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Global shipping accounts for 13% of global emissions of SO2, which, once oxidized to
sulfate aerosol, acts to cool the planet both directly by scattering sunlight and indirectly
by increasing the albedo of clouds. This cooling due to sulfate aerosol offsets some of
the warming effect of greenhouse gasses and is the largest uncertainty in determining
the change in the Earth’s radiative balance by human activity. Ship tracks—the visible
manifestation of the indirect of effect of ship emissions on clouds as quasi-linear
features—have long provided an opportunity to quantify these effects. However, they
have been arduous to catalog and typically studied only in particular regions for short
periods of time. Using a machine-learning algorithm to automate their detection we
catalog more than 1 million ship tracks to provide a global climatology. We use this
to investigate the effect of stringent fuel regulations introduced by the International
Maritime Organization in 2020 on their global prevalence since then, while accounting
for the disruption in global commerce caused by COVID-19. We find a marked, but
clearly nonlinear, decline in ship tracks globally: An 80% reduction in SOx emissions
causes only a 25% reduction in the number of tracks detected.
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Ship emissions can occur in remote ocean environments, providing opportunities to study
the effects of aerosol in isolation from other anthropogenic influences. The impact of these
emissions on clouds by acting as cloud condensation nuclei and enhancing cloud droplet
numbers (1) can manifest as a long, narrow region of enhanced cloud brightness. These
ship tracks were noticed in some of the very first Earth observing missions (2) and have
been extensively studied since (see ref. 3 for a recent review). Their compact structure
allows for easy comparison with adjacent “clean” clouds, providing counterfactual evidence
of nonlinear effects, which can otherwise be very challenging to measure (4).

Ship Track Climatology

While the total radiative effect of detectable ship tracks is small, and the adjustments
to the initial perturbation in droplet number are still contested (5), they nevertheless
provide unique opportunities for experiments to quantify the effects of aerosol on clouds
in general. While studies to date have focused on particular regions or cloud regimes and,
at most, tens of thousands of examples, we use a machine-learning model trained on such
hand-labeled datasets (Materials and Methods) to create a global database of more than
1 million ship tracks over a 20-y period, as shown in Fig. 1A.

This long-term, global view of ship track occurrence confirms the findings of previous
studies that they are most prevalent in low and shallow marine stratocumulus (Sc) clouds
found above the cold upwelling waters to the east of the major ocean basins. While the ship
tracks are evenly dispersed over the Californian Sc deck, the prevailing meteorology in the
Southeast Atlantic constrains these tracks very closely to the main shipping corridors (6).
We also find significant numbers of tracks in other, more unexpected locations. There is a
discernible increase in density along the shipping corridor along the South Indian Ocean
and a high density along the Great Australian Bight. Not all of the detected tracks can be
attributed to shipping, however. Local hotspots around Indonesia (shown in SI Appendix,
Fig. S4) suggest these could be caused by the large number of volcanic sources in this
region. Such tracks might provide valuable insights into these emissions when cloud cover
would otherwise prevent remote-sensing estimates.

This database provides a unique opportunity to explore the spatial and temporal
distribution of these features in different environmental conditions in response to a broad
range of emissions. Indeed, the introduction by the International Maritime Organization
(IMO) of stringent emissions limits in the emission control areas (ECAs) around the
coast of North America and the North Sea, reducing the limit on sulfur (S) in fuel oil
to 1% S (by mass) in 2010 and to 0.1% in 2015, and a global reduction on the limit from
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Fig. 1. (A) The average monthly frequency of occurrence of ship tracks
detected in Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua
imagery between 2002 and 2021 with a single contour level of average
shipping emissions at 0.4 ng · m−2 · s−1 SOx overlaid in white. (B) The ab-
solute difference between the frequency of occurrence between 2002 to
2014 and 2015 to 2019 (inclusive), highlighting changes due to near-shore
sulphur emission control area (SECA) emissions regulations. (C) The absolute
difference between the frequency of occurrence between 2015 to 2019 and
2020 to 2021 (inclusive), highlighting changes due to IMO global shipping
emissions regulations.

3.5 to 0.5% after 1 January 2020 provide an opportunity to assess
these sensitivities.* Unfortunately, at about the same time as the
global emissions regulations came into force, the global COVID-
19 pandemic took hold and disrupted global shipping (7), making
a direct comparison with previous years challenging. By 2021,
however, most shipping had returned to its prepandemic level (7)
and a clearer picture of the impact of the regulatory changes is
revealed.

The impact of these global events is distinctly seen in Fig. 2,
which shows the total number of ship tracks detected across the
10 most common ocean basins over the last 19 y (discounting
2002, which had only partial coverage). While ∼40,000 ship

*https://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx, last accessed
31 January 2022.

tracks formed every year until 2020, that year the number dropped
to only 30,000—a 25% decline. The largest oceans tend to have
the largest number of ship tracks and the change in 2020 occurs
uniformly across all regions. As anticipated, there was a slight
recovery in 2021 as the global shipping volume returned to normal
levels, but well within the interannual variability of the previous
years. As with other environmental indicators (8, 9), the effect of
COVID-19 on the occurrence of ship tracks appears to be small
compared to the natural variability and particularly compared
with the regulatory changes. Indeed, the cumulative navigated
miles in 2020 were ultimately only 3% lower than predicted
(7, 10).

The spatial distribution of these changes is shown in Fig. 1
B and C, which shows the changes in ship track occurrence
between 2002 to 2014 and 2015 to 2019 and between 2015 to
2019 and 2020 to 2021, highlighting the effect of regional and
global regulatory changes, respectively. The changes seen in Fig. 1B
clearly show the large reduction in ship tracks that occurred off the
coast of California with the introduction of the 0.1% limit within
the ECA around the North American coast, but no discernible
change in the North Sea ECA, as has already been noted (11).
A small reduction is seen in the Northwest Atlantic off the coast
of Nova Scotia, but as few ship tracks are ever found here, the
absolute change is negligible. There is a marked increase in ship
tracks just outside the ECA in the North Pacific as shipping routes
were changed to avoid the regulatory area between 2016 and 2019
(Fig. 3). There appears to be a small increase inside the ECA
again in 2021 as the price differential between ECA and non-ECA
routes is reduced. The changes due to IMO regulations are stark
and much more uniform: There is a large reduction in ship track
incidence everywhere they typically occur (see regional changes
in SI Appendix, Fig. S3). This uniform reduction clearly shows
the impact of, and general adherence to, the IMO regulations
introduced in 2020.

Sensitivity of Clouds to Ship Emissions

These clear reductions in ship track occurrence are in contrast to
the broader changes in marine cloud droplet number that do not
show any particular effect of the changes in regulations outside of
the longer-term decline since around 2007 (SI Appendix, Fig. S5).
Such large-scale changes have been attributed to total anthro-
pogenic emissions changes over the period and also show a sub-
linear response (12). Even regionally though, the only discernible

Fig. 2. The total number of ship tracks by ocean region between 2003 and
2021 (inclusive), overlaid by the global mean shipping emissions of SOx where
available. Ocean region boundaries are shown in SI Appendix, Fig. S7.
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A

B

Fig. 3. (A and B) Regional close-up of the difference due to ECA regulations
changes (2002 to 2014 minus 2015 to 2019) off the coast of California. A time
series of the ship track frequency of occurrence inside and outside the ECA
region is also shown.

change occurs in the South Atlantic where the influence of conti-
nental aerosol sources may be less than in the South Pacific.

By regressing the changes in ship track occurrence against the
associated (large) changes in shipping emissions of SOx we can
determine the global sensitivity of clouds to these perturbations, as
shown in Fig. 4. As expected, this sensitivity is positive everywhere
and generally higher where ship tracks tend to be found since ship-
ping covers a large portion of the ocean over multiyear timescales
and the emissions reductions were uniform. Increased sensitivity
can be seen in the extratropical shallow clouds, with the North
Pacific and high cloud-fraction Sc particularly sensitive. Cloud

Fig. 4. The sensitivity of relative change in ship track occurrence to relative
change in shipping emissions of SOx in 4◦ × 4◦ regions between 2014 and
2021 (inclusive) where ship track occurrence is greater than 0.1/mo. The
stippling represents the rejection of the null hypothesis of no sensitivity at
P < 0.05.

Fig. 5. The relative change in ship track occurrence for a relative change in
SOx emissions as a function of average cloud fraction and background cloud
droplet number in 4◦ × 4◦ regions.

fraction has been shown to play a leading role in determining
the occurrence of ship tracks (11) and we find a similarly strong
dependence, although there is also a (weaker) dependence on the
background droplet number concentration: Cleaner clouds are
more likely to produce ship tracks in response to ship emissions,
as seen in Fig. 5.

While locally the relative sensitivity of ship track formation
to emissions changes can be as large as 1.0, there is large spatial
variability and the global change in the number of tracks is clearly
sublinear: An 80% reduction in SOx emissions causes only a 25%
reduction in the number of tracks detected. Since the change
in droplet number is known to respond logarithmically with
increased condensation nuclei (13), this demonstrates how far
from their preindustrial conditions the shipping corridors are,
even after such a large reduction in emissions. It also highlights
the difficulty faced by proposed marine cloud brightening efforts
due to the diminishing returns on injected aerosol.

Discussion

Ship tracks can generally be discerned (either manually or auto-
matically) only in homogenous cloud fields but, although hard
to detect, cloud perturbations in inhomogeneous clouds such as
broken cumulus can exist (14) and have recently been shown
to have distinct and important liquid water path responses (15).
Future work will combine these approaches to better determine
the radiative forcing induced by shipping and the degree to
which cloud perturbations are saturated by present anthropogenic
emissions. Such an approach would also allow a determination of
the sensitivity of this, and other ship track detection studies, to
the brightness and linearity of the tracks.

By detecting and analyzing more than 1 million ship tracks over
two decades we have been able to unambiguously demonstrate
the response of anthropogenic changes in clouds to changing
emissions, despite a negligible response in other background cloud
properties over the period. This unique dataset highlights the
impact of the successful implementation of the global aerosol
emissions control regulations on the climate system and the
limited effect of the COVID-19 pandemic. Combining the vast
amount of Earth observing data now available with modern
machine-learning techniques provides additional ways to assess
global emission perturbations and will allow governments and
international regulatory bodies to monitor the compliance to, and
climate effects of, much needed emissions reductions schemes.
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Materials and Methods

Training Data. The model input comprises MODIS “day microphysics” compos-
ites, inspired by ref. 16 and constructed (using SatPy) from channels 1, 20, and 32
(corresponding to wavelengths of 645 nm, 3.75μm, and 12.5μm, respectively).
This composite was designed to provide information in the visible (toward the
middle of the solar spectrum), the near infrared (which provides information
about the cloud droplet size), and the infrared (which allows discrimination of
cloud liquid and ice). Histogram equalization was applied to scale each channel
prior to training and inference. The original 1,350 × 2,030-pixel (px) images
were bilinearly interpolated to 1,344 × 2,240 px and then split into 15,448 ×
448-px images to be as large as possible while enabling a batch size of 8
during training and maintaining the full 1-km resolution. The training data were
provided in the form of 4,500 hand-logged tracks marking the head and each
turning point along the track (4, 11, 17, 18). These points were connected by
straight lines of width 10 px, approximating the average ship track width of 9 km
(19), and converted into 4,320,448 × 448-px bitmasks for use in training the
model (20). An example image and the corresponding hand-logged data are
shown in SI Appendix, Fig. S1.

Ship Track Detection Model. The ship track detection model (21) is a stan-
dard neural-network–based segmentation model with a UNet architecture (22), a
resnet-152 backbone (23) pretrained on the 2012 ImageNet Large Scale Visual
Recognition Challenge ImageNet dataset (24), and sigmoid activation on the
final layer. We train using Adam optimization (25) with a learning rate of 0.01 and
a batch size of 16 over 100 epochs on two NVIDIA Tesla V100s using tensorflow-
distributed training. The learning rate is reduced by a factor of 0.2 if the validation
loss is deemed to have plateaued over the last five epochs. We use a binary cross-
entropy Jaccard loss and find this performs slightly better than a focal loss, while
both perform significantly better than a standard binary cross-entropy due to the
large class imbalance in the images. We found that introducing an augmentation
step whereby each image is randomly flipped or rotated 90◦ also improves
training slightly.

SI Appendix, Fig. S1 shows example model predictions alongside the (held-
back) test masks. The model does well in a wide range of challenging scenes. As
with traditional ship track studies, the algorithm we use is sensitive to both shape
and microphysical perturbation, so older tracks with diminished Nd perturbations
will be unlikely to be detected.

We briefly highlight a few of the key differences between this architecture
and the only other published model (26), henceforth TY2019. Our model uti-
lizes much larger image tiles than TY2019 (448-px square as opposed to 64-px
square), thus allowing the model to learn more context, avoid artificial splitting of
tracks, and therefor detect longer tracks. Indeed, we find somewhat fewer tracks
(37,947 compared to 70,338) when searching the same region off the coast of
California (180 to 100◦W, 0 to 60◦N) during 2010 as TY2019.

Our model is evaluated using the Jaccard index, or intersection over union
(IOU): J (A, B) = |A∩B|

|A∪B| , where A is the binary target mask and B the model
predicted mask. The test IOU of our model is lower than the reported value
in TY2019 (53% compared to 91%) and this is partly due to the larger tiles,
which makes the features relatively smaller and high IOUs harder to achieve.
This could also be due to the larger range of training and, hence, test regions
we used. We used three channels, including the two that were used in TY2019
to calculate the brightness temperature difference, which we hoped would allow
the model to generalize better to different cloud regimes (TY2019 was used
only in shallow stratocumulus clouds off the coast of California) and allow our
model to work during the daytime when cloud microphysical retrievals are also
available. The resulting data for TY2019 are not publicly available but their figure
1 seems to show indications of false positives that we try to avoid with the
Jaccard loss and by including a small proportion of example images with no ship
tracks (10%).

While many model architectures and training structures were explored during
development, we highlight three distinct cases in SI Appendix, Table S1. The
effect of augmentation is clearly seen with a reduction in IOU of nearly 20% when
it is not used. We also trained a feature pyramid network (FPN) that uses a quite
different architecture and has been shown to be skillful in image segmentation
tasks (27). This performed reasonably well in terms of IOU (and comparably to the
ResUNet) but produced feature masks that were somewhat more uncertain and

less useful for our task of detecting specific tracks as seen in SI Appendix, Fig. S2.
Given the importance of the number of detected ship tracks in a given tile, we also
compared this metric in the test data and found a small overestimate in all models
compared to the hand-logged tracks, with a SD of around 10%. Reassuringly, the
best model in terms of IOU also performs best in the number of detected tracks.

Because the training data were collected from previous studies, they are
somewhat biased toward cloud regimes and meteorological conditions in which
ship tracks are already known to be prevalent. To assess the skill of the model in
unseen regions we randomly select a scene from the Indian Ocean within which
we find many tracks but that has not been extensively studied and for which
no training examples are used. As shown in SI Appendix, Fig. S6, the algorithm
robustly detects the six tracks in this complex scene.

We make our model as well as our training and test data public in the hope to
encourage extension and reuse but also for easy comparison between different
models and hope others will do the same.

Analysis. Inference was carried out over all available “MYD021KM” calibrated
radiance files from the MODIS instrument on Aqua between 2002 and 2021
inclusive, totaling more than 250 TB of data (28). To achieve this, preprocessing,
inference, and postprocessing were performed on MAGEO (Massive GPU for
Earth Observation), a cluster of five NVIDIA DTG-1 max-Q nodes, operated as part
of NEODAAS (Natural Environment Research Council [NERC] Earth Observation
Data Analysis and AI Service), which provided a total of 40 Tesla V100 GPUs
(200,000 CUDA cores), 400 CPU cores, and 2.5 TB of RAM. Ship track polygons
were determined from contours of 50 and 80% confidence in each inferred
mask and the resulting geolocated objects saved in a geographic information
system database (29). While the model was found to generalize well to unseen
regions of the globe, a marked increase in false positives was found in cold frontal
clouds near each pole and over very bright desert surfaces. The average 12.5-μm
brightness temperature was determined for each track and those found to be
less than 273 K or over land were filtered out of the analysis set. While the full
unfiltered dataset is available, all results and figures quoted in the text refer the
filtered dataset. Ocean regions are determined using the centroid of each ship
track and the Natural Earth ocean basin polygons shown in SI Appendix, Fig. S7.
The maps of ship track density presented in Fig. 1 were determined by counting
the number of shiptrack polygons that intersect the centroid of each 0.1◦ gridbox
each month.

Ship-borne SOx emissions data are obtained from the monthly CAMS-GLOB-
SHIP v3.1 product at 0.1◦ resolution (30). The sensitivity of ship track occurrence
to SOx emissions is calculated using these data after taking the mean over
40 × 40 grid cells to upscale the resolution to 4◦. To determine the sensitivity
of ship track formation to emissions as a function of environmental controls
(Fig. 5) we use the mean single-layer retrieved liquid cloud fraction from the
monthly MODIS level 3 product (MYD08 L3). The background droplet number
concentration is calculated using the condensation rate temperature corrected
adiabatic approximation (31, 32).

Data, Materials, and Software Availability. Machine learning training data,
inference output and all analysis data have been made available as follows:

• The raw machine learning output, including segmentation masks:
10.5285/0d88dc06fd514 e8199cdd653f00a7be0 (28)

• The derived data: 10.5281/zenodo.7038703 (29)
• Machine learning training data: 10.5281/zenodo.7038715 (20)
• The machine learning algorithm and associated code: 10.5281/zenodo.

7038855 (21).
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