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Lake Erie, the shallowest of the five North American Laurentian Great Lakes, exhibits degraded water
quality associated with recurrent phytoplankton blooms. Optical remote sensing of these optically com-
plex inland waters is challenging due to the uncertainties stemming from atmospheric correction (AC)
procedures. In this study, the accuracy of remote sensing reflectance (Rrs) derived from three different
AC algorithms applied to Ocean and Land Colour Instrument (OLCI) observations of western Lake Erie
(WLE) is evaluated through comparison to a regional radiometric dataset. The effects of uncertainties
in Rrs products on the retrieval of near-surface concentration of pigments, including chlorophyll-a
(Chla) and phycocyanin (PC), from Mixture Density Networks (MDNs) are subsequently investigated.
Results show that iCOR contained the fewest number of processed (unflagged) days per pixel, compared
to ACOLITE and POLYMER, for parts of the lake. Limiting results to the matchup dataset in common
between the three AC algorithms shows that iCOR and ACOLITE performed closely at 665 nm, while out-
performing POLYMER, with the Median Symmetric Accuracy (MdSA) of �30 %, 28 %, and 53 %, respec-
tively. MDN applied to iCOR- and ACOLITE-corrected data (MdSA < 37 %) outperformed MDN applied
to POLYMER-corrected data in estimating Chla. Large uncertainties in satellite-derived Rrs propagated
to uncertainties �100 % in PC estimates, although the model was able to recover concentrations along
the 1:1 line. Despite the need for improvements in its cloud-masking scheme, we conclude that iCOR
combined with MDNs produces adequate OLCI pigment products for studying and monitoring Chla across
WLE.

� 2022 Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.
Introduction

The Laurentian Great Lakes system holds approximately 20 % of
the world’s available surface freshwater and represents an
immense economic, social, and ecological engine for the region
(Siman et al., 2021). Lake Erie, the shallowest (mean depth:
19 m, maximum depth: 64 m; Fay and Herdendorf, 1984) of the
five North American Great Lakes, is considered highly stressed
and deteriorating due to recurring phytoplankton blooms stem-
ming from the bioavailable phosphorus in the lake as an important
contributing factor (Baker et al., 2014). Lake Erie has received
major scientific and media attention in the last decade due to a
resurgence of cyanobacteria harmful ‘algal’ blooms (CyanoHABs;
see Table 1 for a list of terms and acronyms) (Watson et al.,
2016). In situ water quality monitoring is conducted to varying
extents by federal, provincial, and municipal levels of government
as well as academic institutions. However, the highly dynamic nat-
ure of HABs in space and time makes it difficult to adequately cap-
ture their occurrence when relying only on conventional sampling
and analysis of discrete water samples.

Remote sensing has made frequent synoptic detection, identifi-
cation, and risk assessment of HABs possible. A variety of bio-
optical algorithms have been developed to estimate near-surface
concentrations of chlorophyll-a (Chla; the primary photosynthetic
pigment in all phytoplankton) and phycocyanin (PC; an accessory
light-harvesting pigment that is most commonly found in
cyanobacteria) from satellite imagery. However, optical remote
sensing of these pigments is challenging due to atmosphere inter-
ferences and the uncertainties stemming from the application of
ensity
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Table 1
List of terms and acronyms.

Term/Acronym Description

AC Atmospheric Correction
ACOLITE Atmospheric Correction for OLI ’lite’
C2RCC Case 2 Regional Processor
Chla Chlorophyll-a
CyanoHAB Cyanobacteria Harmful Algal Bloom
DSF Dark Spectrum Fit
HICO Hyperspectral Imager for the Coastal Ocean
iCOR image correction for atmospheric effect
MPH Maximum Peak-Height
MAPE Mean Absolute Percentage Error
MERIS Medium Resolution Imaging Spectrometer
MDN Mixture Density Network
MSI MultiSpectral Instrument
OLCI Ocean and Land Colour Instrument
OLI Operational Land Manager
PC Phycocyanin
POLYMER POLYnomial-based algorithm applied to MERIS
PRISMA PRecursore IperSpettrale della Missione Applicativa
Rrs Remote Sensing Reflectance
SeaDAS SeaWiFS Data Analysis System
TOA Top-Of-Atmosphere
WLE Western Lake Erie
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corresponding atmospheric correction (AC) processors (Liu et al.,
2021). There are algorithms, however, that avoid (full-blown) AC
by using the top-of-atmosphere (TOA) or partially corrected TOA
data for pigment retrieval methods (Gower et al., 2008;
Matthews et al., 2012; Wynne et al., 2008). Such approaches have
been effective in the estimation of water quality parameters from
red and near-infrared wavebands for relatively turbid and produc-
tive waters.

Satellite observations have increasingly been integrated opera-
tionally into inland water algal bloommonitoring to provide public
information and early warning services. Programs such as the U.S.
Environmental Protection Agency (EPA) Cyanobacteria Assessment
Network (CyAN) project use data from the Copernicus OLCI (Ocean
and Land Colour Instrument) to make initial water quality assess-
ments in near real-time and alert managers to potential problems
and emerging threats related to cyanobacteria (Schaeffer et al.,
2018). The algorithm for retrieving the cyanobacteria abundance
in CyAN is based on the Cyanobacteria Index (CI; Wynne et al.,
2008), a spectral shape algorithm that employs the spectral albedo
at 665, 681, and 709 nm. The spectral albedo is generated by
removing the Rayleigh contribution and gaseous absorption from
the TOA spectral radiance. Other monitoring programs, such as
EOLakeWatch, have also been developed for Lake Erie. This lake
has been the focus of Environment and Climate Change Canada
(ECCC) research and monitoring initiatives under the Action Plan
for Clean Water due to concerns over persistent degraded water
quality from recurring HABs. ECCC developed the EOLakeWatch
program to deliver a suite of algal bloom indices derived using
OLCI for observations from 2016 to the present and its predecessor
Medium Resolution Imaging Spectrometer (MERIS) from 2002 to
2011 (Binding et al., 2021). The Chla retrieval algorithm imple-
mented in EOLakeWatch is based on the Maximum Chlorophyll
Index (MCI; Binding et al., 2021; Gower et al., 2008). MCI measures
the peak of TOA spectral radiance at 708 nm, relative to a baseline
interpolated between the bands either side. This algorithm is par-
ticularly favorable due to its relative insensitivity to uncertainties
from the atmospheric correction (Binding et al., 2021). Matthews
et al. (2012) presented a novel algorithm using MERIS Rayleigh-
corrected reflectance for estimating algal biomass (Chla),
cyanobacteria blooms, surface scum, and floating vegetation in
coastal and inland waters. The algorithm, referred to as the maxi-
mum peak height (MPH), is a red-edge baseline-subtraction algo-
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rithm using the position and magnitude of the Chla fluorescence
and particulate backscatter/absorption-related peaks in the red/
NIR bands of MERIS. Similar to Cyanobacteria Index, this algorithm
circumvents the error-prone aerosol removal used to derive the
water-leaving reflectance and corrects only for gaseous absorption
and the Rayleigh scattering (not aerosols). The baseline-
subtraction approach minimizes the effect of aerosols in the atmo-
sphere (Matthews et al., 2012).

Algorithms that estimate Chla from atmospherically corrected
red and near-infrared wavebands typically have the widest range
of applicability, while no single (semi)empirical algorithm can
retrieve Chla across all trophic states (Liu et al., 2021; Neil et al.,
2019). Therefore, to observe a range of trophic conditions, AC is
still considered an essential step in the remote sensing of water
quality. An ideal AC removes perturbing atmospheric effects that
vary as a function of imaging geometry and regional and seasonal
variability in atmospheric composition. This supports the use of
physics-based algorithms for biogeochemical variable retrieval,
allowing for better propagation of uncertainties when validation
data are typically scarce. There exist several AC algorithms for mul-
tispectral satellites. A new coastal AC algorithm is developed by
Schroeder et al. (2022) to process Sentinel-3 OLCI data. This algo-
rithm is based on the inversion of radiative transfer (RT) simula-
tions in a coupled atmosphere–ocean system using artificial
neural networks (ANN). The evaluation analysis in this study was
performed in the coastal waters of the Great Barrier Reef, Australia,
and resulted in a band-averaged (412 – 708 nm) mean absolute
percentage error (MAPE) of 16 % (Schroeder et al., 2022). The AC
for OLI ‘lite’ (ACOLITE; Vanhellemont and Ruddick, 2016) processor
was applied to Landsat-8 (L8) Operational Land Imager (OLI) and
Sentinel-2-MultiSpectral Instrument (MSI) images over the turbid
waters of the Río de la Plata estuary in (Maciel and Pedocchi,
2022). The most recent methodology in ACOLITE, the dark spec-
trum fit (DSF), is particularly suitable for sediment-rich waters
(Pahlevan et al., 2021). The study by Renosh et al. (2020) applied
several AC algorithms to MSI and OLCI data over moderately to
highly turbid estuarine waters in the Gironde Estuary (France).
Some of the algorithms applied to OLCI data include image correc-
tion for atmospheric effects (iCOR; de Keukelaere et al., 2018),
POLYnomial-based algorithm applied to MERIS (POLYMER;
Steinmetz et al., 2011), and the neural-net based algorithm Case
2 Regional processor (C2RCC; Doerffer and Schiller, 2007).
Windle et al. (2022) used a regional in situ dataset from the Chesa-
peake Bay to evaluate the performance of four AC algorithms
applied to OLCI data, including C2RCC, POLYMER, SeaDAS, and
the standard Level-2 OLCI data (Baseline Atmospheric Correction;
BAC). The statistical metrics demonstrated that C2RCC had the best
performance for their dataset, particularly for longer wavelengths
(>560 nm). Pahlevan et al. (2021) performed a thorough evaluation
of eight AC processors for Landsat-8 and Sentinel-2 data in the
Atmospheric Correction Intercomparison Exercise (ACIX-Aqua), a
joint NASA – ESA activity. The largest uncertainties in the best-
performing processors were associated with the blue bands (25
to 60 %). POLYMER was applied to Sentinel-2 MSI and Sentinel-3
OLCI data in Warren et al. (2021) to retrieve Chl-a and turbidity
data. Finally, O’Shea et al. (2021) employed a machine learning
model called Mixture Density Network (MDN; Pahlevan et al.,
2020) to estimate Chla and PC from remote sensing reflectance
(Rrs). To reduce the sensitivity to AC, a combination of band ratios
and line heights was also used in the model development. MDN
was applied to hyperspectral HICO (Hyperspectral Imager for the
Coastal Ocean) and PRISMA (PRecursore IperSpettrale della Mis-
sione Applicativa) data which were atmospherically corrected
using the SeaWiFS Data Analysis System (SeaDAS v7.5.3; Ibrahim
et al., 2018) and the Atmospheric and Topographic Correction
(ATCOR v.9.3.0; Richter and Schläpfer, 2002), respectively.
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Uncertainties in Rrs estimations are propagated to any derived
water quality product, depending on the sensitivity of the retrieval
algorithms (Liu et al., 2021). In this study, the application of AC
algorithms to OLCI data for retrieving Rrs and MDN in simultane-
ously estimating Chla and PC from atmospherically-corrected OLCI
datasets is examined for western Lake Erie (WLE). The AC algo-
rithms selected in this study include iCOR, ACOLITE, and POLYMER
processors, all of which were analyzed in Pahlevan et al., 2021.
iCOR and ACOLITE were particularly identified as top performers
across highly eutrophic waters. POLYMER is, on the other hand,
known for its capability in dealing with sunglint pixels and has
been shown to performwith varying degrees of success in different
regions (Warren et al., 2019). Our objectives include: (1) the eval-
uation of atmospherically-corrected Rrs products, derived from the
application of the three AC processors to OLCI, using field-
measured hyper- and multi-spectral radiometric data; (2) the eval-
uation of MDN (O’Shea et al., 2021) based Chla and PC products
estimation from the three atmospherically-corrected OLCI data-
sets; and (3) a comparison of the derived products
(atmospherically-corrected Rrs, Chla and PC) using a common
matchup dataset among the three AC algorithms.
Methods and datasets

Study area and in situ measurements

The selected study site, WLE, is the shallowest part of the lake
(Fay and Herdendorf, 1984) with CyanoHABs recurring annually.
WLE in situ data employed in this study were provided by the
National Oceanic and Atmospheric Administration (NOAA) Great
Lakes Environmental Research Laboratory (GLERL), from 2016 to
2019. Part of the WLE radiometric data were collected from the
Aerosol Robotic Network (AERONET; Zibordi et al., 2009) located
at 41.826⁰ N / 83.194⁰ W, from 2016 to 2019. Fig. 1 displays
WLE and the locations of monitoring stations.

During the bloom season (June – Oct), NOAA-GLERL measures
upwelling (Lu) and sky (Lsky) radiance during weekly water sam-
pling efforts, with a Satlantic Hypergun with radiance values at
137 channels and 1 nm intervals, in the range of 348.42 –
802.4 nm. Radiance data are radiometrically calibrated, and dark-
offset corrected using factory calibration files. Water leaving radi-
ance (Lw) is corrected for diffuse sky contamination
(Lw ¼ Lu � 0:028� Lsky; Mobley, 1999). After calculation of down-
Fig. 1. Western Lake Erie (WLE) and lo
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welling irradiance (Ed), surface water Rrs was calculated as Lw
divided by Ed. In addition, surface water samples (at a depth of
approximately 0.75 m; Binding et al., 2012, Binding et al., 2010)
are collected from the lake using Niskin bottles sampler (General
Oceanic’s Model 1010). Samples are then stored in the dark and
transported to NOAA-GLERL to measure the Chla and PC. Details
about the collection and processing of water samples, as well as
the in situ radiometric measurements are described in Zolfaghari
et al. (2021).

Following Pahlevan et al. (2021) and Spyrakos et al. (2018),
Zolfaghari et al. (2021) developed a subset of Optical Water Types
(OWTs). To assign each Rrs spectrum to one of the pre-defined
OWTs, the Rrs values were first standardized by dividing them by
the area under the curve. After standardization, the similarity of
each spectrum to the associated spectrum for each OWT was calcu-
lated applying the L2 norm (Euclidean) distance. Each spectrum
was then assigned to OWT with the closest distance. Fig. 2 displays
the average of hyperspectral data collected by NOAA-GLERL inWLE
for each. Fig. 3 shows the variability of in situ Chla and PC data for
each OWT. OWTs 1 (N = 24) and 2 (with largest number of sam-
ples; N = 104) are the common spectra found in oligotrophic
and/or coastal waters. OWTs 3 (N = 78) and 4 (N = 48) belong to
lakes and coastal estuaries with increasing phytoplankton bloom
densities and turbidity associated with detrital matters. OWT5
with the smallest number of samples (N = 13) represents waters
high in sediment. More information about OWT extractions and
their characteristics can be found in Spyrakos et al. (2018) and
Zolfaghari et al. (2021).

Accurate comparison between spectral data collected from field
measurements and by Sentinel-3A/B sensors requires considera-
tion of the differences in their spectral band characteristics (i.e.,
central wavelength, bandwidth, and Relative Spectral Response
functions -RSR-) (de Keukelaere et al., 2020). The NOAA-GLERL
hyperspectral radiometric data were convolved with the relative
spectral response function of OLCI to simulate their band-
equivalent Rrs for the evaluation of AC algorithms. Fig. 4 shows a
comparison between the spectral band characteristics of
AERONET-OC and Sentinel-3 sensors. Therefore, the assumption
of having similar spectral characteristics between in situ Rrs data
and the ones collected by OLCI is valid in this study.

Radiometric data collected at the AERONET-OC station cover 8–
11 bands within the 411 – 1020 nm range. Chla and PC are not
included in the measurements at this station. This dataset is used
for the evaluation of AC algorithms for OLCI bands within 411 –
cation of the collected in situ data.



Fig. 2. Average of NOAA-GLERL hyperspectral data in each OWT, collected in June-October from 2016 to 2019. N is the number of in situ spectra assigned to each OWT.

Fig. 3. Ranges of Chla and PC data collected from WLE by NOAA-GLERL (in June-
October from 2016 to 2019) are displayed in log scale for each OWT in a box and
whisker plot. The boxes display the median and the 25% and 75% quartiles of all
data in each OWT. The whiskers are a representation of 1.5 multiplication of an
interquartile range. Points are values outside this range.
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709 nm (excluding the one at 675 nm). More detailed information
about this station (SeaPRISM; the Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) Photometer Revision for Incident Surface Mea-
Fig. 4. Relative Spectral Response function of Sentinel-3 OLCI sensor and AERONET-OC
references to color in this figure legend, the reader is referred to the web version of thi
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surements) is available in Moore et al. (2019). Level 2.0 data (i.e.,
cloud-screened and quality controlled) collected at SeaPRISM sta-
tion from July 2016 to September 2019 were downloaded from
https://aeronet.gsfc.nasa.gov/. The normalized water-leaving radi-
ance (Lwn) data were converted into Rrs using Eq. (1) and the F0
(the exo-atmospheric solar irradiance, mW cm�2 lm�1) from
Thuillier et al. (1998).
RrsðkÞ ¼ LwnðkÞ
F0ðkÞ ð1Þ

The OLCI band at 400 nm and the ones longer than 780 nmwere
excluded from the following evaluation analysis, due to inadequate
radiometric coverage in the in situ Rrs data collected by NOAA-
GLERL and at AERONET-OC station.
Atmospheric correction algorithms

The list of AC processors evaluated for Rrs, Chla, and PC retrieval
in WLE, and their settings (processor default values) is provided in
Table 2. A short description of each is summarized in the following
sections.
bands plotted in dotted red and black lines, respectively. (For interpretation of the
s article.)

https://aeronet.gsfc.nasa.gov/


Table 2
List of AC processors applied to Sentinel-3 images in this study and their character-
istics (AE: adjacency effect correction, SG: sun glint correction, CM: cloud mask).

Processor iCOR (V7.0) ACOLITE
(V20211124.0)

POLYMER (V4.12)

Principle Rrs is retrieved from
aerosol attributes
removal based on
land pixels within
the sub(scene) (de
Keukelaere et al.,
2018).

Rrs is retrieved
from aerosol
attributes removal
based on
atmospheric path
reflectance
computed from the
dark pixel within
the (sub)scene
(Vanhellemont,
2019).

Rrs is retrieved
through spectral
optimization of a
coupled
atmosphere-water
system (Steinmetz
et al., 2011).

Feature Designed for both
land and inland
waters, but not
oceans (Warren
et al., 2019).

Designed to work
best for turbid and
productive waters
(Pahlevan et al.,
2021).

Specifically
designed for water
color remote
sensing, and
sunglint removal
(Müller et al., 2015;
Soppa et al., 2021).

AE No No No
SG No No Yes
CM Yes* Yes Yes (Idepix)

* However, the current research demonstrates that iCOR cloud mask is not
effective.
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iCOR
iCOR is developed and maintained by the Remote Sensing group

from the Vlaams Instituut voor Technologisch Onderzoek (VITO)
((de Keukelaere et al., 2018). It uses the Moderate-Resolution
Atmospheric Radiance and Transmittance Model-5 (MODTRAN5)
for calculation of radiative transfer model and uses Look-Up Tables
(LUT) for speeding up the process (de Keukelaere et al., 2020). iCOR
is a fully image-based correction approach requiring no additional
user inputs. iCOR finds the land pixels within the scene and deter-
mines the aerosol optical thickness using the spectral variability of
those pixels. If this fails, a default value of 0 is used for aerosol opti-
cal thickness, and only Rayleigh correction will be applied. There-
fore, iCOR is a fully self-contained method which makes it ideal for
batch processing and operational monitoring programs (Kravitz
et al., 2020). iCOR is designed for both land and inland waters,
but is not suitable for the ocean (since it requires a sufficient num-
ber and distribution of land pixels for the best results; Warren
et al., 2019). Warren et al. (2019) demonstrated that iCOR errors
decreases in inland waters compared to coastal waters, due to a
better approximation of aerosol from the presence of more land
pixels. Kravitz et al. (2020) applied iCOR on OLCI data, as well as
a suite of other AC models, to retrieve Chla concentration in four
inland water reservoirs in South Africa. Their results show that
the application of semi-analytic Chla retrieval algorithms to
in situ Rrs proved very successful for these small water targets;
however, Chla results did not improve when the same retrieval
algorithms were applied to iCOR processor in conjunction with
an adjacency correction model. iCOR was originally developed for
multispectral sensors with high spatial resolution and have now
been extended to an OLCI compatible processor too.
ACOLITE
ACOLITE is an AC processor developed by the Royal Belgian

Institute of Natural Sciences (RBINS) (Vanhellemont and Ruddick,
2016). It was developed for marine waters but is also applicable
to inland waters (Tóth et al., 2021). ACOLITE is an AC method that
estimates water-leaving radiance by simulating contributions from
molecular (Rayleigh) and particulate (aerosol) scattering using a
6SV-based look-up table (LUT) (Ilori and Knudby, 2020;
5

Kotchenova et al., 2008). The version of ACOLITE used in this study
applies the DSF scheme, which assumes a homogenous atmo-
sphere within the considered (sub)scene. This subscene contains
pixels with near-zero water-leaving radiances in one band
(Vanhellemont, 2019). ACOLITE was originally designed for Land-
sat (5/7/8) but has been modified and updated to process
Sentinel-2 (A/B) data.

Note that the ACOLITE version applied to OLCI imagery in this
manuscript (V20211124.0) corrected for gas transmittance twice
(as per the ACOLITE User Manual V20221025). Additionally, the
version applied to OLCI imagery in our work did not apply the Eur-
opean Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) system vicarious calibration (SVC) gains that are
applied as of ACOLITE V20221025.0. Due to these two differences,
resulting OLCI Rrs presented in this work (using V20211124.0) will
likely be biased high relative to OLCI Rrs produced using the most
up-to-date ACOLITE code.

POLYMER
A major issue in the AC for ocean color applications is sun glint.

POLYMER, developed by HYGEOS (Lille, France), is designed to
recover ocean color parameters in the whole sun glint pattern
(Steinmetz et al., 2011). This correction algorithm is based on an
iterative coupled ocean–atmosphere and polynomial spectral
matching technique where one component describes glint
(Giannini et al., 2021). A full description of the POLYMER algorithm
is provided in Steinmetz et al. (2011). Several studies (Giannini
et al., 2021; Pereira-Sandoval et al., 2019; Warren et al., 2019) have
evaluated the performance of POLYMER on multispectral data and
showed that it can outperform other existing AC methods, due to
its ability to handle thin clouds and sun glint (Soppa et al., 2021).
The application of POLYMER to retrieve Rrs from MERIS over the
Baltic Sea is compared to the application of a few other AC algo-
rithms in Qin et al. (2017). Results of this study show that POLY-
MER scored the highest based on a set of statistical tests (Qin
et al., 2017). The research by Mograne et al. (2019) compared the
performance of POLYMER applied to OLCI bands with five other
AC algorithms in two bio-optical contrasted French coastal waters.
Their results showed that POLYMER had the fastest processing
time and scored the highest accuracy when using the common
matchup dataset between all the five AC algorithms. POLYMER
was originally developed to process MERIS data; however, it has
been extended to process other multispectral sensor data.

In this study, OLCI images were first masked using Identification
of pixel properties (IdePix; developed by Brockmann Consult) in
Sentinel Application Platform (SNAP) to exclude land, cloud, ice,
and snow (although the study time period is ice- and snow-free,
from June to October). The internal masking routines of POLYMER
were disabled. The L2 bio-optical model of POLYMER was initial-
ized at 10 mg m�3 Chla and 10 g m�3 suspended matter (the
default settings are one order of magnitude lower) and with
extended bounds (0–1000 for each concentration range).

MDN

Mixture Density Networks (MDNs) differ from traditional neu-
ral networks in that they produce a mixture model to generate
estimates (Bishop, 1994). Succinctly, MDNs learn a probability dis-
tribution over the output space to learn multimodal target distri-
butions. This multimodality is a fundamental characteristic of
inverse problems, where a non-unique relationship exists between
input and output features. Using the probabilities generated for
each prediction, users may choose the maximum likelihood esti-
mate (the prediction with the highest probability) or the weighted
average of all predictions. The model input and output features are
in situ Rrs and in situ Chla or PC, respectively (O’Shea et al., 2021;
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Pahlevan et al., 2020b). The multimodal representation within the
target space allows for enhanced predictions compared to other
machine learning (ML) models. Traditional ML models like multi-
layer perceptron (MLP) or other empirical Chla models, however,
report a single estimate without insights into the distribution of
estimates. Research by Smith et al. (2021) has shown that for a
Chla retrieval task from Landsat-8/OLI observations, MDNs outper-
formed traditional MLPs by 20 to 30 %, an improvement attributa-
ble to the MDNs’ ability to handle the multimodal nature of inverse
problems. MDNs inherently learn the covariances among the out-
put features, improving the accuracy over models intended for
retrieving an individual parameter (Bishop, 1994). O’Shea et al.
(2021) showed that PC can be approximated from in situ hyper-
spectral observations with a median accuracy of 44 % and a linear
response for a broad range of cyanobacteria biomass. Other studies
have underscored the degradations in both Chla and PC estimates
from satellite observations compared to those from in situ radio-
metric spectra (O’Shea et al., 2021; Pahlevan et al., 2020a; Smith
et al., 2021).

Performance indicators

The performance of different approaches in estimating Rrs, Chla,
and PC from different AC algorithms was examined using both lin-
ear and log-transformed metrics. The linear metrics include MBE
(mean bias error), RMSE (root mean squared error), and MAPE
(mean absolute percentage error). The log-transformed metrics
consist of SSPB (symmetric signed percentage bias), MdSA (median
symmetric accuracy), MSA (mean symmetric accuracy), and RMSLE
(root mean square log-error). The evaluation metrics are carried
out using the estimated values (E) against the measured in situ data
(M). The metrics are calculated as follows:

SSPB ¼ 100sign zð Þ 10 zj j � 1
� �

%½ �; where z ¼ Median log10
E
M

� �� �
ð2Þ

MdSA ¼ 100 10y � 1
� �

%½ �; where y ¼ Median log10
E
M

� �����
���� ð3Þ

MSA ¼ 100 10y � 1
� �

%½ �; where y ¼ Mean log10
E
M

� �����
���� ð4Þ

RMSLE ¼
PN

i¼1 log10ðEið Þ � log10ðMiÞÞ2
n

" #1
2

ð5Þ

MBE ¼
PN

i¼1ðEi �MiÞ
n

" #
ð6Þ

RMSE ¼
PN

i¼1ðEi �MiÞ2
n

" #1=2

ð8Þ

MAPE ¼ 1
n

XN
i¼1

Mi � Ei

Mi

����
���� ð9Þ

The logarithmic metrics of SSPB, MdSA and MSA are symmetric
and resistant to outliers (Morley et al., 2018). The Theil-Sen esti-
mator slope (Theil, 1950) method is non-parametric, robust to out-
liers, and can produce accurate confidence intervals even when the
data is not normally distributed or when it represents
heteroskedasticity (Mancino et al., 2022). The Theil-Sen estimator
slope with a 90 % confidence interval is produced here. MBE, RMSE,
and MAPE are also included to facilitate comparisons with the pre-
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viously published results. MdSA is the central metric for intercom-
parisons. Spectral angle mapper (SAM; Yuhas et al., 1992) is a
spectral classification used in this study to calculate the similarity
between the reference spectra (in situ data) and Rrs spectra pro-
duced from each AC processor.

To compare the satellite-derived and field data, differences in
their spatial and temporal scales must be considered. In situ data
are ideally collected from homogeneous areas, to minimize the
effect of small-scale horizontal and temporal variations and to
compensate for potential geolocation errors in the satellite data.
Therefore, an average value of pixels (nominal pixel size: 300 m)
within a 3 � 3 windowwas used at each location. Only the window
average values that have concurrent in situ data at the center pixel
and have more than five neighbor pixels with valid (depending on
the flags in each algorithm) Rrs values in the window were
extracted for producing the metrics. Pixels with negative Rrs were
also excluded from the evaluation and MDN retrievals. Although
a maximum time window of three hours around the satellite over-
pass time for homogenous water masses is recommended (Bailey
and Werdell, 2006), due to the scarcity of in situ measurements
around satellite overpasses, a larger time window of one day (time
difference between satellite and field data acquisition) was consid-
ered to increase the size of the matchup dataset.
Results

Evaluation

This section presents the evaluation results of OLCI atmospher-
ically corrected products and the derived Chla and PC values for
each algorithm. Evaluation metrics are shown only for bands
shorter than 710 nm. The error values at wavebands longer than
710 nm were much larger than the ones for shorter bands, because
the Rrs values are smaller in this spectral region (as plotted in Elec-
tronic Supplementary Material (ESM) Figs. S1, S3, and S5). In each
processor, the size of the matchup dataset for Chla and PC evalua-
tion is smaller than the ones for Rrs evaluation because of the
absence of co-located Chla and PC data at the AERONET-OC station.
iCOR
Atmospheric correction. A batch of 219 OLCI images processed with
iCOR (iCOR4S3) had concurrent in situ measurements. There were
446 concurrent in situ measurements (i.e., matchups) of radiomet-
ric data, Chla, and PC with iCOR-corrected OLCI overpasses
between 2016 and 2019 in WLE. iCOR cloud flag was used to
exclude invalid pixels. 297 matchups were collected from the
AERONET station with no field measurements of Chla, PC, and OLCI
bands at 674, 754, and 779 nm. There were no measurements of
OLCI bands at 510, 560, 620, 682, or 709 nm for the 50 matchups
collected from the AERONET station.

Fig. 5 shows iCOR-Rrs values plotted against the in situ measure-
ments for selected OLCI bands. iCOR produced the Rrs values for all
OLCI bands shorter than 780 nm except those affected by Oxygen-
A absorption, i.e., at 761, 764, and 767 nm. From SSPB, iCOR
derived Rrs is biased high below 550 nm and biased low above
550 nm (ESM Fig. S2, SSPB). However, MBE suggests that iCOR-
derived Rrs is biased high across the spectrum (ESM Fig. S2,
MBE). Like the MBE results, overestimation of iCOR-derived Rrs

was generally observed across the visible spectrum for the ESA
Sentinel-2 Multi Spectral Imager (MSI) data in the Baltic Sea and
a number of European inland waters (Warren et al., 2019).
Warren et al. (2019) suggested that this under-correction of atmo-
spheric effects in iCOR is due to the methodology of the algorithm
to estimate the aerosol model. This methodology relies on the pres-
ence of land pixels in the scene. A summary of statistical indicators



Fig. 5. Scatterplots of iCOR-derived Rrs versus in situ Rrs for selected OLCI bands. The dashed line is the 1:1 relation line. Red line is the Theil-Sen estimator slope with 90%
confidence shown in the dashed red lines. Matchup data from AERONET-OC sites and NOAA-GLERL monitoring stations are plotted in pink and teal, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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estimated for each OLCI band to evaluate the performance of iCOR
in retrieving Rrs values is presented in ESM Fig. S2. Results show
that iCOR produced the lowest SSPB (-1.25 %), MdSA (16.91 %),
MSA (31.14 %), RMSLE (0.18), and MAPE (38.03 %) values for the
560 nm band. The highest estimates for SSPB, MdSA, MSA, MBE,
Fig. 6. Evaluation of MDN-derived Chla (left) and PC (right) applied to iCOR-corrected OLC
The dashed line is the 1:1 relation line.
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and MAPE were estimated for the OLCI band at 412 nm with values
of 83.26 %, 96.63 %, and 124.32 %, 0.007 sr-1 and 254 %, respectively.

MDN-retrieved products. MDN was applied to iCOR-corrected Rrs to
estimate Chla and PC. The retrievals against the field-measured
I bands. The Theil-Sen estimator slope with 90% confidence is reported for each plot.



Table 3
Performance of MDN in estimating Chla and PC from iCOR-corrected OLCI data.

N SSPB
(%)

MdSA
(%)

MSA
(%)

RMSLE MBE
[mg m�3]

RMSE
[mg m�3]

MAPE
(%)

Slope

Chla 137 –22.71 45.53 63.66 0.27 1.33 29.33 47.08 0.86
PC 137 49.53 114.45 176.57 0.58 8.07 119.61 300.31 0.98
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values are plotted in Fig. 6. The final iCOR matchup dataset had an
average in situ Chla and PC of 28.65 ± 28.70 mgm�3 and 21.98 ± 68.
08 mg m�3, respectively. MDN estimated Chla and PC with RMSLE
values of 0.27 and 0.58 from iCOR-corrected OLCI bands, respec-
tively. Despite the large uncertainties in PC retrievals, the predic-
tions exhibit a linear correspondence with in situ PC across three
orders of magnitude of concentrations, i.e., 0.1 – 100 mg m�3.
The performance indicators are summarized in Table 3.
ACOLITE
Atmospheric correction. A batch of 97 OLCI images processed with
ACOLITE had concurrent in situ measurements. The number of con-
current in situ measurements of radiometric data, Chla, and PC
with ACOLITE-corrected OLCI overpasses between 2016 and 2019
in WLE was 214. All ACOLITE-produced flags were used to exclude
invalid pixels. 152 matchups were collected from the AERONET
station with no field measurements of Chla, PC, and OLCI bands
at 674, 754, and 779 nm. In the ACOLITE matchup dataset, there
Fig. 7. Scatterplots of ACOLITE-derived Rrs versus in situ Rrs for selected OLCI bands. The
confidence shown in the dashed red lines. Matchup data from AERONET-OC sites and
interpretation of the references to color in this figure legend, the reader is referred to th
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were 40 samples with no measurements of OLCI bands at 510,
560, 620, 682, or 709 nm, collected from the AERONET station.

Fig. 7 shows ACOLITE-Rrs values plotted against the in situ mea-
surements for selected OLCI bands. ACOLITE produced Rrs for all
OLCI bands shorter than 780 nm except 761, and 764. ESM
Fig. S4 summarizes the performance assessment of ACOLITE in
estimating Rrs for different OLCI bands. ACOLITE produced the
lowest SSPB, MdSA, MSA, RMSLE, MBE, RMSE, and MAPE for bands
centered at 665, 674 and 682 nm with values of 21–47 %, 21–47 %,
32–49.5 %, 0.16–0.20, 0.0029–0.0044 sr-1, 0.0036–0.0055 sr-1, and
37–54 %, respectively. This is expected as DSF approximates aero-
sol contributions by optimizing retrievals at a selected red band.
ACOLITE performed poorly in estimating Rrs for OLCI band at
412 nm with SSPB, MdSA, MSA, RMSLE, and MAPE values of 81 %,
81 %, 90 %, 0.32, and 105 %, respectively. The high bias across all
bands, as seen in the matchups (SSPB, Fig. S4), may be partially
explained by the double correction for gas transmittance and also
lack of EUMETSAT SVC gains being applied to the OLCI imagery by
dashed line is the 1:1 relation line. Red line is the Theil-Sen estimator slope with 90%
NOAA-GLERL monitoring stations are plotted in pink and teal respectively. (For
e web version of this article.)



Fig. 8. Evaluation of MDN-derived Chla (left) and PC (right) applied to ACOLITE-corrected OLCI bands. The Theil-Sen estimator slope with 90% confidence is reported for each
plot. The dashed line is the 1:1 relation line.

Table 4
Performance of MDN in estimating Chla and PC from ACOLITE-corrected OLCI data.

N SSPB
(%)

MdSA
(%)

MSA
(%)

RMSLE MBE
[mg m�3]

RMSE
[mg m�3]

MAPE
(%)

Slope

Chla 39 �12.15 29.62 38.92 0.18 �1.21 16.57 32.66 0.74
PC 39 132.8 141.99 211.29 0.6 5.27 17.57 331.51 0.95
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the version of ACOLITE used to process these matchups (see ACO-
LITE in Methods and datasets section).
MDN-retrieved products. In the matchup dataset finalized for the
ACOLITE processing, Chla and PC have average values of 27.82 ± 2
0.83 mg m�3 and 12.85 ± 24.58 mg m�3, respectively. MDN-
retrieved Chla and PC products from ACOLITE-corrected OLCI
bands are plotted in Fig. 8. Results show that Chla and PC are esti-
mated with RMSLE values of 0.18 and 0.6, respectively. Table 4
summarizes the statistical indicators for MDN performance in
retrieving Chla and PC from ACOLITE data.
POLYMER
Atmospheric correction. A batch of 98 OLCI scenes acquired over
WLE had concurrent in situ measurements and was processed with
the POLYMER. The number of concurrent in situ measurements of
Chla, PC, and radiometric data with POLYMER-corrected OLCI over-
passes between 2016 and 2019 in WLE was 260. The pixels with
the POLYMER ‘‘out_of_bounds” flags were excluded from further
analysis. 175 matchups were collected from the AERONET station
with no field measurements of Chla, PC and OLCI bands at 674,
754, and 779 nm. There were no measurements of OLCI bands at
510, 560, 620, 682, 709 nm for the 49 matchups collected from
the AERONET station.

POLYMER-Rrs values are plotted against the in situ measure-
ments in Fig. 9 for selected OLCI bands. POLYMER produced the
Rrs values for all OLCI bands shorter than 780 nm except 761 nm.
POLYMER underestimates Rrs in all bands. Values at OLCI bands
761 and 764 were all negative. A summary of POLYMER perfor-
mance in retrieving Rrs values in different OLCI bands is provided
in ESM Fig. S6. Errors for the longer OLCI bands are larger than
the ones for shorter bands. The smallest MdSA, MSA, RMSLE, and
MAPE are for Rrs(560 nm), with values of 27 %, 27 %, 0.13, and
21 %, respectively. SSPB and MBE are the lowest for the blue band
at 412 nm with values of �10 %, �0.0002 sr-1, respectively.
9

MDN-retrieved products. In the POLYMER matchup dataset, Chla
and PC have average values of 23.37 ± 20.76 mg m�3 and 9.70 ± 2
1.73 mg m�3, respectively. MDN was applied to POLYMER-derived
Rrs from OLCI imagery to estimate Chla and PC. The satellite-
derived estimates are plotted against the field-measured Chla
and PC in Fig. 10. Results demonstrate that MDN can estimate Chla
and PC with RMSLE values of 0.43 and 0.57, respectively. PC esti-
mates below 10-1 (or above 103) are outside the range of the train-
ing dataset, and are therefore extrapolated by the MDN, but are
included here for completeness. The performance indicators are
summarized in Table 5.

Performance comparison

Common matchups between the three AC algorithms, that have
in situmeasurements of Rrs, Chla and PC and valid atmospherically-
corrected Rrs and MDN estimation were extracted to produce the
plots in Fig. 11, Fig. 12, and Fig. 14.

Atmospheric correction algorithms
The common in situ datasets were used to compare the perfor-

mance of the AC algorithms. The number of matchups in each band
is different. Fig. 11 shows a comparison between the median Rrs

values in each band derived from in situ data and AC algorithms.
The spectral shape of all three atmospherically corrected data is
similar to the in situ data; however, iCOR (SAM = 0.093p) and ACO-
LITE (SAM = 0.065p) tend to agree more with the in situ Rrs data
(Fig. 11; SAM for POLYMER is 0.132p). The scatterplots of Rrs data
derived from each AC algorithm is plotted against the field-
measured data in ESM Fig. S7 for all OLCI bands.

Fig. 12 compares the performance of different algorithms using
the estimated statistical indicators. POLYMER underestimated all
OLCI bands with negative SSPB and MBE values. iCOR underesti-
mated Rrs for bands longer than 443 nm with negative SSPB values.
ACOLITE had positive SSPB and MBE values in all OLCI bands. iCOR
had the lowest MdSA values for bands between 443 and 620 nm
(and the lowest MSA and RMSLE values for bands between 490



Fig. 10. Evaluation of MDN-derived Chla (left) and PC (right) applied to POLYMER-corrected OLCI bands. The Theil-Sen estimator slope with 90% confidence is reported for
each plot. The dashed line is the 1:1 relation line.

Table 5
Performance of MDN in estimating Chla and PC from POLYMER-corrected OLCI data.

N SSPB
(%)

MdSA
(%)

MSA
(%)

RMSLE MBE
[mg m�3]

RMSE
[mg m�3]

MAPE
(%)

Slope

Chla 80 �99.37 102.51 129.92 0.44 �7.83 14.1 50.69 0.64
PC 80 2.21 137.45 183.11 0.58 �2.18 20.82 146.43 0.63

Fig. 9. Scatterplots of POLYMER-derived Rrs versus in situ Rrs for selected OLCI bands. The dashed line is the 1:1 relation line. Red line is the Theil-Sen estimator slope with
90% confidence shown in the dashed red lines. Matchup data from AERONET-OC sites and NOAA-GLERL monitoring stations are plotted in pink and teal, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Median of hyperspectral (NOAA-GLERL) in situ Rrs and the ones processed
with different AC algorithms at each OLCI band. Error bars represent the standard
deviation at each OLCI band.
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and 620 nm) compared to ACOLITE and POLYMER. ACOLITE and
iCOR perform closely at 620 and 665 nm in terms of MdSA and
RMSLE values, while outperforming POLYMER MdSA and RMSLE
results at these two bands (Table 6 and Table 7). For bands
Fig. 12. Comparison of iCOR, ACOLITE, and POLYMER performances in estimating Rrs va
number of matchups for each band is shown in the second line of y-axis labels.

Table 6
MdSA (%) values for each AC model in retrieving Rrs values at 620 and 665 nm bands.

OLCI band centers (nm) iCOR

620 26.34
665 30.43

Table 7
RMSLE values for each AC model in retrieving Rrs values at 620 and 665 nm bands.

OLCI band centers (nm) iCOR

620 0.15
665 0.18

11
between 674 and 709 nm ACOLITE performs best compared to
iCOR and POLYMER with the lowest MdSA, MSA, and RMSLE val-
ues. For the shortest (412 and 443 nm) and the longest bands
(754 and 779 nm), POLYMER performed best in terms of all statis-
tical indicators (except SSPB for longer ones).
Pigment retrievals
MDN was applied to iCOR-, ACOLITE-, and POLYMER-corrected

OLCI image acquired on 29 Aug 2016 to produce Chla (upper plots)
and PC (lower plots) maps (Fig. 13). The spatial pattern of each pro-
duct is the same between the three AC algorithms, showing high
values of Chla and PC in Sandusky Bay and at the mouth of the
Maumee River, which is the main source of nutrient loading each
year (Moore et al., 2019). This pattern agrees well with previous
studies (Binding et al., 2019; O’Shea et al., 2021). MDN applied to
ACOLITE did not return any values close to the shoreline. MDN
applied to POLYMER and iCOR returned a fewer number of PC
retrievals in relatively clear waters. This is likely because PC esti-
mates < 10�1 (or above 103) are outside the range of the MDN’s
training dataset (O’Shea et al., 2021).

A comparison between statistical indicators estimated from the
application of MDN to different AC algorithms is shown in Fig. 14.
With the limited size matchup dataset derived in this study, ACO-
LITE outperformed other algorithms in terms of indicators in the
lues, using NOAA-GLERL and AERONET-OC in situ data, in different OLCI bands. The

ACOLITE POLYMER N

27.62 48.15 83
27.82 52.97 123

ACOLITE POLYMER N

0.17 0.21 83
0.17 0.23 123



Fig. 13. Chla (upper) and PC (lower) maps (in logarithmic scale) on 29 August 2016, derived from the application of MDN to iCOR, ACOLITE, and POLYMER, respectively, from
left to right. Chla and PC values larger than 1000 mg m�3 are masked out in the maps.

Fig. 14. Comparison of MDN-derived Chla and PC from iCOR-, ACOLITE-, and POLYMER-corrected Rrs values. The matchup size for all three AC algorithms is 26. Values larger
than 100% are not shown in PC plot.

Fig. 15. The total number of processed days per pixel, summed for 2016–2019 OLCI images common between the three AC algorithms.
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estimation of Chla with a marginal improvement compared to
iCOR. However, MDN performed poorly in retrieving PC from OLCI
bands, regardless of the AC algorithm applied.

Discussion

The Evaluation Section presented the performance of each AC
algorithm (iCOR, ACOLITE, and POLYMER) separately, using the
matchup data processed by assessing valid (unflagged) pixels in
each algorithm. However, the flags in each AC algorithm are differ-
ent, leading to varying matchup datasets. Therefore, in the Perfor-
mance comparison section above, a common matchup dataset was
assembled to enable the comparison between algorithms. Particu-
larly, the overall performance of iCOR improved when statistical
Fig. 16. An example of a day (18 July 2016) when the locations of NOAA-GLERL stations w
to flag them. The locations of NOAA-GLERL stations are shown in green (bottom). The Rrs
are also plotted (top). (For interpretation of the references to color in this figure legend
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indicators were computed from the matchups common to ACOLITE
and POLYMER. This corroborates inadequacy of iCOR’s cloud-
masking approach. To compare the derived flags in the three differ-
ent AC processors, the spatial variability of valid pixels in each
algorithm is mapped in Fig. 15 (before producing the common
matchup). The maps reveal that both iCOR and ACOLITE have fewer
valid products compared to POLYMER. iCOR has the least valid pix-
els for the western and southern part of WLE, which is usually
characterized by higher concentrations of algal blooms. ACOLITE
contains the least number of valid pixels close to the lake shore-
line. Therefore, it is expected that the impact of radiance originat-
ing from adjacent land (adjacency effect) is less severe in the
remaining pixels, as the pixels with the most severe adjacency
effects were removed. Removal of pixels that contain severe adja-
ere covered by cloud (or cloud shadows); however, the iCOR processor was not able
spectra in each station measured by NOAA-GLERL and estimated by iCOR processor
, the reader is referred to the web version of this article.)
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cency effects is especially essential for small lakes with complex
geometries (Pan et al., 2022).

The cloud mask in the iCOR processor does not reliably identify
clouds or cloud shadows. For instance, the OLCI image acquired on
18 July 2016 is cloudy. ACOLITE and Idepix in POLYMER processor
have masked out pixels located around NOAA-GLERL monitoring
stations and AERONET-OC sites due to clouds or cloud shadows.
Therefore, no matchups have been produced on this date for these
two AC algorithms. However, iCOR matchup has picked up those
pixels, as it is plotted in Fig. 16.

Once a common matchup dataset is used among the three pro-
cessors, Fig. 11 demonstrates that the median iCOR-derived Rrs fol-
low the shape of the median in situ spectra in the green – NIR range
more closely than the other two processors. Pahlevan et al. (2021)
also suggested iCOR as one of the top performers in turbid/eu-
trophic waters.

Large inaccuracies in PC retrievals exist regardless of the
selected AC processor. These inaccuracies are due to a combination
of multiple factors, including uncertainties in training data (i.e.,
both in situ PC and Rrs) (O’Shea et al., 2021), inaccuracies in
satellite-derived Rrs, lack of the PC fluorescence feature (a band
centered at 650 nm; Zolfaghari et al., 2021) in OLCI and, in general,
subtle relevant spectral features with respect to those of Chla,
which is the primary mediator of the shape of the spectrum.
Through modeling efforts, Moses et al. (2012) demonstrated that
the uncertainties in Rrs, resulting from sensor instrument noise,
can propagate to errors as high as 80 % in the retrieved con-
stituents’ concentration (e.g., Chla) from Hyperspectral Imager for
the Coastal Ocean (HICO) satellite sensor in optically complex
waters. The uncertainties in Rrs can also result from the AC
approaches (Ibrahim et al., 2018). Pahlevan et al. (2021) showed
that for multispectral sensors, the combination of uncertainties
from instrument noise and AC could result in 25–70 % errors in
the estimated products. Similarly, investigating the impact of
uncertainties in in situ Rrs measurements on the PC retrievals from
satellite-derived Rrs is essential (O’Shea et al., 2021). Other phyto-
plankton pigments can also influence the accuracy of PC estima-
tion. Simis et al. (2007) discussed the impact of pigments (e.g.,
Chlb, Chlc, and pheophytin) on PC retrievals, especially at low con-
centrations, using a band-ratio algorithm applied to MERIS (Simis
et al., 2005). Therefore, the existing literature suggests that the
retrieval accuracy of PC from multispectral satellites can depend
on multiple factors, including the PC range of values and concen-
trations of other phytoplankton pigments whose signals either
overlap with PC or are not well captured with current multispec-
tral sensors (Zolfaghari et al., 2021). Despite the aforementioned
uncertainties, PC predictions from iCOR-derived Rrs are found to
exhibit a linear correspondence with in situ PC across the 0.1 –
100 mg m�3 range in this study. On the other hand, Chla predic-
tions from MDNs applied to iCOR-derived Rrs appear to contain
acceptable uncertainties (<50 %), suggesting that this processing
scheme could prove viable for highly eutrophic aquatic
ecosystems.
Conclusion

The evaluation of iCOR, ACOLITE, and POLYMER AC algorithms
has been performed for OLCI satellite data acquired over eutrophic
waters of the western Lake Erie in 2016–2019. Field measurements
of radiometric data collected concurrently with satellite images
were used to assess the quality of iCOR-, ACOLITE-, and
POLYMER-retrieved Rrs products. The atmospherically corrected
OLCI images were then used as input into MDN to estimate Chla
and PC. Employing a common matchup dataset showed that
MDN applied to iCOR and ACOLITE performs better in retrieving
14
Chla, compared to POLYMER, with MDN applied to ACOLITE pro-
viding marginal improvements compared to MDN applied to iCOR.
Large uncertainties (MdSA > 100 %) were observed in PC retrieval
from MDN application to the three selected AC processors, under-
scoring the higher sensitivity of MDNs to the fidelity of input Rrs

spectra. The performance of each algorithm in estimating Rrs is
dependent on the wavelength. For OLCI bands between 490 and
709 nm, iCOR and ACOLITE outperform POLYMER, while POLYMER
performs best for bands shorter than 490 nm and longer than
709 nm. The standalone evaluation of MDN applied to each AC pro-
cessor shows that MDN, in combination with the application of
iCOR, can produce a larger number of valid estimates for Chla with
a MdSA value of 45.53 %. Therefore, iCOR being a fully self-
contained method which is suitable for operational monitoring
programs, this study suggests that MDN in combination with iCOR
provides a practical workflow for estimating Chla from OLCI data.
The iCOR’s handling of cloud (and cloud shadow) detection needs
further analysis and improvements.

The MDN code for OLCI can be accessed via https://github.com/
STREAM-RS.
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