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Abstract: Marine plastic pollution is a major environmental concern, with significant ecological,
economic, public health and aesthetic consequences. Despite this, the quantity and distribution of
marine plastics is poorly understood. Better understanding of the global abundance and distribution
of marine plastic debris is vital for global mitigation and policy. Remote sensing methods could
provide substantial data to overcome this issue. However, developments have been hampered by the
limited availability of in situ data, which are necessary for development and validation of remote
sensing methods. Current in situ methods of floating macroplastics (size greater than 1 cm) are
usually conducted through human visual surveys, often being costly, time-intensive and limited in
coverage. To overcome this issue, we present a novel approach to collecting in situ data using a trained
object-detection algorithm to detect and quantify marine macroplastics from video footage taken from
vessel-mounted general consumer cameras. Our model was able to successfully detect the presence or
absence of plastics from real-world footage with an accuracy of 95.2% without the need to pre-screen
the images for horizon or other landscape features, making it highly portable to other environmental
conditions. Additionally, the model was able to differentiate between plastic object types with a
Mean Average Precision of 68% and an F1-Score of 0.64. Further analysis suggests that a way to
improve the separation among object types using only object detection might be through increasing
the proportion of the image area covered by the plastic object. Overall, these results demonstrate how
low-cost vessel-mounted cameras combined with machine learning have the potential to provide
substantial harmonised in situ data of global macroplastic abundance and distribution.

Keywords: artificial intelligence; machine learning; object detection; floating plastic litter; plastic
pollution; macroplastics; remote sensing; monitoring; vessel-based

1. Introduction

Since mass production of consumer plastic products started in the 1950s, plastic waste
has been reaching the natural environment, with plastic debris accounting for 60–80% of
marine litter [1]. This widespread pollution is ultimately due to the mismanagement of
plastic waste, with an estimated 4.8 to 12.7 million metric tons of plastic entering the world’s
oceans from land-based sources in 2010 alone [2]. Without improvement in the global waste
management infrastructure, the influx of plastic waste into the ocean is predicted to increase
by an order of magnitude within the next decade [2]. The widespread nature of marine
plastics is due to its relatively high buoyancy compounded by its longevity and resistance
to decomposition, facilitating its dispersal across the globe [3].

Once entering the marine environment, plastics can have a catastrophic effect on
marine life. For instance, macroplastics (size greater than 1 cm) [4] can cause extensive
ecological damage, with marine plastic debris resulting in the transport of non-native
species as well as the entanglement of wildlife, leading to choking and starvation [5–7].
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The degradation of macroplastics causes further ecological damage, as organisms in sev-
eral taxa such as zooplankton, marine invertebrates, fish and marine mammals ingest
them [8–11]. Therefore, it is vital that marine plastic pollution is monitored to aid with
prevention and mitigation.

Currently, common in situ methods for monitoring floating marine plastic debris
involve sea survey methods, such as net surveys and direct visual observation. Net tows
are often used for micro and mesoplastic (1–10 mm) quantification and involve a surface
net being trawled behind a research vessel [12]. Visual counting is often used for floating
macroplastic (>1 cm [4]) quantification, during boat surveys [13,14]. However, net surveys
and visual observation methods are very costly, time-intensive and limited in coverage,
making them unsuitable for systematic global sampling. Current in situ methods often
involve researchers using different methodologies for different environments, preventing
effective comparisons. Consequently, this limits the strength of evidence-based recommen-
dations to support policy changes regarding the mitigation of marine plastic pollution.
Therefore, there is a dire need for global harmonised methods for monitoring the composi-
tion and quantity of marine plastic debris. One suggested concept to overcome this issue is
the Integrated Marine Debris Observing System (IMDOS), which proposes the integration
of remote sensing and in situ observations [15]. IMDOS suggests using remote sensing
technologies to provide coherent spatial and temporal coverage on a global scale [15].
Direct observations from in situ monitoring will then be used as ground-truth information,
used for validation of remote sensors. Data collected from the remote sensing and in situ
methods can then be used to improve models of global plastic pollution dispersal and
quantity [15].

In situ or close to in situ RGB cameras have been deployed in aerial surveys from
planes [16,17] or unmanned aerial vehicles (UAV) [18], from bridges [19] and from manned
vessels [20]. In addition, exploiting spectral information at selected wavelengths
(i.e., multispectral) [21] or hyperspectral imaging [22,23] is also possible but adds instru-
ment costs and data processing overhead.

Video camera technology can be a useful method in providing global, harmonised
in situ data. Video cameras are relatively low-cost and easy to install, can be easily obtained
worldwide and, when mounted on a boat perpendicular to the water’s surface, can record
and identify macroplastics [19]. Boat-mounted cameras are often used by citizens, creating
a large database which could be utilised to monitor marine plastics. Similarly, autonomous
ships are often equipped with mounted cameras, already used for object detection to
aid with navigation. In a comparison of observer-based methods to a variety of camera
methods, it was found that photographic-based surveys were more effective than observer-
based methods for detecting marine macro-litter on the sea surface [24,25]. This is likely due
to the reduction in human error from photographic-based surveys, as the images provide a
permanent record, allowing re-analysis by multiple photo-interpreters [24]. However, aerial
photographic methods of monitoring plastics are affected by environmental factors such as
cloud cover and wind speed [24]. Yet, photographic boat surveys are able to detect plastics
when airborne surveys cannot. Therefore, boat-mounted cameras or autonomous surface
vessels should be explored as a harmonised method of monitoring marine macroplastics
in situ.

However, using boat-mounted cameras to detect marine plastic debris results in large
volumes of data which can be very labour-intensive to analyse. To overcome this issue,
automatic recognition has been used to detect plastics from photographs and video footage
using machine learning [19,20,26,27]. Machine learning is a form of Artificial Intelligence
(AI) which has the ability to learn and improve from experience without a human providing
explicit instructions on how to do so [28]. In object detection, a subset of ML known as
deep learning is often used. Deep learning models are described as neural networks with
three or more hidden layers [28]. Object detection occurs when the deep learning algorithm
takes in an image and outputs the bounds of detected objects along with confidence scores
for a predefined set of classes [29]. Convolutional Neural Networks (CNNs) represent
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the current state of the art for deep learning analysis of imagery [30]. There are many
types of CNNs, with the most popular ones used for marine plastic object detection being
YOLOv5 [20,26] and Faster R-CNN [19,20,26].

Further development of remote sensing methods can be achieved through increasing
the quantity of harmonised global in situ data to develop a method to verify remote
sensing methods. The combination of machine learning models and video cameras have
been explored to tackle this issue. For instance, Tata et al. (2021) [31] created several
computer vision models to perform real-time macroplastic quantification of epipelagic
macroplastics, with the best performing model having an accuracy of 85% when using
the YOLOv5s architecture [26]. Similarly, Van Lieshot et al. (2020) [19] demonstrated
a potential method to detect floating plastic debris in rivers using a bridge-mounted
camera and deep learning [19]. Despite their lower model accuracy of 68.7%, they have
demonstrated the feasibly of using a video camera and deep learning to automate in situ
plastic data collection [19]. Additionally, de Vries et al. (2021) [20] have shown a proof of
concept for detecting marine macroplastics from a vessel-mounted action camera using an
object-detection algorithm [20]. However, in all these studies, the models only detected a
single class of plastic and did not differentiate between categories of plastics.

In this paper, we build on previous studies to develop a method to automatically
detect plastics in general as an object anomaly and also try to distinguish among some
different types using a video camera mounted on two vessels: the Mayflower Autonomous
Ship (hereafter MAS) and the PML Explorer (hereafter Explorer) to provide a proof of
concept for the future. A deep learning approach utilising the YOLOv5 framework has
been trained to differentiate between plastic object types and validated using real-world
footage from the two vessels. We then make recommendations on how to develop these
methods further in future studies.

2. Materials and Methods
2.1. Data Collection

The classes of plastics chosen for this experiment were based on the most common and
easily available plastic debris. The European Commission’s Joint List of Litter Categories for
Marine Macrolitter monitoring was chosen to classify the plastics used in this experiment to
enable comparable monitoring of marine litter across the globe [32]. The plastic categories
chosen were plastic shopping bags, plastic drink bottles less or equal to 0.5 litres, plastic
drink bottles more the 0.5 litres, plastic buoys from sources other than fishing or not
known [32]. These items are demonstrated in Figure 1.

Footage of plastic in the water was collected using a video camera (Vicon Fixed Bullet
camera, Model: V944B-W312MIR). This model of camera is typically used for building
security, typically costs around USD 417 and is capable of collecting 2592 × 1520 pixel
footage at 20 FPS. The camera was mounted on two different vessels, the MAS (Figure 2)
and the Explorer (Figure 3). Footage filmed was collected on three different dates and at
three different locations, as shown in Figure 4. Video from the MAS was taken whilst the
vessel was moored at Turnchapel Wharf, Plymouth, UK on 20 October 2021, 2 November
2021 and 12 November 2021, filming for approximately 40–60 min at each visit. Footage of
a combination of bags and bottles was filmed on both the port and starboard fixed cameras,
mounted at a 90-degree angle to the sea, 2.25 m above the water as shown in Figure 2.

On the Explorer, the fixed bullet camera was attached to a davit 2.3 m above sea level,
at a 90-degree angle to the sea as demonstrated in Figure 3. Footage of a combination
of bags, bottles and buoys were then filmed whilst the Explorer was moored at Millbay
Marina Village, Plymouth, UK (2 December 2021) and out at sea by Cawsand Bay, Cornwall,
UK (25 January 2022), filming for approximately 40–60 min on both days. Plastic bags
and bottles were tied together via fishing line to make recovery easier and thrown into
the water in view of the camera. The Explorer then circled the plastics at approximately
3–5 knots to collect footage against varied backgrounds before the plastics were retrieved.
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The images were collected in a variety of environmental conditions such as varied
water turbidity, varied swell, cloudy and sunny days and rainy days. Specific weather
conditions can be found in Table 1. When filming at the marinas on 20 October 2021, 2
November 2021, 12 November 2021 and 2 December 2021, the swell was flat. Whilst out at
sea in Cawsands Bay on 25 January 2022, the swell was moderate. Data were also collected
with no plastic in the water at each site. Footage from each site can be seen in in Figure 5.

Figure 1. Table displaying objects used for filming, the approximate dimensions for each item and
the Commission’s Joint List of Litter Categories for Marine Macrolitter monitoring code for each
category [32].
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Figure 2. Camera setup on the MAS. There is a Vicon security camera on both the port and starboard
sides of the boat, 2.25 m above sea level, facing at a 90-degree angle to the sea. The port-side camera
is visible in this image, as highlighted in the box drawn on the image.

Figure 3. Camera setup on the Explorer whilst moored at Millbay marina. A Vicon fixed bullet
camera is attached to a davit on the Explorer, faced at a 90-degree angle to the sea. The footage is
streamed onto the computer using an Ethernet cable.

Table 1. Weather conditions on days of filming including the minimum and maximum temperature,
average wind speed and minimum and maximum rainfall at time of filming. Data used in this table
is provided by the Western Channel Observatory [33], collected from the weather station located on
Rame Head, Cornwall. The weather station location is shown in Figure 4.

Date (Day/Month/Year) Min-Max Temperature
(Degrees Celsius) Average Wind Speed (mph) Min-Max Rainfall (mm)

20 October 2021 14.7–14.8 28.9 0.00
2 November 2021 11.8–11.9 2.9 0.00

12 November 2021 12.1–12.3 21.9 0.00
2 December 2021 5.8–6.0 14.2 0.00–0.2
25 January 2022 6.4–6.3 13.0 0.00
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Figure 4. Map of sample sites showing the location of Turnchapel Wharf, Millbay Marina and
Cawsand Bay. All sample sites are located in the southwest of England, specifically Devon and
Cornwall. Background OpenStreetMap, © OpenStreetMap contributors.

Figure 5. Cont.
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Figure 5. Training images containing plastic items used for training from (a) Turnchapel Wharf, (b)
Millbay Marina Village and (c) Cawsand Bay. The image from Turnchapel Wharf is taken on the MAS
and contains three transparent bottles. The image at Millbay Marina Village is taken on the Explorer.
Two buoys and two bags can be seen in this image. The image taken from Cawsand Bay is taken on
the MAS. This image contains three bags, two white and one orange. The image also contains three
transparent bottles.

2.2. Data Processing

Footage collected on the MAS and the Explorer was labeled using using the Video and
Image Analytics for Multiple Environments (VIAME) software. VIAME is an open-source
computer vision software platform, which is designed to aid with machine learning model
training, including utilities for image and video annotation and capacity for object detection
and object tracking [34]. For this study, we used the VIAME web platform to label our data
set using box-level annotations. Each bounding box was drawn so that the centre of the box
remained over the centre of the tracked object, as suggested in the VIAME user guide [34].
Once the videos were uploaded to VIAME, the location and category of plastics were
labelled for each video at a interval of 10 frames per second. For labelling, the plastics were
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split into three categories: bag, bottle and buoy. The labelled data set was then exported
from VIAME and separated into individual frames, with an associated label file for each
frame, formatted for the YOLOv5. In total, 10,431 frames were labeled.

To increase the amount of training data, augmentation was applied using the imgaug
library [35]. Augmentations applied to images included random crop, scaling, translation,
shearing, horizontal flip and rotation. Additionally, a proportion of the images had linear
contrast, uniform blur and brightness randomly applied. After augmentation, some images
contained bounding boxes partially outside the image. To rectify this, we clipped the
bounding boxes to be completely inside the image. In some images, this meant only an
exceedingly small section of the plastic item remained in the image. However, we felt that
this would increase the likelihood of the model detecting partially visible plastics rather
than only focusing on objects that were completely within the frame.

For training, tuning and evaluating the model, we partitioned the images into training,
validation and test sets. For the test set, this split was performed at the video level so
no frames from the test set were used to train the model. The videos for the test data
set were manually selected to represent a wide variety of conditions to evaluate if the
algorithm could accurately perform in varied weather conditions with multiple plastics
at different distances to the camera and with negative objects. Our test data set contained
9824 images, 30% of the overall data set. The remaining footage was then randomly split
into training and validation data sets, with 19,708 (80%) of the remaining images allocated
to the training data set and 4928 (20%) to the validation data set, as shown in Figure 6.
Due to the lack of variation in conditions at the marinas, the frames in each video were
very similar. Therefore, every 10th frame was selected from these videos for training and
validation data sets. On the other hand, all the frames taken on the Explorer at sea by
Cawsand Bay varied significantly due to movement on the boat. Therefore, all frames were
included in the training and validation data sets along with all the augmented images from
each location. After removing some of the marina footage from the data set, we had a total
of 33,461 labeled frames.

Figure 6. Overview of methods used to create the object detection algorithm.
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2.3. Neural Network Training

To both detect and classify objects, we selected the You Only Look Once (YOLO) object
detection architecture [36]. Unlike previous object detection models such as Faster R-CNN
which require multiple passes over an image to generate predictions [37], YOLO is an end-
to-end architecture performing object recognition and classification in a single image pass
while remaining highly accurate [36]. YOLO can therefore achieve much faster training
and inference speeds than previous models, with the ability to process image streams
in real time (45 fps) making it ideal for high throughput object detection tasks [36,38].
YOLOv5 is an open-source framework which uses the PyTorch deep learning library to
implement the most recent iteration of YOLO [39]. YOLOv5 includes several variations of
the YOLO architecture ranging from small to extra large (YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x); larger models are more complex and therefore more able to achieve higher
accuracies, though at the cost of higher computational requirements [39].

To select the optimum model for our data set, several models were trained using
different hyperparameters. First, we trained a model using YOLOv5s, and kept all hyper-
parameters in the default setting. This model was trained using 100 epochs and a batch size
of 128. Loss metrics output from YOLOv5 indicated that the model converged well within
100 epochs; so further models were only trained for 50 epochs to reduce training time.

The next model was trained using the same YOLOv5s model and the same batch size
and number of epoch. With the aim of trying to achieve a higher model accuracy, image
size was increased from the default 640 pixels to 1280 pixels, in hopes that this would result
in better detections. Next, we trained a model using the larger YOLOv5m, using 50 epochs
and a batch size of 128, with an image resolution of 640. The final model trained used the
YOLOv5s model and had full image resolution of 2592 pixels, trained using 50 epochs and
a batch size of 32.

After analysing the performance of these models against the validation data set,
the YOLOv5s model with an image size of 1280 pixels was selected as the final model due
to its high accuracy with low computational input. We then ran inference over the entire
test set using the chosen model.

2.4. Percentage Pixel Coverage

Using video footage from vessels, small plastic items (such as bottles and bags) of-
ten only occupy a small proportion of the frame. Cropping the frames (e.g., to remove
non-ocean pixels) could help mitigate this; however, this would remove potentially useful
contextual information, and applying such approaches is rarely straightforward as bound-
aries within images are often unclear. Including pre-processing steps would also reduce the
transferability of the model, as the method would need to be fine-tuned for new locations
and would increase detection latency. We therefore wanted to explore the effect of the plas-
tic objects’ pixel percentage cover on the performance of the model. The percentage pixel
coverage of the plastic items was calculated as the number of pixels within the bounding
box of each item relative to the total number of pixels in each frame (Figure 7). By exporting
the unique values of percentages into a data frame, we were able to find the 25th percentile
(the threshold below which 25% of bounding boxes fell by size). For our test data set, the
25th percentile was 0.04966. This value was then used to subset the bounding boxes into
a lowest 25% data set and a highest 75% data set. Because many frames contain multiple
objects, frames were categorised by the size of the smallest object in the frame. Both data
sets also included the test negative footage. Inference was then run over each data set.
Overall, there were 4344 images in the lowest 25% data set and 6773 in the highest 75%.
The accuracy of these two test data sets was then compared.
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Figure 7. Histogram showing the distribution of pixel percentage cover of the plastic items in
comparison to overall image size in the test data set.

3. Results
3.1. Neural Network Performance on the Validation Data Set

As presented in Table 2, there is only a small amount of variation in the accuracy
between each of the trained models. By increasing the image size from the default 640 pixels
to 1280 pixels in Model 2, accuracy was slightly improved, shown by the slight rise in
mAP and F1 score in comparison to Model 1. When using YOLOv5m in Model 3, accuracy
remained similar to Model 2 despite the use of a larger and more complex model. Using
the full image resolution in Model 4 with the YOLOv5s architecture, accuracy slightly
improved compared to Model 2. Despite this slight increase in accuracy, Model 2 was
chosen as the final model due to its lower computational requirements, making it more
suitable for deployment.

Table 2. Performance metrics of each model tested. Results were created after running inference over
the validation data set. Model 1 was run using YOLOv5s, default settings, 100 epochs and 128 batch
size. Model 2 was run using YOLOv5s, 1280 pixels, 100 epochs and 128 batch size. Model 3 was run
using YOLOv5m, 640 resolution, 50 epochs and 128 batch size. Model 4 was run using YOLOv5s,
2592 resolution, 50 epochs and 32 batch size. Table 1 presents the mean average precision, F1-score,
precision and recall of each model.

Model mAP F1-score Precision Recall

Model 1 (v5s, 640) 0.833 0.84 0.981 0.86
Model 2 (v5s, 1280) 0.851 0.85 0.977 0.88
Model 3 (v5m, 640) 0.847 0.85 0.976 0.87
Model 4 (v5s, 2592) 0.863 0.86 0.952 0.90

After running inference over the validation data set with the final model, the accuracy
was 85.1% when differentiating between classes. When considering only the presence or
absence of plastics in an image (all plastic categories combined), this accuracy increased to
95.15%. The accuracy among each class was varied, as shown in Figure 8. In the overall
validation data set of 4928 images, there were 1024 false negatives. Out of these false
negatives, 40% were bottles, 50% were bags and 10% were buoys. Bottles were detected
as background by the model 25% of the time. This is likely due to their small size and
transparency, making them difficult to distinguish from the background. Bags produced
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the highest proportion of false negatives; this could be due to their varied shape and
tendency to sink below the surface, making them difficult to detect. It is likely that the
buoys only contribute to a small proportion of false negatives due to their larger shape and
high buoyancy, increasing the buoys visibility.

Figure 8. Normalised confusion matrix showing the output from the final model run over the
validation data set. Bottles were predicted correctly by the model 75% of the time, and bottles were
incorrectly identified as background 25% of the time. Bags were correctly identified by the model 86%
of the time and wrongly identified as background 14% of the time. Buoys were correctly identified
92% of the time and misidentified as background 7% of the time.

3.2. Neural Networks Performance on the Test Data Set

The model was 95.23% accurate at detecting the presence or absence of plastics in the
test data set and validation data set. However, when differentiating between object types,
the model accuracy significantly decreased to 65.3%. The model often either detected the
plastic as the incorrect object type or was unable to detect the item, as shown in Table 3.
When differentiating between object types, the model accuracy was significantly lower than
the model accuracy from the validation data set. This is likely due to the validation data set
containing frames from the same videos that were used in the training data set; however,
the test data are a separate entity. The test data set represents real-world footage, which
contains a large amount of variation in the environment and in the items, making the objects
more difficult to detect. The class of plastic incorrectly identified as background the most
was bottles, likely due to a combination of them being transparent and having a small size,
making them very difficult to detect as demonstrated in Figure 9. The model successfully
ignored negative objects such as vegetation debris and sun glare, as demonstrated by
Figure 10. Out of the overall 9824 images in the test data set, 2280 were detected as false
negatives. Of these false negatives, 30% were bottles, 44% were bags, and 26% were
buoys (Figure 11). Examples of plastics successfully identified by the model are shown in
Figure 12.
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Table 3. Quantity of plastic correctly identified, misidentified as the incorrect class or not identified
by the model. The table shows these quantities for the bottles, bags, buoys and total plastics from the
test data set. The number of plastics refers to how many times the model has detected a plastic item.
Many of these detections will be from the same plastic item counted multiple times.

Model
Detection Bottle Bag Buoy Total

Correct 3063 6630 2673 12,366
Incorrect class 399 505 775 1679
False negative 674 1016 590 4953

Figure 9. Example of one of the false negative images from the validation data set. The image contains
three small bottles which have drifted away from the vessel. The percentage cover of each bounding
box is 0.033%, 0.015% and 0.007%.

Figure 10. Test images containing negative objects such as vegetation debris and sun glare as labelled
on the image. The model ignored these objects and detected the three plastic bottles as shown in
the image.
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Figure 11. Normalised confusion matrix showing the output from the final model run over the test
data set. Bottles were predicted correctly by the model 53% of the time, and bottles were incorrectly
identified as background 46% of the time. Bags were correctly identified by the model 56% of the
time and wrongly identified as background 35% of the time. Buoys were correctly identified 58% of
the time and misidentified as background 31% of the time.

Figure 12. Zoomed in test images from each site showing the plastics detected by the model for each
of the three sites (a) Turnchapel Wharf, (b) Millbay Marina Village, (c) Cawsand bay.

Percentage Pixels of Object

The results from running inference over the test data set, 25% data set and 75% data
set are displayed in Table 4. By excluding 25% of the bounding boxes with the lowest
pixel percentage coverage, the mAP, F1-score and precision were slightly increased. This
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suggests the low pixel percentage of some of the bounding boxes could be an explanation
for some of the false negatives in the test data set.

Table 4. Performance metrics of the final model after inference over the entire test data set, the data
containing the bounding boxes with the lowest 25% percentage coverage and the data set containing
the bounding boxes with the highest 75% percentage coverage within the test data set. Table 2
presents the mean average precision, f1-score, precision and recall of each model.

Data Set mAP F1-Score Precision Recall

Overall Test 0.653 0.64 0.979 0.75
75% Test 0.66 0.65 0.979 0.73
25% Test 0.515 0.52 0.978 0.66

4. Discussion

In this study, we successfully trained an object-detection algorithm to detect and
categorise marine floating macroplastics from video footage taken with vessel-mounted
cameras. Due to the low cost and accessibility of vessel-mounted cameras, this method
could be used worldwide to collect in situ data on marine plastic quantification. This
method also has the potential to involve citizen science and utilise autonomous ships to
quantify global floating marine macroplastics.

In this study, we tested four different YOLOv5 model variations during the develop-
ment stage. This included a model using the YOLOv5m architecture and three YOLOv5s
models containing either the default settings, larger image size of 1280 pixels or full image
resolution of 2592 pixels. The highest performing model was the YOLOv5s model with full
resolution, which had an accuracy of 86.3%. The YOLOv5s model using 1280 pixels had a
similar accuracy of 85.1% and was chosen as the final model, due to its significantly lower
computational requirements compared to using the full resolution images. The final model
was trained using 19,708 images, and validated using 4928 images.

After running inference over the validation data set, our model was able to detect
the presence or absence of plastics with an accuracy of 95.15%. When differentiating
between plastic categories, our model had a high accuracy of 85.1% mAP. This accuracy is
similar to the YOLOv5s model created by Tata et al. (2021) [26] from their data set named
DeepTrash, which had a mAP of 85% from their validation data set [26]. Contrary to our
study, the validation data set created by Tata et al. (2021) [26] was mutually exclusive from
the training data set, unlike our validation data set which had frames from the same video
distributed in the training data set. This makes the validation data set in DeepTrash similar
to our test data set, where our accuracy was much lower. This could be due to Tata et al.
(2021) [26] not separating the plastics by different categories and instead having one class
called ‘trash plastics’, arguable making it easier to achieve a high accuracy.

When inference was run over the test data set, which contained images unseen by
the model, our model achieved a very high accuracy of 95.23% when detecting the pres-
ence or absence of plastics. Yet, when differentiating between plastic classes, the model
accuracy significantly decreased to 65.3%. In addition, for images with accumulations of
multiple plastics, the model often failed to identify some objects and misidentified others.
Because YOLO operates in a single pass over the image, it imposes limitations on the
number of objects that can be detected within a given area, reducing the capacity of the
model to detect multiple small objects in close proximity [36]. While this increased the error
rate, the model very rarely failed to detect any plastics where some were present. It could
therefore be used as an effective pre-screening tool for identification of frames of interest in
large data sets.

Whilst similar studies mentioned previously do not differentiate between plastic
classes, Kylili et al. (2019) [27] provide an example of another model which does. In this
study, the plastics were split into three categories, namely, plastic bottles, plastic buckets
and plastic straws [27]. Their model had an accuracy of 86% over their test data set, which
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contained a small sample of 165 images. Despite their high model accuracy, this model
has some limitations. For instance, this study was an excise of machine learning and
not an actual survey. The study contained no negative samples, meaning the model was
only tested on its accuracy in differentiating between classes and not on whether it can
differentiate between plastics and other objects. This study is also an image classification
rather than an object detection approach, which involves labelling the whole image as
containing a plastic object, meaning the location of the object is not provided. This increases
the requirement for manual labour because each image first needs to be cropped to the
approximate location of the plastics. Although the Kylili et al. (2019) [27] study provides
another example of using deep learning to classify categories of plastics, we find an object
detection approach more appropriate for creating an in situ methodology to monitoring
global marine macroplastics. This is due to object detection algorithms having decreased
manual labour requirements, the ability to quantify the number of items and estimate
their size.

By calculating the pixel percentage coverage of the bounding boxes in our test data set,
we showed that the plastics the model was trying to detect made up a very small percentage
of the image. This is demonstrated in Figure 7, with a majority of the bounding boxes
ranging between 0–0.46% of the image. With this in consideration, the high accuracy of
95.1% is impressive. By analysing the impact of pixel percentage cover on model accuracy,
we have found one potential explanation for false negative detections. In future studies,
the pixel percentage cover of the objects could be increased by inputting cropped sections
of the images into the model, which may decrease false negatives and computational time.
However, it will decrease transferability of the model. Overfitting is another possible
explanation for the number of false negative detections in this study. Overfitting occurs
when the model does not generalize well from observed training data to the unseen
test data [38]. An overfitting model fails to learn general rules for inference because it
learns the details and noise of the training set too closely. This can be caused by the
model being overly complex or because the training set does not properly approximate
real-world variability [38]. In our study, some videos had frames contained in both the
training data set and the validation data set, whereas the test set contained a completely
independent set of videos. The lower performance on the test set therefore suggests that
our training and validation sets did not capture enough environmental and contextual
variability for the model to generalise well. This is not surprising given that capturing the
full range of possible sea conditions is very difficult. To mitigate this problem in future
studies, the training data set could be expanded through the addition of more augmented
images or through the addition of more images taken in a wider variety of environmental
conditions. Another possible cause for false negatives in the test data set could be that the
bounding boxes in some augmented images were cropped, causing the model to struggle to
detect these plastics due to their small size. Despite this, we decided to keep the bounding
boxes which had been clipped, as we did not want to train the model to ignore plastics
which were partially present.

Despite our model’s ability to efficiently monitor and quantify marine plastics, several
improvements could be made to this study. First, our data set could be improved to
represent global marine plastic debris more effectively. For instance, plastics used in this
study were all sourced in England and were newly bought. To represent global marine
debris, plastics from a wider range of countries could have been included, along with
older plastics which have been degraded at sea. Similarly, footage collected for training
and testing our model were all collected from a small regional area. For our model to be
more adaptive, footage needs to be collected with a wider variety of locations, weather,
wave, water turbidity and water colour illumination conditions. Additionally, to improve
the representation of our model for global macroplastics, a larger range of marine plastic
categories could be included in training our model, which would allow for a wider range of
macroplastics to be detected during deployment. Finally, this study has the constraint that it
does not define plastic categories per their composition and therefore does not comply with
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the proposed framework for classifying plastic debris by Hartman et al. (2019) [4]. In future
studies, this constraint could be overcome through obtaining the chemical composition of
macroplastics used for training.

Our methods could also be developed further through utilising multispectral cameras
to detect marine floating plastics. For example, Goncalves et al. (2022) [40] investigated
the use of an unmanned aerial system (UAS) to detect, map and categorise macro-litter on
beaches, with 50% of the spectral references being plastics. In this study, Gonçalves et al.
(2022) [40] showed that multispectral images collected by drones can support automated
categorization of stranded litter material. Using similar techniques, vessel-mounted mul-
tispectral instruments could be explored as an alternative or complementary method of
monitoring in situ floating marine debris as long as plastics are above the water surface and
the appropriate wavelengths are targeted [41]. This approach could also be explored for
detecting marine microplastics if a video could be recorded with a microscope. Currently
there is no standard procedure for sampling, counting and confirming the presence of
microplastics in the current literature, resulting in difficulties when comparing microplastic
abundance between studies [42].

5. Conclusions and Recommendations

Using video cameras mounted on small vessels, we were able to detect the presence of
plastics using an object-detection algorithm with an accuracy of 95.2%. Additionally, our
model was able to differentiate between three predefined categories with an accuracy of
65.3%. By calculating the pixel percentage coverage of the bounding boxes in our data set,
we showed that the plastics the model was trying to detect made up a very small percentage
of the image, ranging between 0.0006–0.46%. We found that the images containing these
smaller plastics negatively affected model accuracy. Pre-processing methods to increase
the percentage cover of plastics in the image, for example through scaling or cropping,
could potentially overcome this issue. However, the benefit of potentially increasing model
accuracy with pre-processing methods needs to be evaluated with the cost of reduced
transferability of the model, as the method would need to be fine-tuned for new locations
and would increase detection latency. Despite the decreased accuracy of our model when
differentiating between classes, the model very rarely failed to detect any plastics where
some were present even though a majority of the plastics covered a very small proportion
of the image. It could therefore be used as an effective pre-screening tool for identification
of frames of interest in large data sets. Overall, this study demonstrated a novel approach
to collecting harmonised in situ data through using an object-detection algorithm and
boat-mounted camera. Our approach was novel due to our data collection method of
using a boat-mounted camera and machine learning, training our algorithm to distinguish
between plastic classes, using unseen real-world footage for testing and exploring pixel
percentage coverage of the plastic items as an explanation for false negatives. This study
also provided further evidence that YOLOv5s is a fast, efficient and precise model for
detecting marine macroplastics. The data set generated will provide a foundation for
future studies utilising vessel-mounted cameras for plastics detection.
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