UV-2600) following standard methods [44–46]. The filter, with
all material retained on it, was used to determine the optical density of particulate matter
(phytoplankton biomass + non-algal suspended particles) (DB+S). Phytoplankton pigments
were removed from the filter using a methanol extraction, and the optical density DS of
the residual material was measured. Then, DB was calculated by subtracting DS from
DB+S [45,46]. For measuring DY, water samples were filtered through 0.45 and 0.2 µm
nitrocellulose filters [44,46], and the optical density of the filtrate was measured [47]. The
DB, DS and DY values were used to estimate their respective absorption coefficients (aB, aS,
and aY) [48–50].
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Table 1. Details of datasets used. Note that the λ represents the wavelengths—443, 490, 560, 665,
and 683 or 705. The 683 nm was the longest band available for the reflectance from the NOMAD
dataset, whereas the fifth band of MSI on Sentinel 2 is 705. There were N = 12 satellite matchups
available for ACOLITE (ρw

A) and N = 14 for POLYMER (ρw
P) data used for the reflectance model

from Vembanad Lake (VL) dataset. The superscript ‘$’ denotes that the S values were estimated using
Equation (11).

Vembanad Lake (VL) Dataset

B aS(400) aY(412) S aB(λ) aS(λ) aY(λ) bbt(λ) R(λ)

228 228 228 162 228 228 228 - -

NOMAD dataset

839 839 839 111 $ 839 839 839 111 228Ri

Satellite matchup dataset

12 12 12 12 12 12 12 - 12Rs
A

14 14 14 14 14 14 14 - 14Rs
P

To estimate the chlorophyll-a biomass (B), samples were filtered through 47 mm,
0.7 µm Whatman GF/F filters and phytoplankton pigments were extracted in 90% acetone
for 24 h, and the optical density DB of the extract was measured spectrophotometrically
at 630, 647, and 664 nm [51,52]. Then, the chlorophyll-a biomass was calculated using
the equation, B = [(11.85× DB(664))− (1.54× DB(647))− (0.08× DB(630))]× (v/V)×
1000, where v is the volume of acetone (units in ml) and V is the volume of water (units in
ml) filtered. Concentrations of total suspended matter (S) were measured gravimetrically
by filtering the sample through pre-weighed 25 mm, 0.7 µm Whatman GF/F filters, which
were then dried before weighing following standard techniques [53,54]. Table A1 provides
details on the notations used in this study.

2.3. In Situ Data from NOMAD

In addition to the in situ measurements from VL, samples from the NASA bio-Optical
Marine Algorithm Dataset (NOMAD) v2.0 (NOMAD dataset, Table 1) [55] were also used in
this study for model parameterizations. NOMAD is a high-quality in situ dataset covering
global waters and is used for developing ocean-colour models. For this study, the water-
leaving radiance (Lw), downwelling surface irradiance (Es), back-scattering coefficient (bb),
absorption coefficient of particulate matter (phytoplankton biomass + non-algal suspended
particles, aB + aS); non-algal suspended particles (aS); coloured dissolved organic matter
(aY), and chlorophyll-a biomass (B) were extracted from this dataset. The remote-sensing
reflectance (Rrs) was calculated as the ratio of Lw to Es and converted into irradiance
reflectance (Ri) using Ri = Q× Rrs, where Q is set to 3.14.

2.4. Satellite Dataset

Data acquired by the MultiSpectral Instrument (MSI) onboard Sentinel-2A and -2B
between 2018–2019 were downloaded from the Copernicus Open Access Hub (https:
//scihub.copernicus.eu, accessed on 6 January 2021). The two tiles of Sentinel-2 that cover
Vembanad Lake were downloaded, processed, and mosaiced to generate images of the
entire study area. Two processors, ACOLITE and POLYMER, were used to correct for the
atmospheric effects. ACOLITE (v20190326.0; [56,57]) is based on the ‘dark spectrum fitting’
approach and POLYMER developed by Steinmetz et al. [58] removes the atmospheric signal
and estimates the water-leaving reflectance using a polynomial function of the wavelength.
The water-leaving reflectances (ρw), derived from ACOLITE and POLYMER, were used to
retrieve B and S. For simplicity, hereafter, the water-leaving reflectance (ρw) from satellites
will be referred to as ‘satellite reflectance’.

https://scihub.copernicus.eu
https://scihub.copernicus.eu
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2.5. In Situ Satellite Matchup Dataset

In situ data from VL was matched with the corresponding Sentinel-2 data to construct
a dataset, called the Satellite matchup dataset (Table 1), which was used for the validation
of regional satellite-retrieval algorithms of B and S. Comparison between the modelled
(Re) (described in the later Sections 2.6 and 2.7) and satellite (ρw) reflectance demonstrated
some systematic biases. Therefore, a correction is calculated as: ρw

′ = (l + ρw) × m,
where l and m are fitted coefficients (Figure A1) that were applied to the processed satellite
data. For both ACOLITE- and POLYMER-processed data, the intercept l was wavelength
independent and equal to 0.0 and 0.01, respectively. For the five MSI wavebands—443,
490, 560, 665, and 705 nm—the values of the slope m were, respectively, 1.6, 2.0, 2.2, 1.6,
and 1.2 for ACOLITE, and 3.5, 3.6, 3.8, 3.7, and 3.6 for POLYMER. The MSI products for
the VL waters demonstrated that reflectances at bands 665 and 705 nm were frequently
negative for POLYMER data before the bias correction, but were pushed to positive values
with the addition of the offset. ACOLITE did not have the problem of negative values
occurring at the long wavebands. Due to the small number of satellite matchups, all of
them (N = 12 and 14 for ACOLITE, and POLYMER, respectively) were used to correct
satellite reflectances.

Standard quality control methods were followed for the in situ satellite matchup [59]:
(i) the covariance of the 3 × 3 pixel box (central pixel plus surrounding eight pixels) was
less than 0.15 for the five Sentinel-2 reflectance bands, to ensure the homogeneity of the
pixel box; (ii) more than fifty percent of the pixel box must contain valid data (i.e., was
not ‘Not A Number’ or negative); (iii) the time difference between the in situ and satellite
overpass was within ±4 h. For the matchup data that passed the quality criteria, the mean
value of reflectances at each MSI waveband of the pixel box were computed and used as
the input to the B and S algorithms. Based on these criteria, 12 and 14 satellite matchups
were available for the ACOLITE- and POLYMER-processed satellite data, respectively.

2.6. Inherent Optical Properties

This section presents models to estimate the inherent optical properties (IOPs), and
the absorption (a) and back-scattering (bb) coefficients, of the constituents present in the
water column. The absorption is contributed by water (aW), phytoplankton as indexed by
chlorophyll-a biomass (aB), non-algal suspended particles (aS), and CDOM (aY). Thus, the
total absorption coefficient (at) can be expressed as:

at(λ) = aW(λ) + aB(λ) + aS(λ) + aY(λ) (1)

where the individual contribution of each constituent to at is represented by the subscripts
W, B, S, and Y. The aW values were taken from Pope and Fry [60].

In this study, the method of Brewin et al. [61,62] was used to estimate aB(λ) values
with the chlorophyll-a concentration as the input to the computation. In this approach,
aB is the sum of the absorptions of three different size classes of phytoplankton, namely
picophytoplankton (ap in m−1), nanophytoplankton (an in m−1), and micro-phytoplankton
(am in m−1):

aB(λ) = ap(λ) + an(λ) + am(λ) (2)

Furthermore, each of the components of aB can be expressed as the product of the
specific absorption coefficient of each phytoplankton size class and its respective biomass
(in chlorophyll-a units), such that Equation (2) can be rewritten as:

aB(λ) =
(
ap
∗(λ)× Bp

)
+ (an

∗(λ)× Bn) + (am
∗(λ)× Bm) (3)

where ap
∗, an

∗, and am
∗ are the chlorophyll-specific absorption coefficients (in m2 (mg chl-a)−1)

and Bp, Bn, and Bm are the specific concentrations (in mg chl-a m−3) of the pico-, nano-,
and micro-phytoplankton size classes, respectively. The specific absorption coefficients of
each size class can be found in Table 2 of Brewin et al. [61]. The concentration of each size
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class was estimated using the following set of equations, which are all functions of the total
chlorophyll-a biomass concentration, B:

Bp = Bp
m[1− exp

(
−SpB

)]
(4)

Bp,n = Bp,n
m[1− exp

(
−Sp,nB

)]
(5)

Bn = Bp,n − Bp (6)

Bm = B− Bp,n (7)

where the asymptotic maximum values Bp
m and Bp,n

m are 0.13, and 0.77, respectively, and
the slopes Sp and Sp,n are 6.15, and 1.22, respectively [62]. Note that Bn was estimated by
subtracting Bp from the combined concentration of pico- and nano-phytoplankton (Bp,n)
biomass, as shown in Equation (5).

The spectral form of aS and aY can be described by exponential functions with negative
slopes, as their absorptions decrease with increasing wavelength:

aS(λ) = aS(400)× exp
[
−mS × (λ− 400)

]
(8)

aY(λ) = aY(412)× exp
[
−mY × (λ− 412)

]
(9)

where aS(400) and aY(412) are the absorption coefficient of the non-algal suspended
particles at 400 nm and the CDOM absorption coefficient at 412 nm; and mS and mY are the
spectral slopes of aS and aY, for which we assumed values of 0.012 [63] and 0.015 [64,65],
respectively. The values of at can be computed once aB, aS and aY are estimated from the
Equations (2), (8) and (9) in Equation (1), respectively.

When it came to modelling particle back-scattering, we faced a conundrum: neither
the NOMAD nor the VL datasets included all the elements necessary for parameterising
particle back-scattering as a function of total suspended matter. The VL dataset included
measurements of total suspended matter (S) concentration and absorption coefficient of
non-algal suspended particle (aS), but not non-algal suspended particle back-scattering
(bbS). On the other hand, the NOMAD dataset included non-algal suspended particle
back-scattering (bbS) and absorption coefficient of non-algal suspended particle (aS), but
not the total suspended matter (S) concentration. The path we followed, therefore, was to
use the common measurement of the non-algal suspended particle absorption coefficient
(aS) to link back-scattering by non-algal suspended particles (bbS) and the concentration of
total suspended matter (S), as described below.

First, the back-scattering coefficient of non-algal particles at 665 nm bbS(665) was
expressed as a function of as(400), using the NOMAD dataset (N = 91, Figure 3a) as:

bbS(665) = 0.083 ∗ aS(400)0.873 (10)

Then, the modelled bbS(665) was used to estimate S using the relationship between
bbS(665) and S proposed by Balasubramanian et al. [66] (Figure A2), based on data from a
variety of locations and environmental conditions:

S = 53.736× bbS(665)0.856 (11)

Next, the total back-scattering coefficient (bbt) in the NOMAD dataset was treated as
the sum of the contributions to back-scattering by water (bbW) and non-algal suspended
particle (bbS), and the contribution of phytoplankton is assumed to be relatively small
compared with that of non-algal suspended particles for our study area where the non-
algal suspended particle scattering dominates that of phytoplankton, such that we have:

bbt(λ) = bbW(λ) + bbS(λ) (12)
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Figure 3. The relationship between the in situ back-scattering coefficient of non-algal suspended
particles at 665 nm (bbS(665)) and the in situ absorption coefficients of non-algal suspended particles
(aS(400)) obtained using the samples from the NOMAD dataset (N = 91) (a) and the comparison
between the in situ and modelled bbS(665) (b).

The spectral values of bbW were taken from Morel [67]. The spectral variation in bbS
derived from the equation above was then represented as [68]:

bbS(λ) = bbS(665)×
(

λ

665

)−k
(13)

where the exponent k determines the spectral variations in bbS, which was estimated as
1.32 by fitting Equation (13) to bbS(λ). For the NOMAD dataset, bbS(665) was computed
using Equation (10), and tested against in situ data (Figure 3b). Due to the lack of in situ bb
from VL, the bb model was only compared with the NOMAD dataset. For the Vembanad
Lake dataset, we estimated the back-scattering coefficient of non-algal suspended particle
(bbS(665)) at 665 nm from measured S, by inverting Equation (11):

bbS(665) =

(
S

53.736

)( 1
0.856 )

(14)

The computed bbS values were then used in Equation (12) to estimate bbt.

Table 2. Table showing the different satellite-retrieval algorithms and their coefficients used in the
present work to estimate chlorophyll-a (B) and total suspended matter (S) concentrations.

Algorithms Equations Variables References

B1 B = 10[0.19−(1.81X)+(1.97X2)−(2.56X3)]

−0.722
X = log10[Rrs(443)/Rrs(560)]

O’Reilly et al. [33] with
parameters from Franz

et al. [69] and
Vanhellemont and

Ruddick [70]
B2 B = [(35.8X)− 19.3]1.12 X = Rrs(705)/Rrs(665) Gilerson et al. [36]
B3 B = 40.6− (138X) +

(
122X2) X = Rrs(705)/Rrs(665) This study

B4 B = −55.0− (56.1X1) + (50.3X2)
−(20.8X3) + (89.0X4)

X1 = Rrs(443)/Rrs(560)
X2 = Rrs(490)/Rrs(560)
X3 = Rrs(665)/Rrs(560)
X4 = Rrs(705)/Rrs(665)

This study

S1 S = −1.91 + (1140X) X = Rrs(665) Miller and McKee [38]
S2 S = 1.74 + (356X)

1−(X/0.1728)
X = R(665) Nechad et al. [39]

S3 S = 1.1 + (332X) +
(
7188X2) X = Rrs(665) This study
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2.7. Forward Reflectance Model

The IOPs were used to model reflectance Re (Morel and Prieur [71]; see also Sathyen-
dranath and Platt [72]) as:

Re(λ) = 0.33×
[

bbt(λ)

(at(λ) + bbt(λ))

]
. (15)

2.8. Chl-a and TSM Satellite Algorithms

The computed Re values were used to develop regional satellite algorithms for retrieval
of B and S in VL. Several existing and newly-developed algorithms (Table 2) were tested to
evaluate the efficiency of B and S retrieval in VL using the VL dataset (N = 162, Table 1).

To estimate B, the algorithms of O’Reilly et al. [33], based on a blue-green reflectance
ratio (Algorithm B1; Table 2) and Gilerson et al. [36], based on a NIR reflectance band
ratio (Algorithm B2; Table 2) were examined, as they are both used extensively in the
literature for open-ocean waters [33], and for more complex coastal waters [36]. The model
coefficients used by Gilerson et al. [36] were tuned to improve the performance of this
algorithm (Algorithm B3; Table 2) using the VL dataset. In addition, by experimenting
with different combinations of reflectance bands, a new algorithm based on multi-linear
regression (BGR, Algorithm B4, Table 2) was introduced that used all five reflectance bands
from Sentinel-2.

For the estimation of S in VL, the algorithms of Miller and McKee [38] (Algorithm S1,
Table 2) and Nechad et al. [39] (Algorithm S2, Table 2) were tested. It has been reported
that reflectance in the red bands increases with S, especially in sediment-dominated turbid
waters [73]. In VL, a polynomial relationship was observed (Algorithm S3, Table 2) between
Re(665) and in situ S:

S ∝ exp(Re(665)) (16)

and this relationship was also explored, to estimate S from satellite data.
The performance of all B and S algorithms (Table 2) were assessed based on the

following statistical metrics: determination coefficient (r2), root mean square error (ψ), bias
(δ), mean relative error (∆), and the slope (s), and the intercept (I) of a linear fit between the
model and observations.

3. Results
3.1. Inherent Optical Properties

The comparison between the in situ and model-derived values of aB, aS, aY, and at at
the five key wavelengths demonstrated that the modelled absorption values were consistent
with in situ measurements, both from the VL (N = 228) and NOMAD (N = 839) datasets
(Figure 4). The model-derived aY showed more scatter at 665 and 683 nm compared with
the aB and aS estimates at the same wavelengths (Figure 4i,j), but the effect on the total
absorption values (at) is insignificant, as the magnitude of aY is small compared with
the absorption coefficients of the other constituents (aW , aB, and aS) at these wavelengths
(Figure 4s,t). The estimated bbt values are in close agreement with in situ values from the
NOMAD dataset (N = 111) (Figure 5).

3.2. Reflectance Model

The model-derived at and bbt were used to estimate the Re using a forward reflectance
model. To assess the performance of the R model, the Re values were compared with in
situ (Ri) and satellite (ρw) measured reflectances. The results demonstrated that the Re
values are in close agreement with Ri from the NOMAD dataset (Figure 6, grey circles)
demonstrating the quality of the a and bb values that were used to compute the in situ
reflectance values. Spectral comparison of the data demonstrated that the satellite-derived
ρw (ρA

w and ρP
w) in both ACOLITE- and POLYMER-processed datasets underestimated

Re (Figure A3a,b,d,e), and these data thus required a correction. The application of the
empirical correction term reduced the differences between the Re and ρw (Figure 6, bright
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coloured stars and triangles). After correction, the spectral comparison between ρw
′ and Re

demonstrated a better agreement between modelled and satellite-derived reflectances, and
their spectral curvature matched that of Re reasonably well (Figure A3c–f).
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Figure 6. Comparison between the measured and modelled reflectance. The grey circles show the
comparison between the in situ (Ri) and modelled (Re) reflectance using the NOMAD (N = 228)
dataset at λ = 443, 490, 560, 665, and 683 nm. The faded red stars and blue triangles show the
comparison between the uncorrected satellite-measured (ρA

w , and ρP
w for ACOLITE and POLYMER,

respectively) and modelled reflectance; and the brighter red stars and blue triangles show the
comparison between the corrected satellite-measured and modelled reflectance using the satellite
matchup dataset (ρA′

w , and ρP′
w , with N = 12 and 14 for ACOLITE and POLYMER, respectively, at

λ = 443, 490, 560, 665, and 705 nm). The statistical values in grey colour are estimated between the in
situ and modelled reflectance, whereas the red (ACOLITE) and blue (POLYMER) coloured statistical
values are estimated between the corrected satellite-measured and modelled reflectance.
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3.3. Chl-a and TSM Satellite Algorithms

Existing algorithms for chlorophyll-a retrieval that were tested (Algorithms B1 and
B2, Table 2; Figure 7a,b) did not appear to be suitable for the study area, even after
regional tuning. The Gilerson et al. [36] algorithm with tuned coefficients (Algorithm B3)
showed improvement at concentrations > 10 mg m−3, but high variance remained at lower
concentrations (Figure 7c). The locally tuned multi-linear regression algorithm (Algorithm
B4, Table 2, and Figure 7d) performed best in comparison with the other algorithms tested
in this study. Hence, algorithm B4 was chosen as the chl-a algorithm for satellite application
in VL.
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For the estimation of total suspended matter in VL, good correlations (𝑟 >0.85) were 
obtained for the algorithms of Miller and McKee [38] (Algorithm S1, Table 2) and Nechad 
et al. [39] (Algorithm S2, Table 2) when compared with in situ measurements, but the 
tuning of both algorithms was required to improve the estimation of 𝑆 (Figure 7e,f). The 
tuned Algorithm S3, in which 𝑆 is estimated as a function of 𝑅(665), demonstrated better 
performance compared with the other 𝑆 algorithms (Figure 7g). Therefore, Algorithm S3 
was selected for the satellite retrieval of 𝑆 in VL. 
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Figure 7. Comparison between the in situ and modelled B (a–d) and S (e–g) from various algorithms
using the VL dataset (N = 162): O’Reilly et al. [33] (a), Gilerson et al. [36] (b), Gilerson et al. [36]
(c) with tuned coefficients for VL, the algorithm using blue, green, and red reflectance based on
multi-linear regression (d), Miller and McKee [38] (e), Nechad et al. [39] (f), and the algorithm using
Rrs(665) equipped with exponential function (g). Note that algorithm results from c, d, and g were
tuned for VL waters. Equations of all algorithms are provided in Table 2. The statistical values in
black colour (black circles) are for B < 20 mg m−3 and S < 20 g m−3 and the ones in red colour (red
triangles) are for B ≥ 20 mg m−3 and S ≥ 20 g m−3.

For the estimation of total suspended matter in VL, good correlations (r2 > 0.85) were
obtained for the algorithms of Miller and McKee [38] (Algorithm S1, Table 2) and Nechad
et al. [39] (Algorithm S2, Table 2) when compared with in situ measurements, but the
tuning of both algorithms was required to improve the estimation of S (Figure 7e,f). The
tuned Algorithm S3, in which S is estimated as a function of R(665), demonstrated better
performance compared with the other S algorithms (Figure 7g). Therefore, Algorithm S3
was selected for the satellite retrieval of S in VL.

3.4. Application of Regionally Tuned Satellite Retrieval Algorithms

To identify the best atmospheric correction technique suitable for estimations of
chlorophyll-a biomass (B) and total suspended matter (S) in VL, the concentrations re-
trieved using the empirically corrected satellite reflectance values were compared with
the satellite matchup dataset (Table 1) (Figure 1). The regionally tuned Algorithms B4 and
S3 were used for the retrieval of B and S, respectively. Statistical analysis demonstrated
that the satellite-based B from the ACOLITE-processed data and the satellite-based S from
the POLYMER-processed data compared best with in situ measurements (Figure 8a,d).
We note that the estimates of B and S in both ACOLITE- and POLYMER-processed data
demonstrated four outliers, all of them for samples collected on the 4th of January 2019
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(Figure 8a,b). For these matchups, the corresponding in situ S values are much higher than
for other samples. The reason for this anomaly remains unclear.
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Figure 8. Comparison between the in situ and modelled B (a,b) and S (c,d) values using ACOLITE
(red stars) and POLYMER (blue triangles) reflectance using the satellite matchup dataset (N = 12
for ACOLITE and N = 14 for POLYMER, Table 1). The black circles show the B and S values
using modelled reflectance (Re). The derived statistical values in black, blue, and red colours are
generated between the in situ and modelled variables (B and S) using the modelled (Re), and corrected
ACOLITE (ρA′

w ) and POLYMER (ρP′
w ) reflectance, respectively.

As examples of products that can be derived from the regionally tuned algorithms
developed in this study, we demonstrate the spatial distribution of satellite-derived B and
S in VL for the 4th of January and the 25th of March 2019 (Figure 9). We observe that B
ranged from 3–15 mg m−3 across the lake, with occasionally higher concentrations up to
60–80 mg m−3 in the north (Figure 9a,b), and concentrations between 6–9 mg m−3 near
the Thanneermukkom Bund. Concentrations of S ranged from 9–15 g m−3 on the 4th of
January 2019 (Figure 9c). A maximum concentration of S of nearly 45 g m−3 was observed
for some pixels, especially near Kochi and the south of the lake on the 25th of March 2019
(Figure 9d). High values of B and S in the southeast side of VL may be related to nutrient
and sediment inputs from the adjacent paddy fields.
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Figure 9. Maps showing the distribution of chlorophyll-a biomass based on the ACOLITE-processed
data and total suspended matter based on the POLYMER-processed data for two Sentinel-2A images
of Vembanad Lake dated on the 4th of January 2019 and the 25th of March 2019, respectively (a–d).

4. Discussion
4.1. Satellite Products for Sustainable Development Goals

For decades, Vembanad Lake has been impacted by anthropogenic stresses that af-
fect its ecological health and socioeconomic status [25,74,75]. To move towards the sus-
tainable use of Vembanad Lake, a detailed water quality monitoring programme is re-
quired [8,76,77]. In this study, we addressed the estimation of two key indicators of water
quality, chlorophyll-a and total suspended matter, from remote sensing observations to
support such a monitoring programme. As an indicator of ecosystem health, chlorophyll-a
concentration can be used to study phytoplankton dynamics in general as well as to moni-
tor harmful algal blooms resulting from eutrophication that affect ecosystem health [78,79].
The total suspended matter affects the turbidity of the lake with high concentrations leading
to reduced light penetration, and hence decreasing the light available for photosynthesis
by phytoplankton. Earlier studies in other regions have reported that high levels of S can
also affect zooplankton and fish survival [80]. Satellite-based routine monitoring of these
variables for the assessment of water quality can be efficient and cost-effective compared
with in situ observations. For instance, there are studies that assessed the variability in
water quality during the COVID-19 lockdown using satellite data in Vembanad Lake and
other aquatic systems in India [41,42,81]. However, the assessment of water quality using
satellite data can be improved when complementary in situ observations are available, as
was the case in this study.
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4.2. Challenges with Quantitative Water Quality Measurements from Satellites over
Vembanad Lake

Although our study relied on an extensive field campaign in Vembanad Lake that
measured various water quality indicators over an annual cycle, only a small number of
matchup data points were available. Matching satellite and in situ data in Vembanad Lake
was difficult because: (i) logistical issues and other conflicting requirements affected the
scheduling of field campaigns during satellite overpasses, even though Sentinel-2 has a
high overpass frequency of 5 days; (ii) carrying out simultaneous in situ measurements
at 13 stations spread across the 100 km length of the lake is difficult; in fact, it took 2 days
to complete one transect; and (iii) frequent cloud cover, especially during the monsoon
seasons, limited satellite retrievals. Therefore, we employed a modelling approach to
estimate the reflectance values based on IOPs that were either observed or estimated
from in situ observations. The simulated reflectances constituted a large dataset (N = 162,
VL dataset) that could be used to improve satellite algorithms. Using this approach,
we demonstrated that the locally tuned algorithms performed better than previously
established models [33,36,38,39] for the satellite retrievals of the concentrations of B and S
(discussed later in this section).

The geometry of Vembanad Lake, which is long and narrow, with a highly indented
shoreline and multiple waterways; the proximity to land and the potential for water-pixel
contamination by neighbouring pixels; and above all, the optically complex nature of the
waters; all rendered the study area particularly problematic from a remote-sensing point
of view. The spatial resolution of satellite sensors such as the Ocean Colour and Land
Imager (OLCI) on Sentinel-3 (300 m) was insufficient to resolve the spatial distribution of
water quality properties in the lake. The solution was to make use of the MultiSpectral
Instrument (MSI) on Sentinel-2, which is designed primarily for land applications, but has
a spatial resolution of 10m in the visible domain. While the spatial resolution was ideal for
the purposes of the study, we had to compromise on the spectral quality and resolution,
and adapt in-water algorithms for the application with MSI data.

Phytoplankton-size-based models have been demonstrated to be useful in reproducing
the spectral values of the absorption coefficient of phytoplankton [61,62,82–85]. Although
the size-class model of Brewin et al. [61,62] worked well in the estimation of aB(λ) values
for our study site, we recognise that the absorption values of non-algal suspended particles
vary with sediment type, composition, and concentration [86,87] and, consequently, with
aquatic environments [88]. For aY, the model values demonstrated some scatter in the
longer bands, especially for samples from the VL waters (Figure 4). The use of a constant
slope for the absorption spectrum of yellow substances (Y) is known to produce high errors
at long wavelengths when concentrations of Y are high or when different sources contribute
to Y [89]. Previous studies have reported that the slope of aY can vary between 0.01 and
0.02 with the composition and source of the substance [64,65,90–93]. This is also potentially
true for VL, where phytoplankton, macrophytes, and materials of terrestrial origin from
river runoff could all contribute to the dissolved organic matter in the water. However, the
overall effect of the deviation in aY on total absorption is minimal, since concentrations of
Y are low in VL compared with B and S.

The atmospheric correction of Sentinel-2 data was another challenge. In addition
to the complex nature of the water body itself, problems associated with poor air qual-
ity, high aerosol content, and high humidity, which could also have affected the aerosol
properties, eventually makes it difficult to perform the atmospheric correction. We there-
fore implemented two well-known atmospheric correction procedures that are known
to perform well in complex situations [66,94,95]. Reflectance values retrieved using both
procedures—ACOLITE and POLYMER—demonstrated a significant offset when compared
with simulated in situ reflectances, and the data needed a spectral bias correction to bring
the magnitudes and spectral shapes to within reasonable values. Though the underlying
cause responsible for the offset remains unknown, one might speculate that the algorithms
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were unable to distinguish fully between high aerosols in air and scattering particles in
water.

4.3. Chlorophyll-a and Total Suspended Matter in Vembanad Lake

For estimating chl-a, one of the algorithms tested here was the blue-green algorithm
of O’Reilly et al. [33], which is designed for use in open-ocean, Case-1 waters, where
phytoplankton and chl-a can be treated as the primary agents responsible for variations in
optical properties, with other substances, when present, covarying with chl-a. The poor
performance of this algorithm is therefore expected in Case-2 waters, such as those of
Vembanad Lake, where high absorption and scattering by particulate and dissolved organic
matter, varying independently of phytoplankton, can degrade algorithm performance.

Mittenzwey et al. [34] and Gitelson [96], among others, proposed using the NIR
reflectance bands, which contain information on phytoplankton, to estimate chl-a in turbid,
but productive waters. The NIR chlorophyll-a algorithm of Gilerson et al. [36], after
tuning for Vembanad Lake (Algorithm B3), performed well at high concentrations. At
low chl-a concentrations, the phytoplankton signal is generally weak in the NIR region,
introducing noise in the algorithm estimates. The conditions in Vembanad Lake called for an
algorithm that works well in Case 2 environments, at both low and high chl-a concentrations.
The multi-linear regression algorithm (Algorithm B4), which uses a combination of the
five reflectance bands, performed effectively in the retrieval of B with high accuracy in
VL waters. However, the use of short (blue and green) wavebands in satellite retrieval
algorithms can also be problematic, as the reflectances at these bands are often erroneous
after atmospheric corrections [97]. Hence, the performance of the multi-band algorithm
should also be tested frequently and modified accordingly, as more validation data become
available.

Sathyendranath et al. [68], Miller and McKee [38] and Nechad et al. [39], and others
have demonstrated that reflectances in the red wavebands are suitable for the retrieval
of the total suspended matter concentration. Following these earlier studies, we chose to
estimate S as a function of reflectance at 665 nm, because there is a proportional increase
in reflectance at this band, with an increase in S. However, the model coefficients needed
to be tuned for Vembanad Lake to improve the quantitative retrieval. The need for re-
parameterising the model may be attributed to the impact of the size, shape, and nature of
the inorganic suspended particles on their optical properties [86,87]. Classifying the pixels
into water types and applying class-specific algorithms [66,98] could be a potential avenue,
to avoid the need for re-parameterising algorithms for different regions. However, the lack
of bb measurements from the study site did not allow us to explore such algorithms in our
study.

5. Conclusions

In this study, we presented site-specific products for chlorophyll-a and total suspended
matter concentrations in Vembanad Lake, derived using high-spatial-resolution Sentinel-2
data. To this end, remote-sensing reflectances were simulated using a forward modelling
approach that uses absorption, and back-scattering coefficients as inputs. Then, the simu-
lated reflectances were used to test algorithms for estimating the chlorophyll-a biomass
(B) and total suspended matter (S) concentrations. We used the NOMAD and Vembanad
Lake in situ datasets for developing the reflectance model and for validation. Two different
atmospheric correction techniques—ACOLITE and POLYMER—were examined for the
application of regionally tuned chlorophyll-a and total suspended matter algorithms in
Vembanad Lake. The satellite-retrieved products were validated against in situ matchups.
When compared with other commonly-used algorithms, in situ data and values estimated
from the site-specific algorithms proposed in the current study were in good agreement
despite the fact that the number of matchups was small. Although ACOLITE and POLY-
MER atmospheric correction procedures produced similar results, we recommend the use
of ACOLITE-based reflectances for the estimation of chlorophyll-a and POLYMER-based
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reflectances for the estimation of total suspended matter concentrations. The statistical
performance of both ACOLITE and POLYMER were comparable for the retrieval of total
suspended matter concentration; POLYMER had a small advantage with respect to spatial
coverage. This study indicates that the algorithms developed here can be used for the
routine monitoring of water quality in the management of Vembanad Lake, which is valu-
able in the assessment of the effects of anthropogenic activities on human and aquatic life.
In particular, the satellite-derived chlorophyll-a, when combined with photosynthetically
available radiation (PAR), can support studies related to primary production. System-
atic studies of chlorophyll-a concentration are also useful for monitoring phytoplankton
blooms, including harmful algal blooms. A recent study also demonstrated [22] that there
is a complex relationship between chlorophyll-a concentration and the presence of Vibrio
cholerae bacteria in Vembanad Lake. Sediment dynamics, critical for the local harbour, can
now be monitored from the satellite, and could help investigate the impact of dredging
activities to maintain the water depth in shipping channels. Furthermore, such observations
can be used to infer the flushing rate of water in the lacustrine–estuarine system, a critical
component among various factors that maintain the health of the lake ecosystem. Such
observations can also help to monitor erosion and deposition along the shoreline. Thus,
this study supports the United Nation’s sustainable development goals—3, 6, and 14 by
monitoring the water quality and by helping to maintain good human and animal health
both in water and along the shores of Vembanad Lake. Future efforts include calibrating the
model coefficients with more satellite matchups; implementing an improved atmospheric
correction method; using in situ back-scattering coefficients and eliminating uncertainties
associated with using a constant bidirectional factor (f/Q), which could help in enhancing
the model performance.
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Appendix A

Table A1. Notations, their descriptions, and units used in the present study.

Notations Description Units

a Absorption coefficient m−1

aB Absorption coefficient of phytoplankton m−1

am Absorption coefficient of microphytoplankton m−1

am
∗ Chlorophyll-specific absorption coefficient of

microphytoplankton m2 (mg chl-a)−1

an Absorption coefficient of nanophytoplankton m−1

an
∗ Chlorophyll-specific absorption coefficient of

nanophytoplankton m2 (mg chl-a)−1

ap Absorption coefficient of picophytoplankton m−1

ap
∗ Chlorophyll-specific absorption coefficient of

picophytoplankton m2 (mg chl-a)−1

aS
Absorption coefficient of non-algal suspended
particles m−1

aB+S

Absorption coefficient of particulate matter
(phytoplankton biomass + non-algal suspended
particles)

m−1

at Total absorption coefficient m−1

aW Absorption coefficient of water m−1

aY
Absorption coefficient of coloured dissolved
organic matter, or yellow matter m−1

A ACOLITE -
bb Back-scattering coefficient m−1

bbS
Back-scattering coefficient of non-algal
suspended particles m−1

bbS
∗ Specific-back-scattering coefficient of non-algal

suspended particles m2 g−1

bbt Total back-scattering coefficient m−1

bbW Back-scattering coefficient of water m−1

B Phytoplankton biomass, in units of chlorophyll-a mg m−3

Bm
Microphytoplankton biomass, in units of
chlorophyll-a mg chl-a m−3

Bn
Nanophytoplankton biomass, in units of
chlorophyll-a mg chl-a m−3

Bp
Picophytoplankton biomass, in units of
chlorophyll-a mg chl-a m−3

Bp,n
Combined pico- and nanophytoplankton
biomass, in units of chlorophyll-a mg chl-a m−3

Bp,n
m

Asymptotic maximum value of combined pico-
and nanophytoplankton biomass, in units of
chlorophyll-a

mg chl-a m−3

Bp
m

Asymptotic maximum value of
picophytoplankton biomass, in units of
chlorophyll-a

mg chl-a m−3

D Optical density Dimensionless
DB Optical density of phytoplankton biomass Dimensionless
DS Optical density of non-algal suspended particles Dimensionless

DB+S

Optical density of particulate matter
(phytoplankton biomass + non-algal suspended
particles)

Dimensionless

DY
Optical density of coloured dissolved organic
matter Dimensionless

Es Downwelling surface irradiance µW cm−2 nm−1

f A proportional constant for IOP-based
reflectance -
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Table A1. Cont.

Notations Description Units

I Intercept values estimated between measured
and modelled data -

k Spectral slope of back-scattering coefficient of
non-algal suspended particles Dimensionless

Lw Water-leaving radiance µW cm−2 nm−1 sr−1

m Fitted coefficients Dimensionless

mS Spectral slope of absorption coefficient of
non-algal suspended particles nm−1

mY Spectral slope of absorption coefficient of
coloured dissolved organic matter nm−1

N Number of samples -
P POLYMER -
Q Bi-directional factor sr
R Reflectance Dimensionless
Ri In situ irradiance reflectance Dimensionless
Re Estimated/Modelled reflectance Dimensionless
Rrs Remote-sensing reflectance sr−1

r2 Determination coefficient -
S Total suspended matter g m−3

s Slope values estimated between measured and
modelled data -

Sp Slope to estimate picophytoplankton biomass Dimensionless

Sp,n
Slope to estimate combined pico- and
nanophytoplankton biomass Dimensionless

W Notation for water -

Y Notation for coloured dissolved organic matter,
or yellow substances -

δ Bias -
∆ Mean relative error -
λ Wavelength nm

ρw
Water-leaving reflectance (referred to as ‘satellite
reflectance’ when it is derived from satellite) Dimensionless

ρA
w Uncorrected ACOLITE-based satellite reflectance Dimensionless

ρP
w

Uncorrected POLYMER-based satellite
reflectance Dimensionless

ρw
′ Corrected satellite reflectance Dimensionless

ρA′
w Corrected ACOLITE-based satellite reflectance Dimensionless

ρP′
w Corrected POLYMER-based satellite reflectance Dimensionless
ψ Root mean square error -
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