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A B S T R A C T   

The land-affected signal in remotely sensed radiance from nearshore waters is a common problem for remote 
sensing, introducing uncertainty in atmospheric correction and subsequent water quality constituent concen-
tration estimates. This study proposes a new method for identifying effects of land on satellite remote sensing of 
water quality. The new optical water types (OWT) containing the land-affected signal were derived from 
POLYMER-corrected imagery of the Medium Resolution Imaging Spectrometer in reduced resolution (MERIS RR) 
and Sentinel-3 Ocean and Land Colour Instrument (OLCI). These were then applied, as part of a larger set of 
existing OWTs corresponding to the variability observed in natural waters, to satellite images. The ability to 
identify pixels containing both water and land, and those contaminated with radiance from adjacent land, was 
evaluated. Our test sites include dark lakes of varying size in Sweden (Lakes Rusken, Bolmen, Ringsjön, and 
Ivösjön) where the classification showed high sensitivity to land near the lake shore. The land-affected signal is 
shown to lead to underestimations of chlorophyll-a concentration and Forel-Ule colour indices, and over-
estimations of turbidity in these lakes, which can be corrected after masking out the land-affected pixels. The 
land-affected signal is strongest in summer, both NDVI and sun zenith angle covaried with the seasonal variation 
of land-affected signal. Further, the results confirmed that satellite images with coarser spatial resolution are 
more prone to land-affected signal compared to images with finer spatial resolution, for small inland water 
bodies. We propose a data-driven approach for water quality processing with ‘land-affected water types’ as an 
effective way to improve the lake optical water quality monitoring from water colour sensors.   

1. Introduction 

Nearshore waters are important habitat for fish, fowl, and other 
wildlife, and provide ecosystem services that are fundamental to societal 
wellbeing (Edsall & Charlton, 1997; Vadeboncoeur et al., 2011). Near-
shore waters are subject to multiple conflicting societal and economic 
demands. They are often under pressure from multiple anthropogenic 
activities, such as fishing, transportation, construction of power plants, 
dredging, and discharge of pollutants (Edsall & Charlton, 1997; Blaber 
et al., 2000; Jägerbrand et al., 2019). Satellite-based Earth observation 
(EO) methods can improve our understanding of these systems and 
provide actionable information to support conservation and manage-
ment solutions. However, monitoring of nearshore waters from optical 
remote sensors is challenging due to a variety of reasons including 

complex shoreline morphologies, optically shallow water, and vegeta-
tion. Mixing of light reflected from the water column with light reflected 
from adjacent land, sensitivity to the composition of the atmosphere 
above water bodies, and the geometry of incident light and sensor field- 
of-view can also challenge remote sensing applications in nearshore 
waters. 

These challenges are often linked with contamination of the remotely 
sensed signal by land surfaces nearby. We can distinguish two ways in 
which the land signal might interface with remote sensing of water 
surfaces. The first is where land presents at a subpixel scale within a 
pixel associated with water (Yamazaki et al., 2015; Klein et al., 2017). 
This is challenging to determine due to the dynamic nature of water 
extend and the spatial resolution (typically 300 m) of water colour 
sensors. We refer to this as the “land–water mixed pixel” problem. The 
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second is mixing of sunlight reflected by land and in water column, 
which occurs in the atmosphere. The degree of mixing contaminates 
with the signal from water depends on many factors such as the contrast 
between land and water albedo (wavelength dependent), distance to 
land, aerosol abundance and types, land cover type, view and sun ge-
ometries (Santer & Schmechtig, 2000; Bulgarelli & Zibordi, 2018; Bul-
garelli et al., 2018). We call this “land-adjacency effect”. We refer to the 
land–water mixed pixel problem and land-adjacency effect collectively 
as “land-affected signal” problem in this study, and those pixels suffering 
from the land-affected signal are referred to as “land-affected pixels”. 
Inland waters, especially small aquatic systems, are susceptible to land- 
affected signals, which can lead to errors in atmospheric correction, and 
consequently in the derived remote sensing products (Santer & 
Schmechtig, 2000; Giardino et al., 2007; Bulgarelli et al., 2018). 

Various studies have proposed procedures to minimize or remove the 
land-affected signal over inland and coastal waters. Some studies sug-
gest to exclude pixels within a fixed distance from the shoreline, to 
reduce the influence from land-water mixed pixels and, to some extent, 
adjacency effects (Wang et al., 2018; Jiang et al., 2019). However, these 
approaches are not selective and can also remove water pixels which are 
not affected by land. Moreover, adjacency effects are not only limited to 
a few pixels from the shore but can be detected several kilometres 
offshore in inland and coastal waters. Other methods attempt to identify 
and flag the pixels influenced by adjacency effects. For example, Mat-
thews and Odermatt (2015) proposed to flag pixels affected heavily by 
adjacent land using empirically determined thresholds of maximum 
peak height (MPH) and normalized difference vegetation index (NDVI), 
and the position of the reflectance peak in the near-infrared (NIR) 
wavelengths. Some approaches attempt to remove the adjacency effects 
from satellite images. Sterckx et al. (2015) proposed the SIMilarity 
Environment Correction (SIMEC) for adjacency effects correction for 
Medium Resolution Imaging Spectrometer (MERIS) data. SIMEC is 
based on the NIR similarity spectrum and corrects the adjacency effects 
before implementing an atmospheric correction algorithm. Kiselev et al. 
(2015) suggested an algorithm for correcting adjacency effects, which is 
based on the point spread function (PSF) and can be applied to any 
satellite or airborne sensors’ data. Despite these efforts, lack of pre-
dictability and independent observations to bound the problem still 
hinders the application of remote sensing for monitoring nearshore 
waters. 

The magnitude and shape of the water reflectance spectrum in the 
visible and infrared contain information on key-coloured substances 
such as phytoplankton pigments, organic and inorganic suspended 
particulates, and dissolved compounds (Kirk, 1984). Optical water type 
(OWT) classification has been suggested over the last forty years (Jerlov, 
1977; Morel & Prieur, 1977) as a mechanism to delineate water masses 
in oceanic, coastal and inland systems based on their optical properties. 
For example, Moore et al. (2014) classified seven OWTs to show that 
blending OC4 and 3-band MERIS algorithms assigned as a function of 
OWT membership can improve chlorophyll-a (Chl-a) retrieval accuracy. 
Wei et al. (2016) identified 23 OWTs based on in situ water reflectance 
spectra, which was applied to assess the quality of in situ reflectance 
spectra. Spyrakos et al. (2018) identified 13 OWTs for inland waters and 
9 OWTs for coastal waters based on in situ measured reflectance spectra. 
OWT classification can act as a guide to select the most suitable water 
quality retrieval algorithm for a specific water type in EO applications. It 
has been shown that blended algorithms based on OWT classification 
can improve the retrieval accuracy of water quality indicators, like Chl-a 
concentration (Matsushita et al., 2015; Neil et al., 2019; Cui et al., 2020; 
Liu et al. 2021), water transparency (Jiang et al., 2019; Qing et al., 
2021), and total suspended solids concentration (Balasubramanian 
et al., 2020; Jiang et al., 2021). 

In the same way that OWTs describe how biogeochemically relevant 
substance concentrations form naturally occurring clusters of water 
colour, it may be assumed that the land-affected signal introduces var-
iations in the perceived water colour. Whilst the mixing of these signals 

in the atmosphere can be physically formulated, it is not known how the 
contaminated water-leaving radiance appears following atmospheric 
correction of optical imagery, which is a common step in the interpre-
tation of satellite imagery of water quality. This study aims to charac-
terise the propagation of the land-affected signal throughout the water 
quality processing chain in order to exploit potential systematic be-
haviours. Specifically, land-affected signals could be flagged by 
extending the existing OWT classification to include major or subtle 
OWT variations introduced by land. Here, we use water-leaving reflec-
tance (Rw) from the European Space Agency (ESA) Climate Change 
Initiative Lake (Lakes_cci) product, which were derived with POLYMER 
atmospheric correction (Steinmetz et al., 2011; Simis et al., 2020). The 
analysis is performed over a series of low reflectance boreal lakes, where 
brownification has been reported (Klante et al., 2021; Arzel et al., 2020; 
Taipale et al., 2016). Contamination of water colour observations by 
land is particularly relevant in dark lakes (high land/water contrast) and 
requires adequate data masking in order to monitor brownification over 
long periods using multiple satellite sensors. 

The specific objectives of this study are to: (1) analyse Rw over a 
gradient of high to low influence of land-affected signals in inland water 
remote sensing images, and identify typical spectral signature which can 
be adopted as new OWTs for the land-affected signal; (2) use the newly 
identified OWTs for the land-affected signal to flag and mask land- 
affected observations; (3) explore the influence of the land-affected 
signal on water colour and subsequent water quality variable retrievals. 

2. Data and methodology 

2.1. Study area 

This study mainly focused on four lake areas in southern Sweden: 
lakes Rusken, Bolmen, Ringsjön and Ivösjön (Fig. 1). These lakes have a 
minimum water surface area of 34 km2 (Lake Rusken), and a maximum 
area of 171 km2 (Lake Bolmen). Islands are present in Lake Rusken, 
mainly in the southern part (Fig. 1a). Lake Bolmen surrounds the large 
Bolmsö island and has additional smaller islands in the central and 
northern parts of the lake (Fig. 1b). Lake Ringsjön consists of a western 
part and an eastern part connected by a narrow waterway, and in 
contrast to other lakes in this study, there is only one small island in the 
western part of this lake (Fig. 1c). Lake Ivösjön is divided into two basins 
with a large island in the centre of the eastern part of the lake (Fig. 1d). 
Among the studied lakes, shorelines of Lake Ringsjön are relatively less 
complex than other lakes. The main land cover types around the studied 
lakes are forest and arable land (O’Dwyer, 2019; Klante et al., 2021). 

2.2. In situ data 

We used in situ Chl-a data to assess the impact of the land-affected 
signal on Chl-a concentration estimates. Chl-a concentration records 
for water samples from lakes Bolmen and Ringsjön during 2002 and 
2019 were retrieved from the Miljödata MVM database (https://mil 
jodata.slu.se/MVM/). Satellite matchups were defined as measure-
ments of in situ data on the same day of the satellite overpass. This 
resulted in 76 Chl-a matchups, of which 68 matchups were from three 
stations in Lake Ringsjön (Fig. 1c) and 8 matchups measured at two 
stations in Lake Bolmen (Fig. 1b). 

2.3. Satellite data 

We used the Rw, Chl-a concentration, turbidity, and land–water 
fraction (LWF) data from an intermediate product of Level-2 ESA 
Lakes_cci version 1.0 product for lakes Rusken, Bolmen, Ringsjön and 
Ivösjön. L3S daily aggregated 1-km reprojection of this dataset is 
available through the Lakes_cci (https://climate.esa.int/en/projects/la 
kes/data/). The Calimnos processing chain was employed for the pro-
cessing of the Medium Resolution Imaging Spectrometer reduced 
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resolution (MERIS RR) with a ~ 1.2 km and Sentinel-3 Ocean and Land 
Colour Instrument (OLCI) with a ~ 300 m on-ground resolution at sub- 
satellite point. The MERIS RR was used rather than MERIS full resolution 
(MERIS FR), because MERIS RR has better global coverage particularly 
during the first years of the mission (Odermatt et al., 2018). The specific 
algorithms for Rw and the derived water quality products are described 
in Simis et al. (2020) and Liu et al. (2021). Briefly, POLYMER v4.12 
atmospheric correction (Steinmetz et al., 2011) was applied to MERIS 
RR (2002–2012) and OLCI (2016–2019) images to yield Rw values. Chl-a 
and turbidity products were derived based on weighted blending of 
water constituent algorithms tuned to each OWT (Spyrakos et al., 2018; 
Neil et al., 2019). Rw from lakes Rusken and Bolmen were used to 
develop the OWT-based land-affected signal flagging framework, while 
its applicability was tested in an independent Rw dataset from lakes 
Ringsjön and Ivösjön. Chl-a concentration and turbidity data were used 
to assess how these are affected by the land-affected signal. 

LWF data describes the fraction of water coverage (with 0 for land, 
100 for water, and value in between for land–water mixed pixels), which 
was determined from the Shuttle Radar Topography Mission (SRTM, 
Farr et al., 2007) and derived using the Land/Water Mask Algorithm 
from the Sentinel Application Platform (SNAP). This static map was used 
to assess proximity to land. The Forel-Ule (FU) colour index, with scales 
from 1 (deep blue) to 21 (yellowish-brown), was calculated for the 
studied lakes using the method from Woerd et al. (2015) based on Rw, it 
was used to analyse the influence of the land-affected signal on water 
colour retrievals. 

2.4. Development of flagging method 

2.4.1. Selection of data points for spectral analysis 
We statistically analysed how the spectral shape and magnitude 

changed when transitioning from lake centre towards the shore. Based 
on the size of the lake, and the spatial resolution of MERIS RR and OLCI, 

we selected either three or four points from lake centre to the shore (P0, 
P1, P2, P3 in Figs. 2–3), and extracted the Rw of these three (or four) 
points from all available images between 2002 and 2019. 

The colour scale in Figs. 2–3 indicates the LWF (%), a pixel with LWF 
< 100 % indicates a risk or likelihood of land presence, while a pixel 
with LWF = 100 % means the pixel only includes water. The selected 
points in both lakes represent water pixels with high LWF at lake centre 
and land–water mixed pixels with low LWF near the lake shore, thus to 
cover a gradient of low to high influence from the land-affected signal. 

2.4.2. Development of new OWTs for the land-affected signal 
The 13 OWTs developed for inland waters by Spyrakos et al. (2018) 

were included in the Lakes_cci product, and used in Chl-a concentration 
and turbidity retrievals (Simis et al., 2020; Liu et al., 2021). In this study, 
we identified two new OWTs for the land-affected signal and extended 
the existing 13 OWTs to 15 OWTs. We named these two OWTs OWT-14 
and OWT-15 for collective application purpose with the existing OWTs. 
To explore the spectral signature variations from lake centre to lake 
shore, we analysed the MERIS RR and OLCI Rw extracted from lakes 
Rusken and Bolmen described in section 2.4.1, and their covariation 
with LWF. Based on the above analysis, it was assumed that pixels with 
0 %<LWF < 100 % are more likely subject to the land-affected signal. To 
determine the typical spectral shape of new OWTs for the land-affected 
signal, we firstly extracted the spectra of all pixels with 0 %<LWF < 100 
% from all MERIS RR and OLCI images for Lakes Rusken and Bolmen. We 
then standardized these extracted spectra with a division by the area 
between the spectrum and a zero baseline (Spyrakos et al., 2018). The 
new OWTs were determined as the median value of the standardized 
spectra from MERIS RR (OWT-14) and OLCI (OWT-15), respectively. 

2.4.3. Framework of flagging the land-affected signal 
For a given atmospherically corrected satellite image pixel, the OWT- 

based land-affected signal flagging method proposed in this study in-

Fig. 1. The studied lakes in Sweden: (a) Lake Rusken, (b) Lake Bolmen, (c) Lake Ringsjön, (d) Lake Ivösjön. Red points in lake Bolmen and Ringsjön represent the 
monitoring site of in situ data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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cludes three main steps:  

(1) Standardize the Rw spectrum with a division by the area between 
the spectrum and a zero baseline. 

(2) Calculate OWT membership score based on spectral angle be-
tween the standardized Rw spectrum and each of the 15 OWTs 
using the following equations: 

Fig. 2. Locations for spectral analysis in Lake Rusken, P0–P2 represent the selected points from lake centre to lake shore. (a) Locations shown on MERIS RR image. 
(b) Locations shown on OLCI image. Colour indicates the land–water fraction. 

Fig. 3. Locations for spectral analysis in Lake Bolmen, P0–P3 represent the selected points from lake centre to lake shore. (a) Locations shown on MERIS RR image. 
(b) Locations shown on OLCI imagery. Colour indicates the land–water fraction. 
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SOWT = 1 − α/π (2)  

where pi is the reflectance in band i for the satellite image pixel, and ri is 
the reflectance in band i for the reference OWT spectrum, α is the 
spectral angle between a satellite image spectrum and a reference OWT 
spectrum in radians. SOWT is OWT membership score in a range of zero to 
one, where one implies an identical spectral shape.  

(3) The OWT corresponding to the maximum SOWT is identified as the 
optical water type for this pixel. 

Repeating the above steps for all pixels, will create a new image layer 
with OWTs from 1 to 15, where pixels without the land-affected signal 
will be in between OWT-1 and OWT-13, and pixels with the land- 
affected signal will be identified as OWT-14 or OWT-15. A new mask 
layer with binary value can also be created based on the OWT layer. For 
example, users can assign the value of pixels which show OWT-1 to 
OWT-13 to 1, and assign the value of pixels which show OWT-14 or 
OWT-15 to 0. This mask layer could be used to exclude observations 
with potential influence from the land-affected signal. 

2.4.4. Analysis of the land-affected signal and its impact on water quality 
retrievals 

To study the spatial distribution of land-affected signals, we calcu-
lated the land-affected signal frequency index (LSI) for each pixel in each 
lake based on the results of applying the flagging framework in section 
2.4.3 to all MERIS RR and OLCI images. For each pixel in a lake, the LSI 
is calculated as: 

LSI =
NL

NT
× 100 (3)  

where NL is the number of images influenced by the land-affected signal 

(OWT-14 or OWT-15) and NT is the number of total valid images for this 
pixel. LSI reflects the frequency of one pixel being flagged as land- 
affected in a lake, its value ranges from 0 % to 100 %, with a higher 
value implying more often affected by the land-affected signal. To 
explore the seasonal variability of land-affected signal, we calculated the 
mean LSI values for four seasons (Spring: March–May, Summer: June-
–August, Autumn: September–November, and Winter: December–Feb-
ruary) in all studied lakes. 

Impacts of the land-affected signal on the retrieval of water colour 
and water quality variables were firstly assessed by validating Chl-a 
retrievals with in situ data, and then assessed by comparing the statis-
tics of lake average Chl-a concentration, turbidity and FU value before 
and after masking out land-affected pixels. 

3. Results 

3.1. Rw spectra from lake centre to shore 

Distinct changes in spectral magnitude and shape can be observed 
when transitioning from lake centre to the shore in Lake Rusken (Fig. 4) 
and Lake Bolmen (Fig. 5). The spectral magnitude at lake centre is 
generally low in the two lakes for both MERIS RR (Fig. 4a, 5a) and OLCI 
(Fig. 4d, 5e) images, and the magnitude of spectra increases gradually 
from lake centre to lake shore in the two lakes for both MERIS RR 
(Fig. 4a–4c, Fig. 5a–5d) and OLCI (Fig. 4d–4f, Fig. 5e–5 h). The spectral 
shape also changes from lake centre to the shore for both sensors. This 
change is most prominent in the NIR wavelengths (700–800 nm, e.g., 
Fig. 4c, 4f, 5d, 5 h) where reflectance values increase towards the shore. 

In addition, differences in spectral shape of the pixel selected at lake 
shore can be observed between MERIS RR and OLCI. Rw in the short 
wavelengths (400–500 nm) from MERIS RR images is higher than those 
observed from OLCI images (e.g., Fig. 4c vs 4f). Rw in NIR wavelengths 
(700–800 nm) from MERIS RR imagery is lower than observed from 
OLCI imagery (Fig. 5d vs 5 h). Despite these differences at the lake shore, 
the MERIS RR (Fig. 4c, 5d) and OLCI (Fig. 4f, 5 h) spectral shape at lakes 
Rusken and Bolmen are highly similar between these lakes. The above 

Fig. 4. Spectra at the selected points in Lake Rusken. (a)–(c): Spectra at P0–P2 from MERIS RR. (d)–(f): Spectra at P0–P2 from OLCI. Black solid line represents 
median value, red area represents 25%–75% quantiles, and light red area represents 10%–90% quantiles. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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characteristics show the consistency of spectral shapes at lake shore in 
the two lakes, and also indicate that the spectra of the land-affected 
signal should be identified for MERIS RR and OLCI separately. 

The LWF value is found to be highly related with the spectral char-
acteristics when moving from lake centre to the shore (Figs. 2–3, and 
Figs. 4–5). When pixels are located at lake centre with very high LWF 
values (e.g., P0 in Fig. 2b), Rw is low (Fig. 4d). When pixels are located 
between lake centre and land with medium LWF values, the magnitude 
and shape of the spectra change compared to those pixels at lake centre 
(e.g., P1 in Fig. 2b and 4e). In cases of those pixels nearby land with very 
low LWF values (e.g., P2 in Fig. 2b), the spectral magnitude increases 
significantly and the spectral shape in the NIR changes clearly (Fig. 4f). 
This suggests that variability in the LWF is reflected in the pixels’ 
spectral shape and magnitude. 

3.2. Spectral signature for the land-affected signal 

Fig. 6a shows the two new OWTs identified from MERIS RR and OLCI 
for the land-affected signal. They are the median value of the stan-
dardized spectra extracted from pixels with LWF between 0 and 100 % 
as detailed in section 2.4.2. Fig. 6b shows the top two dominated 
existing OWTs (47 % of all MERIS RR and OLCI images) from Spyrakos 

et al. (2018) for the centre of Lakes Rusken and Bolmen. We can see that 
the shape of the two new OWTs for the land-affected signal are different 
with the top two existing OWTs in these two lakes in all wavelengths, 
especially in the NIR. Also, the spectral shape between the two new 
OWTs for the land-affected signal are different throughout the spectrum, 
where the standardized Rw of MERIS RR is higher at blue–green bands 
and lower at red–NIR bands than OLCI, but both spectra showed high 
reflectance in the NIR wavelengths. We named the new OWT from 
MERIS RR as OWT-14, and the new OWT from OLCI as OWT-15 as an 
extension of the 13 existing OWTs from Spyrakos et al., (2018). In ap-
plications, when the spectrum of a pixel shows maximum membership 
with OWT-14 or OWT-15, it will be flagged as a land-affected pixel 
(section 2.4.3). 

3.3. Spatial effects 

Land-water mixed pixels close to the lake shore (yellow pixels in 
Figs. 7 and 8) have, as expected, the highest LSI values. The LSI is also 
relatively high in pixels located from lake shore to lake centre, but lower 
than those directly located at the lake shore. The lowest LSI is in the 
centres of both Lake Rusken and Bolmen. For example, the LSI at P0, P1 
and P2 (same locations as in Fig. 2) in Lake Rusken are 19 %, 32 % and 

Fig. 5. Spectra at the selected points in Lake Bolmen. (a)–(d): Spectra at P0–P3 from MERIS RR. (e)–(h): Spectra at P0–P3 from OLCI. Black solid line represents 
median value, red area represents 25%–75% quantiles, and light red area represents 10%–90% quantiles. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 6. (a) Typical standardized Rw spectra indicating the presence of the land-affected signal. (b) The spectral shapes of the top two dominating OWTs from 
Spyrakos et al. (2018) for the centres of Lakes Rusken and Bolmen. 
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93 % respectively for OLCI. Pixels close to large islands also show high 
LSI values, such as the pixels close to the two islands in the southern part 
of Lake Rusken (Fig. 7b). These results indicate that not only land–water 
mixed pixels, but also pixels with some distance to lake shore are 
influenced by the adjacent land. 

It can be also seen that the LSI maps between MERIS RR and OLCI are 
different. Overall, the LSI values for MERIS RR are higher than those for 
OLCI, especially in lake centre. For example, in the centre of Lake 
Rusken (P0), the LSI values from MERIS RR and OLCI are 83 % and 19 %, 
respectively. For the centre of Lake Bolmen (P0), the LSI values from 
MERIS RR and OLCI are 37 % and 27 %, respectively. 

Our OWT-based framework is able to capture the land-affected signal 
in both MERIS RR and OLCI datasets from lakes Ringsjön and Ivösjön. 
LSI values decrease from the shore to centre gradually for both lakes 
Ringsjön (Fig. 9) and Ivösjön (Fig. 10). In Lake Ringsjön, the minimum 

LSI values are 14 % and 3 % for MERIS RR and OLCI, respectively. In 
Lake Ivösjön, the minimum LSI values are 38 % and 6 % for MERIS RR 
and OLCI, respectively. It should be noted that the LSI values at the 
central part of Lake Ringsjön (Fig. 9) are clearly lower than the LSI 
values at central areas of Lake Ivösjön (Fig. 10), Lake Rusken (Fig. 7) and 
Lake Bolmen (Fig. 8). Furthermore, LSI spatial patterns are the same 
between MERIS RR and OLCI with higher LSI at lake shore and lower LSI 
at lake centre. The overall LSI values are higher for MERIS RR than for 
OLCI. 

3.4. Impact of the land-affected signal on the remote sensing retrieval of 
water quality variables 

We compared the validation results of Chl-a concentration before 
and after masking out land-affected pixels (i.e., pixels identified as OWT- 

Fig. 7. Land-affected signal frequency maps for Lake Rusken from (a) MERIS RR, (b) OLCI.  

Fig. 8. Land-affected signal frequency maps for Lake Bolmen from (a) MERIS RR, (b) OLCI.  
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14 or OWT-15). There are 29 data points identified as OWT-14 or OWT- 
15 in the matchups. There are many underestimated Chl-a concentra-
tions with a bias of − 0.5, which are caused by the influence of adjacent 

land (red points in Fig. 11a). After masking out land-affected data 
points, satellite derived Chl-a concentrations are more consistent with in 
situ measured data (Fig. 11b), with the root mean squared error (RMSE) 

Fig. 9. Land-affected signal frequency maps for Lake Ringsjön from (a) MERIS RR, (b) OLCI.  

Fig. 10. Land-affected signal frequency maps for Lake Ivösjön from (a) MERIS RR, (b) OLCI.  

Fig. 11. Comparison and validation of Chl-a concentration derived from satellite images. (a) Validation before masking land-affected pixels, (b) validation after 
masking land-affected pixels. The original results of 15 OWTs are re-grouped into two groups for better comparison, blue points indicate pixels which are identified as 
OWT 1–13 without land-affected signals, red points indicate pixels identified as OWT 14 or 15 with land-affected signals. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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decreasing from 0.9 to 0.5 (in log scale), median absolute percentage 
error (MAPE) from 86 % to 69 %, and an improved bias from − 0.5 to 0.2. 

Fig. 12 shows the density plots of lake average Chl-a concentration in 
the studied lakes. There are evident differences in Chl-a concentration 
before and after masking out land-affected pixels in all lakes. Generally, 
the lake average Chl-a concentration increases after masking out land- 
affected pixels. For example, in Lake Rusken, the median Chl-a con-
centration is 8.6 mg/m3 before masking, and this value increases to 21.5 
mg/m3 after masking (Fig. 12a). Similarly, the median value of lake 
average Chl-a concentration increases from 9.0 mg/m3 to 17.1 mg/m3 

for Lake Bolmen (Fig. 12b), from 17.9 mg/m3 to 36.3 mg/m3 for Lake 
Ringsjön (Fig. 12c), and from 10.5 mg/m3 to 15.9 mg/m3 for Lake 
Ivösjön (Fig. 12d). 

Contrasting results are found for lake average turbidity before and 
after masking of land-affected pixels (Fig. 13). A decrease from 21.0 
NTU to 5.2 NTU is observed in Lake Rusken after masking out land- 
affected pixels (Fig. 13a). Similarly, the median turbidity decreases 
from 18.6 NTU to 4.8 NTU for Lake Bolmen, and from 16.2 NTU to 2.1 
NTU for Lake Ringsjön, and from 17.8 NTU to 2.9 NTU for Lake Ivösjön 
as shown in Fig. 13. 

Comparing the lake average FU value after masking out land-affected 
pixels with the value before masking, it can be found that the FU value 
increases in all studied lakes (Fig. 14). The increase of FU value is more 
clear for lakes Rusken and Bolmen than lakes Ringsjön and Ivösjön, with 
the median value increasing from 6.4 to 13.4 for Lake Rusken (Fig. 14a), 
and from 6.0 to 11.6 for Lake Bolmen (Fig. 14b). The peaks of FU value 
change from ~ 4 to ~ 17 for Lake Rusken, and from ~ 4 to ~ 16 for Lake 
Bolmen, both indicating that the water colour changes from indigo-blue 
to greenish brown after masking out land-affected pixels. Changes of FU 
value are relatively small after masking out land-affected pixels for lakes 
Ringsjön and Ivösjön compared to the other two lakes, but they still 

increase from 6.8 to 9.9 (Fig. 14c), and from 5.3 to 9.0 (Fig. 14d), 
respectively. FU peaks also move to higher range but not as high as re-
sults for lakes Rusken and Bolmen. 

3.5. Seasonal variability of the land-affected signal 

LSI reveals a clear seasonal variation for both MERIS RR and OLCI 
images (Fig. 15), because the LSI values of land–water mixed pixels are 
always high (Figs. 7–10), the seasonal variation of LSI mainly depends 
on the change of adjacency effects on the pixels between lake centre and 
shore. The highest LSI values are observed in summer, which is indic-
ative of strong land-affected signal (especially adjacency effects). The 
lowest LSI values are detected in winter, which indicates that during 
winter the land-affected signal is weaker than other seasons. The sea-
sonal variation pattern of LSI is highly consistent among the four studied 
lakes. The absolute LSI values at Lake Ringsjön are lower when 
compared to the other three lakes for both MERIS RR and OLCI images. 
LSI values from OLCI images are lower than those from MERIS RR im-
ages, which have a coarser spatial resolution and are more likely influ-
enced by the land-affected signal than OLCI images. Fig. 16 shows an 
example of the average LSI in four seasons for Lake Rusken. It clearly 
demonstrates the spatial changes of the land-affected signal in different 
seasons. For example, the extent of high LSI values (yellow) increases 
from spring to summer (Fig. 16a to 16b), and then shrinks from autumn 
to winter (Fig. 16c to 16d). 

4. Discussion 

4.1. Applicability of the proposed flagging method 

In this study, we discriminate the spectral influence of land on Rw 

Fig. 12. Lake average Chl-a concentration before and after masking out land-affected pixels for (a) Lake Rusken, (b) Lake Bolmen, (c) Lake Ringsjön, and (d) 
Lake Ivösjön. 
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Fig. 13. Lake average turbidity before and after masking out land-affected pixels for (a) Lake Rusken, (b) Lake Bolmen, (c) Lake Ringsjön, and (d) Lake Ivösjön.  

Fig. 14. Lake average FU before and after masking out land-affected pixels for (a) Lake Rusken, (b) Lake Bolmen, (c) Lake Ringsjön, and (d) Lake Ivösjön.  
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over a gradient from shoreline to lake centre. Using these spectral sig-
natures in an OWT classification framework allows us to assess the 
severity of the influence by land-affected signals on the water observa-
tions. The usefulness of such a framework depends on its transferability 
to other water systems, whilst regional and temporal consistency is 
shown in this study. Specifically, the new OWTs developed based on 
observations from lakes Rusken and Bolmen in Sweden, are found to be 
applicable to datasets from lakes Ringsjön and Ivösjön. Our approach 
flags both pixels at the lake shore, where a mixing of land–water spectra 
is most likely, as well as a variable number of pixels between lake shore 
and lake centre because of adjacency effects (e.g., as shown in Fig. 2b 

and 7b). This, therefore, suggests a dynamic flagging of impacted ob-
servations is possible for each observed satellite scene, which can 
conserve a higher fraction of higher-quality observations than result 
from the application of static land masks (e.g., using LWF). The proposed 
approach has the additional benefit that it is adaptable to cope with a 
seasonally varying lake extent, which is not possible with a static land 
mask. 

As expected, our results showed increasing LSI from lake centre to 
lake shore (Figs. 7–10) as has been shown in other studies in lakes as 
well (e.g., Kiselev et al., 2015). The dominant land cover surrounding 
the studied lakes is vegetation (Forest and arable land, O’Dwyer, 2019; 

Fig. 15. Variation of mean LSI for the studied four lakes in different seasons. (a) Mean LSI from MERIS RR images. (b) Mean LSI from OLCI images.  

Fig. 16. Example of the seasonal variation of the frequency of observations with land-affected signals in Lake Rusken.  
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Klante et al., 2021), whilst snow cover may occur during December 
through April. Given that water efficiently absorbs light in the NIR, 
while vegetation has a high reflectance in the NIR, adjacency effects 
from surrounding vegetation or mixing of vegetation reflectance are 
likely to elevate the reflectance of water in the NIR wavelengths. The 
newly identified OWTs capture land-affected signal of which the main 
spectral feature is the high NIR reflectance (>700 nm), which agrees 
with previous research on adjacency effects by Tanré et al. (1987) in two 
lakes in North Carolina, and Kiselev et al. (2015) in Lake Constance. 

The two new OWTs are added here to the existing set of 13 OWTs 
from Spyrakos et al. (2018), which are derived from in situ hyper-
spectral reflectance datasets. It has to be noted that the two new OWTs 
are for land-affected signal flagging purpose only, and they are not 
employed in water quality variable retrievals using blending algorithms. 
The new OWTs can equally be applied to other existing sets of OWTs too, 
and they may be used to isolate land-affected signals from satellite- 
derived OWT spectra which may already include effects of land, in 
order to better separate these effects. The approach suggested in this 
study can also be repeated with additional atmospheric correction 
models or sensors to identify sets of new OWTs that carry information of 
land-affected signals specific to those atmospheric correction models or 
observation conditions. As an example, we show that similar spatial 
patterns of LSI as in Fig. 7 for Lake Rusken are achieved using Rayleigh- 
corrected MERIS RR and OLCI images, by repeating the steps in Sections 
2.4.2 and 2.4.3 (Fig. 17). 

The proposed method in this study can also be used with additional 
conditions to deal with land-affected signal flagging in different lakes. 
For example, we found that some pixels in the centre of some large 
oligotrophic lakes are erroneously flagged as land-affected pixels 
(Müller et al., 2021). An additional test on the sum of membership scores 
of OWT-14 and OWT-15 (with pixels only flagged where this number 
exceeds 1.59) has been added to deal with this problem in the ESA 
Lake_cci v2.0 product (Carrea et al., 2022). However, this additional 
criterion provides less strict flagging in small northern lakes and limits 
the improvement of water colour and water quality products. It is 
therefore recommended to provide multiple options for application- 
dependent flagging, although a revision of the full set of OWTs as sug-
gested above may provide a more consistent solution. 

Comparison of the OWT-based flagging method with the method 

proposed by Matthews and Odermatt (2015) highlights some further 
improvements gained by the presently proposed method. Applying their 
method on MERIS RR and OLCI images in Lake Rusken, we have 
observed opposite spatial patterns (Fig. 18) compared to our results 
shown in Fig. 17. This is because the NDVI values of nearshore pixels are 
higher than the threshold of 0.2 for adjacency effects flagging in the 
previously published method, and those nearshore pixels are finally 
erroneously identified as floating materials (e.g., algal blooms, vegeta-
tion) other than adjacency effects. 

4.2. Impacts on the retrieval of water quality variables 

The land-affected signal can heavily influence the shape and 
magnitude of Rw spectra and thus introduce errors to the retrieval of 
water quality variables (Santer & Schmechtig, 2000; Giadino et al., 
2007; Bulgarelli et al., 2018). Our results showed that land-affected 
signals can lead to biases in Chl-a and turbidity estimates (Figs. 11, 12 
and 13). For example, nearshore pixels in Lake Bolmen have lower Chl-a 
and higher turbidity retrievals compared to pixels at lake centre 
(Fig. 19a, 19b). In this study, 52 % of the pixels of the four lakes are 
classified into OWT-3, OWT-9, OWT-10, or OWT-13, so the OC2 algo-
rithm based on reflectance ratio between 490 and 560 nm has been used 
to derive the Chl-a concentration for those pixels (Liu et al., 2021). Land- 
affected signals lead to higher reflectance at 490 nm (Figs. 4 and 5), 
which increases the reflectance ratio between 490 and 560 nm 
(Fig. 19c), and finally leads to underestimation of Chl-a concentrations 
for land-affected pixels. There are 41 % of the pixels in this study clas-
sified into OWT-1, OWT-4, OWT-5 or OWT-6, where a NIR-Red algo-
rithm based on Gons et al. (2005) has been used to estimate the Chl-a 
concentration. The land-affected signal elevates the NIR reflectance, 
which can lead to higher Chl-a estimations, but strong land-affected 
signals can also lead to negative Chl-a estimations because the Rw at 
779 nm is too high (>0.137, Figs. 4 and 5). The single band centred 
around 709 or 754 nm are mainly used to derive turbidity in our studied 
lakes according to the OWT classification. The land-affected signal ele-
vates the reflectance at these wavelengths, which in turn leads to higher 
turbidity retrievals (e.g., Lake Bolmen, Fig. 19b, 19d). In FU calculation, 
the increase of the reflectance ratio within the visible domain with 
higher values in the blue wavelengths (e.g., Fig. 19c) leads to higher hue 

Fig. 17. Land-affected signal frequency maps detected in Lake Rusken using the framework proposed in this study, but the new OWTs (OWT-14, OWT-15) were 
determined from Rayleigh-corrected MERIS RR (2009–2011) and OLCI (2017–2019) images. The processing steps are otherwise the same as those described in 
sections 2.4.2–2.4.3. 
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Fig. 18. Land-affected signal frequency maps in Lake Rusken detected from (a) MERIS RR (2009–2011) and (b) OLCI (2017–2019) images using the method 
proposed by Matthews and Odermatt (2015). 

Fig. 19. Comparison of (a) Chl-a concentration, (b) turbidity, (c) Rw(490)/Rw(560) ratio, (d) Rw(754) between lake centre (P0) and lake shore (P3) of Bolmen, 
locations of P0 and P3 are same as those in Fig. 3. 
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angles, and therefore to lower FU. As it can be seen in Fig. 14, the 
calculated FU values increase after masking out land-affected pixels, i.e., 
water colour changes from indigo-blue to yellowish green or greenish 
brown. Because of known high coloured dissolved organic matters 
(CDOM) concentrations throughout the studied lakes, the FU values 
obtained after masking out land-affected pixels are considered more 
realistic. 

4.3. Spatial and seasonal variability of the land-affected signal 

The results in this study demonstrate the limitations of coarse sensors 
for monitoring small lakes, when the extent of the lake is covered by a 
small number of pixels. Even if those water bodies are observable by the 
sensor, their observations are more prone to suffer from land-affected 
signals. LSI for MERIS RR images (~1.2 km × 1.2 km spatial resolu-
tion, Fig. 7a, 8a, 9a, 10a) shows higher values than OLCI images (~300 
m × 300 m spatial resolution, Fig. 7b, 8b, 9b, 10b). These sensors are 
otherwise optically similar, and the same waveband sets are used for the 
atmospheric correction. Only pixels at the very centre of the lakes show 
low LSI values in the MERIS RR images. In lower spatial resolution 
images, one pixel can cover a wider area, so the likelihood to contain 
signals from adjacent land are higher. Lower resolution images have 
typically higher signal to noise ratio (SNR), which is more likely to 
exceed the detection threshold of the land-affected signal, and thus they 
can be more sensitive to such as adjacency effects (Bulgarelli & Zibordi, 
2018). Therefore, full resolution MERIS and OLCI images should be 
preferred for small inland waters. Unfortunately, MERIS FR archives do 
not have the same global coverage as MERIS RR (particularly during the 
first years of the operational phase), so that full climate data records 
have to combine both ideally. 

Our results confirm links between lake shape (or coastline 
complexity) and frequency of the land-affected signal. LSI values at the 
centre of lake Ringsjön (Fig. 9) are clearly lower than the LSI values at 
the centre of the other three lakes (Figs. 7, 8, 10), which seems to be 
associated with differences in coastline complexity. Lakes Rusken (34 
km2) and Ringsjön (39 km2) have similar surface area, whereas there are 
many scattered islands in Lake Rusken and only one small island in Lake 
Ringsjön. The shape of lake Ringsjön is rounder than lake Rusken, with 
maximum distances to land of 2.0 km and 1.4 km and perimeter/area 
(P/A) ratios of 1.79 and 2.95, respectively. 

The land-affected signal shows a clear seasonal variability in all 
studied lakes, with the strongest effects in summer and the weakest ef-
fects in winter (Figs. 15 and 16). We found that this variability has a 
significant positive relationship with the surrounding NDVI (R2 = 0.44 
for MERIS, R2 = 0.74 for OLCI, P < 0.01), and a negative relationship 
with sun zenith angle (R2 = 0.55 for MERIS, R2 = 0.67 for OLCI, P <
0.01) for the studied lakes. In summer, the sun zenith angle is lower 
(indicating higher light intensity and a shorter atmospheric path) and 
the surrounding vegetation is greener than in winter, thus there are 
more photons from nearby land pixels presenting more perturbation to 
the water pixels. However, because there are different number of 
available images in four seasons in the studied lakes (for MERIS: spring 
(N = 259), summer (N = 276), autumn (N = 210) and winter (N = 59); 
for OLCI: spring(N = 155), summer(N = 204), autumn (N = 126) and 
winter (N = 69)), snow or ice cover may also have potential impact on 
Rw. More specific studies on the seasonality of the land-affected signal 
and the factors influencing these seasonal variations are needed in the 
future. 

4.4. Uncertainties from atmospheric correction 

In this study, the spectral signatures for the land-affected signal are 
directly identified from atmospherically corrected satellite images. As 
shown in Fig. 6a, the POLYMER atmospheric correction produces some 
negatives values at 443 nm for OLCI, and between 650 and 700 nm for 
MERIS RR. Those negative values are possibly caused by adjacency 

effects (Sterckx et al., 2011; Sterckx et al., 2015) resulting in over-
correction for atmospheric or glint components resolved in POLYMER. 
In addition, different spectral shape and magnitude are observed be-
tween MERIS RR and OLCI for the same lake (e.g., Fig. 4c and 4f). These 
differences may be caused by: (1) an inconsistency of the atmospheric 
correction accuracy between MERIS RR and OLCI because of the dif-
ference in band configuration; (2) the different levels of land-affected 
signals, i.e., MERIS RR with lower NIR reflectance might be less 
affected by land, and OLCI with higher NIR reflectance might be more 
affected by land. The above-mentioned reasons might finally lead to the 
two different OWTs in this study (OWT-14 and OWT-15). Our further 
tests have found that using both OWT-14 and OWT-15 for land-affected 
pixel flagging showed better results than only using one OWT, e.g., only 
OWT-14 for MERIS RR, or only OWT-15 for OLCI. 

Atmospheric correction for inland waters remains a challenge 
(Palmer et al., 2015). Improvements of atmospheric correction methods 
are needed to address the consistency, stability and accuracy of long 
time series particularly at the global scale if regional adjustments to 
algorithms are not practicable. The definitions of OWTs and associated 
spectral signatures of land-affected signals allow for subtle adjustments 
to data flagging, masking and algorithm adjustments to be explored. We 
may consider to extend these definitions further with bottom reflectance 
effects, submerged and emergent vegetations or specific atmospheric 
disturbances (e.g., smoke, ash, pollen) in the future. 

5. Conclusions 

We have identified two new OWTs associated with land-affected 
signals from MERIS RR and OLCI images over Lake Rusken and Lake 
Bolmen in Sweden, which when added to a fuzzy OWT classification 
framework help to delineate the influence of nearby and sub-pixel land 
on water colour and water quality variable estimates. The identified new 
OWTs and proposed flagging method are transferable between four 
lakes in the same region in Sweden, ranging in shoreline complexity, 
density of islands and water colour. We conclude that (1) the OWT- 
based land-affected signal flagging method can provide reasonable 
flagging for remote sensing of inland waters; (2) the land-affected signal 
influences water colour and water quality variable estimates, which in 
this case leads to underestimation of Chl-a concentration and FU value, 
and overestimation of turbidity; (3) the land-affected signal shows clear 
seasonal variation, which is strongest in summer and weakest in winter, 
and associated with variations in land cover (NDVI) and illumination 
conditions (sun zenith angle); (4) coarser resolution satellite images are 
more likely to suffer from land-affected signal than finer resolution 
satellite images, particularly in small lakes. 
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