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ABSTRACT

Satellite remote sensing of chlorophyll-a concentration (chla) in oligotrophic and mesotrophic lakes faces un-
certainties from sources such as atmospheric correction, complex inherent optical property compositions, and
imperfect algorithmic retrieval. To improve chla estimation in oligo- and mesotrophic lakes, we developed
Bayesian probabilistic neural networks (BNNs) for the Sentinel-3 Ocean and Land Cover Instrument (OLCI) and
Sentinel-2 MultiSpectral Imager (MSI). The BNNs were built using an in situ dataset of oligo- and mesotrophic
water bodies (1755 observations from 178 systems; median chla: 5.11 mg m~>, standard deviation: 10.76 mg
m™>) and provide a per-pixel uncertainty percentage associated with retrieved chla. Shifts of oligo- and meso-
trophic systems into the eutrophic regime, characterised by higher biomass levels, are widespread. To account for
phytoplankton biomass fluctuation, a set of eutrophic lakes (167 observations from 31 systems) were included in
this study (maximum chla 68 mg m~>). The BNNs were evaluated through five assessments including single day
and time series match-ups with OLCI and MSI. OLCI BNN accuracy gains of >25% and MSI BNN accuracy gains of
>15% were achieved in the assessments when compared to chla reference algorithms for oligotrophic waters
(chla < 8 mg m™3). In comparison to the reference algorithms, the accuracy gains of the BNNs decreased as chla
and trophic levels increased. To measure the quality of the provided BNN uncertainty estimate, we calculated the
prediction interval coverage probability (PICP), Sharpness and mean absolute calibration difference (MACD)
metrics. The associated BNN chla uncertainty estimate included the reference in situ chla values for most ob-
servations (PICP > 75%) across the different performance assessments. Further analysis showed that the BNN
chla uncertainty estimate was not constantly well-calibrated across different evaluation strategies (Sharpness
1.7-6, MACD 0.04-0.25). BNN uncertainties were used to test two chla improvement strategies: 1) identifying
and filtering uncertain chla estimates using scene-specific thresholds, and 2) selecting the most accurate prior
atmospheric correction algorithm per individual satellite observation to retain chla with the lowest BNN un-
certainty. Both strategies increased the quality of the chla result and demonstrated the significance of uncertainty
estimation. This study serves as research on Bayesian machine learning for the estimation and visualisation of
chla and associated retrieval uncertainty to develop harmonised products across OLCI and MSI for small and
large oligo- and mesotrophic lakes.
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1. Introduction

The phytoplankton pigment chlorophyll-a concentration (chla) is
widely used as a proxy of phytoplankton biomass and net primary
production (Carlson, 1977; Huot et al., 2007; Poikane et al., 2010; Voros
and Padisak, 1991). Chla is thus an important indicator for the ecolog-
ical integrity of aquatic ecosystems (Boyer et al., 2009). Optical sensors
such as the MultiSpectral Imager (MSI) and Ocean and Land Cover In-
strument (OLCI) aboard the Sentinel-2 and 3 satellites, respectively, are
used to estimate chla and other optically active constituents (OACs) in
lakes (Odermatt et al., 2018; Pahlevan et al., 2020; Toming et al., 2016).
Oligotrophic and mesotrophic lakes have low to moderate levels of
phytoplankton biomass (chla < 25 mg m~>) and provide ecosystem
services critical to human and animal welfare, such as drinking water,
biodiversity, sediment retention and processing, fishery, and climate
change mitigation (Grizzetti et al., 2016; Sterner et al., 2020).

Spectral remote sensing reflectance (R,5(1)) contains information about
water column properties and components such as phytoplankton (Mobley,
1999; O'Reilly et al., 1998). Many chla estimation algorithms relate optical
features in the red and near-infrared (NIR) areas of the reflectance spec-
trum to chla (Odermatt et al., 2012). For example, the contribution from
phytoplankton backscattering to the reflectance spectrum forms distinct
reflectance peaks near 560 and 700 nm (Suits, 1975). Further, a phyto-
plankton pigment feature at 675 nm can be offset against the NIR scat-
tering peak around 700 nm (Gitelson, 1992; Mittenzwey et al., 1992). A
variety of two, three and four-band combination algorithms were devel-
oped over the last decades based on the 700 and 665 nm band ratio to
capture the red absorption signature of chla (Dall’Olmo et al., 2003;
Gilerson et al., 2010; Gons, 1999; Gurlin et al., 2011; Mishra and Mishra,
2012; Moses et al., 2009; Pepe et al., 2001). Chla absorption and fluores-
cence peaks in the 665-685 nm region are also at the basis of line height
algorithms such as the fluorescence line height (FLH) (Gower, 1980; Gower
et al., 2004; Gupana et al., 2021), maximum peak height (MPH) (Matthews
et al., 2012; Matthews and Odermatt, 2015) and maximum chlorophyll
index (MCI) (Binding et al., 2013; Gower et al., 2005).

In recent decades, the majority of inland water quality studies have
concentrated on eutrophic water bodies (Clark et al., 2017; Coffer et al.,
2021; Dekker and Peters, 1993; Simis et al., 2005; Urquhart et al., 2017).
In comparison, oligo- and mesotrophic water bodies are under-sampled
globally (Filazzola et al., 2020), limiting the development and valida-
tion of designated chla estimation methods. Furthermore, recent research
indicates that chla estimation in oligo- and mesotrophic systems is asso-
ciated with higher uncertainties than in eutrophic conditions (Liu et al.,
2021; Mouw et al., 2013; Neil et al., 2019; Werther et al., 2022). The
causes of estimation uncertainty are manifold. Absorption by coloured
dissolved organic matter (acpom(4)) and non-pigmented particulate ab-
sorption (anap(4)) may be larger than by phytoplankton pigments (a;(1)),
particularly at short wavelengths where band arithmetic algorithm
specificity then breaks down (Harma et al., 2001; Kutser et al., 2016;
Mouw et al., 2013; Neil et al., 2019; Schalles, 2006). For analytical al-
gorithms that invert a reflectance spectrum into inherent optical prop-
erties (IOPs), a,;(4) must be precisely estimated to relate it to chla (Werdell
et al., 2018). Effects such as pigment packaging impact the linearity of the
relationship between chla and a;(1)(Grzymski et al., 1997; Kirk, 1994;
McKee et al., 2014). The scaling of a4(4) to chla further depends on
phytoplankton type and particle size (Johnsen et al., 1994; Lutz, 2001;
Simis et al., 2007). Therefore, for analytical algorithm application to es-
timate chla, prior information about a4(4) variability is required. Without
system-specific calibration, the underlying bio-optical models use default
pigment mass-specific phytoplankton absorption (a,*(4)) values. a,;*(4)
natural variability spans an order of 4 magnitudes in the ocean (Bricaud
et al., 1995, 1998, 2004), and its variability is unknown for global lakes,
yet subject to measurement uncertainty (McKee et al., 2014). For algo-
rithms that focus on the red/NIR spectral area, the phytoplankton ab-
sorption peak at 675 nm in lakes may be undetectable in conditions where
CDOM and NAP absorption is high (Kutser et al., 2016). For oligotrophic
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lakes, the red-NIR area of the spectrum may have low signal to noise
ratios, causing chla-related peaks to be below the detection limit.

In recent years, machine learning (ML) methods have been developed
to estimate chla in inland water bodies. Neural networks (NNs) developed
for lakes overcome some of the issues encountered with band ratio
methods and analytical approaches when assessed over large chla ranges
(Pahlevan et al., 2020, 2022; Schaeffer et al., 2022; Smith et al., 2021).
For a ML approach to accurately handle unseen observations, large
training datasets of in situ and/or simulated measurements are necessary.
Because the spatial and temporal scope of the training set is frequently
constrained, ML techniques are prone to produce estimation errors when
a so-called dataset shift happens. A dataset shift occurs when the IOPs and
OACs of a particular, unknown input deviate considerably from the
measurements utilised during ML model training (Moreno-Torres et al.,
2012; Ovadia et al., 2019). In lake remote sensing, chla estimation un-
certainty generated by a dataset shift or other factors such as preceding
AC and surrounding land effects on the radiance distribution are typical.
Current algorithms designed for lakes, however, do not account for the
uncertainty associated with estimated chla. Because chla estimation un-
certainty is larger in oligo- and mesotrophic lakes than in eutrophic lakes
(Neil et al., 2019), a provision of confidence is a desirable feature to
enable the detection and handling of questionable chla estimates.

Bayesian probability theory offers a mathematical tool to reason about
uncertainty (Ghahramani, 2015). Bayesian probabilistic reasoning
applied to NNs usually comes at a prohibitive computational cost. A NN
with distributions placed over the weights has long been studied as a
Bayesian Neural Network (BNN) (MacKay, 1992; Neal, 1996) commonly
through variational inference (VI) (Jordan et al., 1999; Saul et al., 1996),
but with limited success (Gal and Ghahramani, 2016; Graves, 2011). An
approach based on VI brings higher model complexity, which for the field
of aquatic remote sensing is prohibitive: to represent uncertainty, the
number of parameters in BNNs based on VI is doubled when compared to
the same non-Bayesian NN size. To train a network with millions of pa-
rameters large input datasets are required. However, for inland aquatic
remote sensing large datasets are sparse and only just mature through
community-wide efforts to collate datasets ready for use with recent ML
approaches (Cao et al., 2020; Pahlevan et al., 2022; Werther et al., 2021).

Here, we investigate a potential solution in BNNs developed through
Monte Carlo dropout (Gal and Ghahramani, 2016) to obtain chla and a
well-calibrated uncertainty estimate from a limited set of input training
samples. Monte Carlo (MC) dropout refers to the process of randomly
turning off all outgoing connections from a neuron in a NN through a
previously determined probability p (Srivastava et al., 2014). Dropout can
be activated during the application to unknown observations, which re-
sults in an ensemble of NNs to estimate a final chla value: for a single
input observation, MC dropout generates a previously defined number (S)
of NN variants, each with a different set of activated neurons during
prediction, producing S unique chla estimates. The S estimates form a
predictive distribution which is then averaged to obtain a final chla value.

Based on the largest available in situ dataset covering typical oligo-
and mesotrophic lake optical properties, we aim to: 1) improve the chla
estimation accuracy via OLCI and MSI sensors over both small and large
oligo- and mesotrophic lakes through Bayesian probabilistic machine
learning, 2) provide a well-calibrated, per-pixel uncertainty percentage
associated with estimated chla, and 3) demonstrate how the provided
uncertainty can be used to deal with dataset shifts and AC errors
commonly affecting satellite remote sensing of chla.

2. Datasets
2.1. Development dataset

A dataset of 1755 in situ observations from 178 lakes and reservoirs was
compiled from six sources to develop and evaluate the BNNs: (i) LIM-

NADES (Lake Bio-optical Measurements and Matchup Data for Remote
Sensing (https://limnades.stir.ac.uk/)), (ii) Wisconsin DNR (U.S.), (iii)
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Earth and Planetary Observation Sciences (EPOS) (Scotland, UK), (iv) the
University of Tartu (Estonia), (v) the University of Waikato (New Zealand
(NZ)) and the (vi) LEXPLORE Platform (Lake Geneva, Switzerland). Only
samples containing above-water R,(1) and chla measurements were
considered for this study. Where available, total suspended matter (TSM)
dry weight and the absorption by CDOM at 443 nm (acpom(443)) were
included in the dataset. For algorithm development and validation we
separated the measurements from these datasets into 10 regions (Fig. 1) to
evaluate the BNNs on independent geographical regions, as previously
demonstrated for ML algorithm development (O’Shea et al., 2021; Pahle-
van et al., 2022). Details about the regions and included water bodies are
provided in Appendix 1. Datasets in LIMNADES were described in Spyr-
akos et al. (2018) and their original publications (Binding et al., 2008,
2010; Bradt, 2012; Bresciani et al., 2011; Dall’Olmo et al., 2005; Giardino
et al., 2005, 2013, 2014, 2015; Gitelson et al., 2007, 2008; Gons et al.,
2008; Guanter et al., 2010; Li et al., 2013, 2015; Manzo et al., 2015;
Matsushita et al., 2015; Matthews and Bernard, 2013; Moore et al., 2014;
Ruiz-Verdt et al., 2005, 2008; Schalles and Hladik, 2012; Wang et al.,
2018; Yacobi et al., 2011). Measurements from Wisconsin DNR were taken
across the U.S. State of Wisconsin between spring 2014 and autumn 2016.
The Wisconsin DNR dataset was used in recent algorithm development and
inter-comparison studies (Pahlevan et al., 2020, 2021b). Collection
methods and details are provided in Werther et al. (2022). Measurements
provided by the University of Tartu were previously detailed in Kutser et al.
(2013); Soomets et al. (2020). The measurements from lakes in NZ refer
collectively to two datasets. The first one was collected by the University of
Waikato between 2015 and 2019 and has been previously published
(Pahlevan et al., 2020, 2022). The second dataset refers to data collected
jointly by the University of Waikato and University of Stirling in 2020
(referred to as NZ 2020). The NZ 2020 dataset is unpublished and
described in Appendix 2. Surface chla obtained through calibration of in
vivo fluorescence measurements and Ry(1) from the LEXPLORE platform
(https://lexplore.info/) in Lake Geneva were measured between 2018/10
and 2021/09. Measurement details are provided in Appendix 3.

Optical Water Types (OWTs) of Spyrakos et al. (2018) were used to
define the development and application range of the BNNs (Fig. 2). OWT
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/
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membership was derived through estimation of the spectral angle (Kruse
et al., 1993; Liu et al., 2021). For all R(4) an OWT membership score
was calculated and the OWT with the highest similarity score assigned.
Observations assigned to OWT 5 were small (n = 40) in this dataset. The
corresponding systems were high in CDOM absorption, TSM and low in
chla, known to be challenging for retrieval algorithms (Kallio et al.,
2015; Kutser et al., 2016; Toming et al., 2016; Werther et al., 2022).
Phytoplankton productivity in lakes is rarely steady and changes with
season and external forcings such as wind (Anneville et al., 2004; Rusak
et al., 2018). Lakes that are oligotrophic might suddenly become eutro-
phic and vice versa (Gilarranz et al., 2022; Minaudo et al., 2021). To ac-
count for changes in phytoplankton biomass, the collected data was
focussed on oligo- and mesotrophic lakes, with an expansion to eutrophic
systems (chla median 5.11 mg m~3, mean 9.45 mg m >, standard devi-
ation 10.76 mg m ) (Fig. 3). 167 observations (9.5%) from 31 systems in
the dataset exhibit chla >25 mg m™~> with a maximum of 68 mg m™>. In
this study, we adopt the OECD (1982) trophic status scheme, which serves
as an international standard for assessing the ecological status of lakes
(Carvalho et al., 2013). OECD (1982) classified water trophic status as
oligotrophic for chla < 8 mg m~3, mesotrophic until 25 mg m™3, and
eutrophic thereafter. We also refer to oligo- and mesotrophic systems as
low - moderate biomass lakes until 25 mg m™>, because eutrophic lakes
can quickly reach phytoplankton chla >100 mg m™3 (Matthews, 2014;
Matthews et al., 2012; Neil et al., 2019; Pahlevan et al., 2020).

2.2. Satellite data processing

Match-ups were generated for the period 2018/10 to 2021/09 be-
tween coinciding in situ measurements taken on the LEXPLORE platform
(Lake Geneva) and satellite observations from Sentinel-3A/B (S3 A/B)
OLCI 300 m resolution and Sentinel-2A/B (S2 A/B) MSI 20 m resolution.
Surface in situ chla from a Thetis profiler was obtained between 9 and
12.30 a.m. (UTC) (see Appendix 3 for details). OLCI 3A and B overpassed
the platform between 10 and 11.30 a.m. (UTC). To generate the match-
up, the nearest OLCI and MSI sensor overpass within + 3 hours of the in
situ Thetis chla measurement was chosen. The S2 A/B overpass
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Fig. 1. Spatial distribution of the 10 in situ measurement regions constituting the dataset of this study. Grouped regions share the same colour. Number of samples
taken in the indicated polygon is shown in brackets. See Appendix 1 for a detailed description of the dataset regions.
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respective parameter.

frequency over LEXPLORE is one-fifth of the S3 A/B OLCI frequency but
occurs in the same time frame. For OLCI and MSI (in their respective
spatial resolution) valid pixels south of the platform were identified
through the IdePix (Identification of Pixel features) algorithm (Skakun
et al., 2022; Wevers et al., 2021). The centre pixel of 3 x 3 valid pixels
was used as the match-up location. Data flagged by IdePix as invalid,
cloud (including ambiguous, sure, and a 2-pixel buffer) or cloud shadow,
snow/ice, bright, coastline land, white and glint risk were excluded.

For AC of OLCI and MSI data, the POLYMER (Steinmetz et al., 2011)
and Case 2 Region CoastColour (C2RCC) (Brockmann et al., 2016) al-
gorithms were selected. POLYMER and C2RCC AC performances were
previously compared for OLCI and MSI and found to perform well for the
OWTs included in this study (Liu et al., 2021; Pahlevan et al., 2021a;
Warren et al., 2019, 2021). Both ACs are widely used in combination
with algorithms for the retrieval of chla in lakes (Kravitz et al., 2020; Liu
et al., 2021; O’Shea et al., 2021; Pahlevan et al., 2020, 2022; Pereira-
Sandoval et al., 2019; Smith et al., 2021). A comparison of R(41) ob-
tained from the LEXPLORE platform versus OLCI/MSI POLYMER/C2RCC
is provided in Appendix 4.

3. Methodology
3.1. Bayesian Neural Networks

At the heart of all BNNs is the Bayesian theorem:

p(DIO)p(0)

9 1
»(D) W

p(OID) =

where p(0| D) is the posterior, i.e., the probability of a certain value of a
neural network parameter ¢ given the data D, p(D| ) the likelihood, p(9)
the prior and p(D) the quantity (also known as the marginal likelihood)
(Bolstad and Curran, 2016). In Bayesian statistics, 0 is not defined by one
value but has an uncertainty described by a probability distribution p(6).
This distribution, p(6), defines the probability value of each parameter
value 6. For a Bayesian model to obtain a predictive chla distribution,
the weight distribution of the neural network is averaged:

P([iesr, D) = Z PO [rest, 0:) @ p(6:]D), )

where X is an input test Rys(1) observation and 0; denote the weights w;
of the NN. Replacement of NN weights with distributions is computa-
tionally costly and requires large amounts of training data, which is
scarce in lake remote sensing. In this study, we therefore used Monte
Carlo (MC) dropout applied to NN layers (Gal and Ghahramani, 2016).
MC dropout replaces each fixed 6; of a deterministic NN with a binary
distribution, whereby either zero or the value 6. for a NN connection are
obtained. Using a dropout chance of 25%, the NNs estimated S-times
chla for a single input reflectance spectrum. Each of the S estimates
originated from a different NN variant that corresponded to a sampled
network constellation. Combining the S dropout estimates resulted in a
chla probability distribution:
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N
p(ylxtesm D) = é Z p(y‘xlestvei)a 3)

i=1
which is an empirical approximation to Eq. 2 that captured both the NN
model (epistemic) and the data intrinsic aleatoric uncertainty (Abdar
et al.,, 2021). S is a user-supplied value. The higher S, the more NN
dropout variants and chla estimates are generated to form the proba-
bility distribution. We chose 50 in this study as a trade-off between
required computation time and performance. We then sampled from all
determined Gaussian distributions: y~N(uy ¢,0x,0), Where g is the chla
mean and oy the standard deviation (Fig. 4). Because ¢ was a distribu-
tion, for each chla estimate y we calculated the 95% confidence interval
(CD) and then estimated the width of the CI (CI,) to get an absolute
number. CI,, was divided by two to obtain uncertainty + of y and the
entire term was multiplied by 100 to obtain a BNN percentage uncer-
tainty for estimated chla:

CI,

N
e(%) = y

 100. 4

Determination of the BNN hyper-parameters, such as the probability
that a neuron was dropped, is explained in section 3.3.1.

3.2. BNN processing

In situ R,5(1) were convolved to the relative spectral response (RSR) of
the OLCI instruments on Sentinel-3A and 3B and the MSI instruments on
Sentinel-2A and B, and were used as inputs to the BNNs. Distinct BNNs
were developed for OLCI S3A/B and MSI S2A/B. For the OLCI BNNs we
selected the 12 bands from 413 through 778 nm (omitting the oxygen
bands at 761, 764 and 767 nm). The waveband centred at 400 nm was
excluded because the majority of in situ R,5(1), did not extend to <400
nm and therefore could not be convolved to match the OLCI band. For
MSI, all 7 bands from 443 to 783 nm were selected.

For oligotrophic waters with chla <5 mg m~3, negative R,(1) in one or
more red-NIR wavebands may occur because of low signal to noise ratios.
Negative values in these wavelengths can cause unpredictable behavior of

R,,(443)

Pre-processing

Input Monte Carlo Dropout
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the BNNs that may lead to high chla estimation uncertainty. To enable the
BNNs to produce chla estimates even when negative values in red-NIR
wavelengths occur, all negative R,(1) values > 665 nm in the in situ
dataset were set to zero for BNN training and during pre-processing of test
observations (including AC-derived R(1)). R(1) features were then
normalized to fall between the 0-1 range. Each feature was treated
individually such that it was in the given range of the dataset between
0 and 1. Normalisation reduced the required training time and smoothed
the process of minimising the loss function of the network, the negative
log-likelihood (NLL) in this study. NLL is a standard loss function to
measure the quality of a probabilistic model outcome (Hastie et al., 2001).

Since the BNNs are based on MC dropout, a stochastic process is
involved. To obtain a representative BNN for the different evaluation
strategies (see section 3.3 below), 10 BNNs were trained for each sensor
and applied to the respective test observations once. The median of the 10
different networks was used as the final estimate we report, following
recent practise of NNs with stochastic elements (O’Shea et al., 2021;
Pahlevan et al., 2020, 2022). For the evaluation on in situ data, the S3A and
S2A BNNs versions were used. For match-ups with MSI 2A/B and OLCI 3A/
B the BNN version corresponding to the respective sensor was selected.

3.3. BNN performance assessment

Five different assessments were conducted to evaluate the quality of
the chla and uncertainty BNN products under varying conditions: (i) a
randomised 50/50 training/test data split, (ii) a leave-one-out exercise
(LOO) using in situ observations, (iii) BNN OLCI and MSI LéXPLORE
match-ups, (iv) a LEXPLORE 3 ! year time-series (including the match-
ups) and lastly (v) single-day product visualisations over both large and
small lakes in Europe, New Zealand, Africa and Canada. The BNNs were
compared to state-of-the-art chla algorithms. Details of these assess-
ments are provided in the following sections.

3.3.1. 50/50 training/test data split

For an assessment of overall BNN performance on in situ data, the
development dataset (n = 1755) was split into 50% training (n = 878) and
50% test (n = 877) sets, following recent ML assessment practises (O’Shea
et al., 2021; Pahlevan et al., 2020). The observations in the two sets were

chla probability distribution

e

Output

Fig. 4. Processing scheme of the BNNs based on Monte Carlo dropout. For MSI the first band is 443 nm. Pre-processing includes the spectral convolution of the
training data, normalisation of both training and unknown (test) observations and treatment of negative R,s(1) values.
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randomly drawn from all regions of the entire dataset. The 50% training
data were further split into a training (60%; 526 observations) and vali-
dation set (40%; 352 observations). An initial OLCI and MSI BNN was
constructed using this training subset (n = 526), and the performance of
these BNN versions was evaluated on the validation set (n = 352) to find
an optimal architecture and to tune the hyper-parameters of the BNNs
through Bayesian optimisation implemented in the Python package
Weights & Biases (Biewald, 2020; Werther et al., 2021). BNNs were
continually improved by tracking the loss on the validation data. Once the
validation loss did not decrease further, the evaluation on the validation
set was concluded. The BNNs were then re-trained with the entire training
set (878 / 1755 observations) and subsequently applied to the test set
using the previously determined architecture and hyper-parameters. The
hyper-parameters identified in this 50/50 assessment were used across
the other performance assessments to allow comparisons of the same
model architecture with different training and test sets. Furthermore, the
OLCI and MSI BNNs distributed in conjunction with this article conform
to the single hyper-parameter configuration utilised throughout the as-
sessments. The OLCI and MSI BNN performances on the test set across
OWTs and TS classes were tabulated.

A randomised 50/50 split of training and test data has two major
limitations. First, training and test datasets share the same distribution
of OACs (assured through prior randomisation of the overall dataset),
which may not occur in a situation outside of model development.
Performance under dataset shifts can therefore not be analysed. Second,
the performance of the BNN OLCI and MSI versions in this assessment
does not represent their final models, as these versions were only trained
with 50% of the training data. The final BNN versions made publicly
available with this article were re-trained with the entire dataset (n =
1755). The final hyper-parameter configuration of the OLCI and MSI
BNNs is listed in Appendix 5.

3.3.2. Leave-one-out

We simulated dataset shifts with all available in situ measurements
through a leave-one-out (LOO) strategy (O’Shea et al., 2021; Pahlevan
et al., 2022). In LOO, a BNN was trained with measurements from all
regions except for one region. The BNN was then applied to the left-out
region and the entire process was repeated until each region was left-
out. Through the LOO strategy we assess the generalisation perfor-
mance of the BNN for independent systems (represented by a region) that
were not part of the training process, and which may thus not share the
same OAC distribution. We note that the performance of the BNNs for
different regions may underestimate overall model performance. Whilst
different in situ measurement techniques between the datasets were used,
the measurement consistency between regions is unknown. Individual
regions may thus carry varying degrees of measurement uncertainty.

3.3.3. Lake Geneva match-ups and time series assessments

To evaluate the BNNs with independent satellite match-ups, a
training set excluding observations from Lake Geneva was created. OLCI
and MSI BNNs were trained with the exact same set of bands and ar-
chitecture as in the 50/50 training/test split and LOO assessments. The
match-up evaluation on Lake Geneva facilitated to assess how well the
BNNs trained with a semi-global in situ dataset of lake properties transfer
to an individual system measured through satellite sensors, thereby
representing a common use-case of the newly developed algorithm.

3.3.4. Comparison with other chla algorithms

Using the 50/50 split, LOO and match-up performance assessments
we evaluated the accuracy of the OLCI and MSI BNNs versus five state-of-
the-art algorithms designed for large chla concentration ranges (here-
after reference algorithms). The five algorithms are the OLCI and MSI
Mixture Density Networks (MDNs)(Pahlevan et al., 2020), the red/NIR
semi-analytical Gons05 (Gons et al., 2005), the red/NIR band ratio G11
(Gurlin et al., 2011), the blue/green band ratio OC3 (O'Reilly et al.,
1998; O’Reilly and Werdell, 2019), and the Blend algorithm (Smith
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et al., 2018) which switches between OCI (Hu et al., 2012) and the red/
NIR semi-analytical approach by Gilerson et al. (2010), that blends their
estimates using empirically derived thresholds.

To reduce bias resulting from calibration of the reference algorithms
on different datasets, the G11, OC3 and Blend model coefficients were
optimised (denoted as -opt) through non-linear least squares fitting
against the same training datasets used in the evaluation strategies
(identical to the observations for training the BNNs). We used the original
OLCI and MSI MDN versions that were designed for general applicability
to inland waters (including low - moderate biomass lake conditions). For
the OLCI and MSI MDNs specifically, in the LOO assessment regions 5 and
9 were excluded from the evaluation because these were already used in
full as part of the training set of said algorithms. Their inclusion would
thus not represent an independent comparison per region. Gons05 opti-
misation was not undertaken as it requires measurements of phyto-
plankton mass-specific absorption at 665 nm (a,*(665)) and backscatter,
which the collated dataset did not sufficiently include.

Algorithms using OLCI wavebands were included in their originally
published configuration (denoted as -org) and with optimised co-
efficients (denoted as -opt). For Blend in the OLCI configuration only the
OC4 algorithm was optimised, and for Blend in the MSI configuration
the OC3 algorithm was used instead of OC4 because the 510 nm band in
OC4 is not available on MSI. MSI band positions of Gons05, G11 and
0C3 (also used in Blend) were slightly shifted, namely from 490, 708
and 778 nm to 492, 704 and 783 nm, which was successfully demon-
strated previously in Warren et al. (2021). Optimised model coefficients
are tabulated in Appendix 6. For the Lake Geneva match-ups, all mea-
surements were provided for optimisation, except for the observations
measured in Lake Geneva.

3.4. Accuracy and uncertainty calibration metrics

Common performance metrics were calculated to assess the chla
retrieval accuracy between algorithm estimated (e) and observed (o) in
situ chla: the median symmetric accuracy (MdSA, in %), the symmetric
signed percentage bias (Bias, in %), the mean absolute difference (MAD)
and median absolute percentage difference (MAPD, in %) (Morley et al.,
2018; Seegers et al., 2018, 2021; Smith et al., 2021):
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BNN uncertainty estimates may not capture the true data distribution
(Lakshminarayanan et al., 2017). For example, a 90% confidence in-
terval (CI) may not contain the reference in situ chla concentration in 9/
10 scenarios. The BNN uncertainty estimate is miscalibrated when the CI
does not include the reference in situ chla. To assess the quality of the
BNN chla uncertainty calibration we calculated three metrics between
the BNN estimated (e) and observed (0) in situ chla:

1. Prediction interval coverage probability (PICP; denoted p). The
percentage of observations for which in situ chla lies within the 95%
confidence interval of the BNN chla estimate:
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where €/ is the 97.5% percentile and € is the 2.5% percentile of
the BNN estimated chla for an input x, (Yao et al., 2019). The higher
the p [%] value, the more in situ chla values were covered by the BNN

uncertainty estimate.

. Sharpness (denoted o). The standard deviation (var) of a chla esti-

mate whose cumulative distribution function (Fy) should be small:

(10)

Sharpness represents the average of the BNN estimated chla standard
deviations (Tran et al., 2020).

. Mean absolute calibration difference (MACD; denoted t). MACD is a

statistic to measure calibration relative to an ideal reliability dia-
gram. Reliability diagrams show expected observation accuracy as a
function of confidence (Degroot and Fienberg, 1983; Niculescu-Mizil
and Caruana, 2005). To compute MACD, chla estimates were sorted
and divided into B equally-spaced bins (B = 100 in this study) with
an approximately equal number of BNN chla estimates in each bin:
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where ny is the number of chla estimates in bin b, N is the total
number of observations, and acc(b) and conf(b) are the accuracy and
confidence in bin b (Guo et al., 2017; Nixon et al., 2019). The smaller
the values of Sharpness and MACD, the more accurate the uncer-

tainty calibration.
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4. Results
4.1. 50/50 dataset split

OLCI and MSI BNNs outperformed the reference chla algorithms
(MdSA difference > 18%) (Figs. 5, 6). The OLCI BNN was slightly more
accurate than its MSI version (1.44% MdSA difference). In the employ-
ment of the reference chla algorithms, lower accuracy in the estimation of
chla from MSI compared to OLCI was also observed (Fig. 6). For OLCI,
optimisation of model coefficients from G11, OC3 and Blend improved
the estimates by 35-75% (MdSA) for oligotrophic waters and 15-35%
(MdSA) for mesotrophic waters (Table 1). For eutrophic lakes the original
algorithm configurations were more accurate, because the dataset of this
study used to optimise the algorithms only included a small set of high
biomass observations. The coefficients of the original formulations were
obtained from larger eutrophic datasets and are thus more applicable. The
optimisation process of the coefficients is considered transferable to MSIL
Large over- and underestimates of chla were observed for concentrations
between 0 and 1 mg m™~2 across all the algorithms. Only 65 data points
(7.4% of 877 test observations) were available in this concentration
range. Chla estimates from the algorithms used for comparison became
markedly more accurate for concentrations >10 mg m™°. Varying
retrieval accuracies became more apparent when the assessment was
tabulated per TS class (Table 1) as the OLCI BNN was >45% and the MSI
BNN > 38% more accurate for oligotrophic waters (chla 0-8 mg m~3)
than the reference algorithms. Red/NIR algorithms started to become
highly accurate in mesotrophic waters (chla 8-25 mg m~3) (Table 1). For
eutrophic waters (chla > 25 mg m*3) the red/NIR OLCI Gons05 algorithm
was most accurate (MdSA 13.98%), but its performance did not transfer to
MSI. Across OWTs, the BNNs consistently outperformed the reference
algorithms (Table 2). For OWT 5 it is to note that only 13 observations
were assigned to it, thus the evaluation is not representative. The low
number in this OWT originated from the randomisation of the entire
dataset prior to training and evaluation of the algorithms. Uncertainty
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Fig. 5. Chla retrieval results by the OLCI BNN and reference algorithms in the 50/50 training/test split assessment. For G11, OC3 and Blend chla retrievals 