2202.08898v1 [cs.SD] 17 Feb 2022

arxXiv

Word Embeddings for Automatic Equalization in
Audio Mixing

Satvik Venkatesh *!, David Moffat 2, and Eduardo Reck
Mirandat!

1Interdisciplinary Centre for Computer Music Research, University of Plymouth,
Plymouth, UK.
2Plymouth Marine Laboratory, Plymouth, UK.

Abstract

In recent years, machine learning has been widely adopted to automate the
audio mixing process. Automatic mixing systems have been applied to var-
ious audio effects such as gain-adjustment, stereo panning, equalization, and
reverberation. These systems can be controlled through visual interfaces, pro-
viding audio examples, using knobs, and semantic descriptors. Using semantic
descriptors or textual information to control these systems is an effective way
for artists to communicate their creative goals. Furthermore, sometimes artists
use non-technical words that may not be understood by the mixing system, or
even a mixing engineer. In this paper, we explore the novel idea of using word
embeddings to represent semantic descriptors. Word embeddings are generally
obtained by training neural networks on large corpora of written text. These
embeddings serve as the input layer of the neural network to create a trans-
lation from words to EQ settings. Using this technique, the machine learning
model can also generate EQ settings for semantic descriptors that it has not
seen before. We perform experiments to demonstrate the feasibility of this idea.
In addition, we compare the EQ settings of humans with the predictions of the
neural network to evaluate the quality of predictions. The results showed that
the embedding layer enables the neural network to understand semantic descrip-
tors. We observed that the models with embedding layers perform better those
without embedding layers, but not as good as human labels.
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1 Introduction

The process of audio production involves multiple tasks such as balancing sound
levels and applying audio effects. An audio effect can be defined as a function
that transforms sound based on a set of controlled parameters [1]. Audio pro-
duction is needed in various domains such as making albums, films, and theatre
works, to name a few. It is generally carried out by a mixing engineer who un-
derstands the goals of their client. The mixing engineer blends multiple tracks
together by modifying acoustic properties such as dynamics and timbre [2]. A
vast body of research has been exploring how this process can be automated
through the use of intelligent tools [3-6]. Traditional Artificial Intelligence (AI)
approaches such as expert systems have been adopted to create autonomous
mixing tools [3]. These systems are knowledge-engineered and adopt a set of
rules for mixing depending on the scenario. However, recent research has grown
towards using Machine Learning and Deep Learning for automatic mixing. On
one hand, some studies have focused on specific areas, such as gain balanc-
ing [7] and reverberation [8]. On the other hand, some have explored building
autonomous systems where the entire mixing process is carried out without
human intervention [2, 9].

An equalizer (EQ) is an audio effect created by cascading multiple filters
in series [10]. Timbral adjectives often have a correlation with the parameter
setting for the equalizer. Some examples include, add air, make it warmer,
and make is less muddy [11]. Kulka et al. [12] associated adjectives such as
warmth, honk, crunch, and sibilance with frequencies of 125, 500, 2000, and
8000 Hz respectively. For example, according to the Kulka rule, if the mix
sounds honky, cut the region around 500 Hz.

When clients such as instrumentalists and musical directors work with mix-
ing engineers, they often use semantic descriptors to describe their goals. For
example, “make the violin sound warmer” [13]. It is the role of the mixing engi-
neer to understand these descriptors mentioned by the client. Popular semantic
descriptors such as warm and bright are easily understood by the mixing engi-
neer [14]. To expand the vocabulary of such descriptors, studies have also tried
to create a thesaurus with synonyms and antonyms. For example, significant
synonyms of boom are boxy, dull, and fat and significant antonyms of boom are
air, bright, and crisp [11]. However, the problem arises when individuals with-
out training in audio production describe their creative goals [15]. They may
have ideas that cannot be directly translated into a studio engineer’s vocabulary.

To address this issue of non-technical descriptors, Cartwright et al. [13] pre-
sented a dataset called SocialEQ, which is a web-based project that adopts
crowd-sourcing to learn a vocabulary of audio descriptors. As it is crowd-
sourced, the study focuses on aggregating a vocabulary to enable non-technical
individuals to describe their sonic goals. Crowd-sourcing was also adopted to
build the datasets for other effects like reverberation [16] and dynamic range
compression [15].

There is a growing interest in adopting natural language processing (NLP)
methodologies to develop semantically-controlled audio effects [17-19]. Sta-



bles et al. [20] presented a system called Semantic Audio Feature Extraction
(SAFE), which focused extracting semantic descriptions for equalization from
a digital audio workstation (DAW). Stasis et al. [21] investigated the idea of
mapping the descriptors to a reduced dimensionality space, to enable users to
interact with the system in a more intuitive way. Chourdakis et al. [22] ex-
plored tagging and retrieval of room impulse responses for reverberation. They
adopted word embeddings to assign impulse responses to tags that match their
short descriptions.

In this paper, we explore the novel idea of adopting word embeddings to
automatically predict EQ settings. We present a methodology to translate words
from a semantic vector space to a vector space representing the parameters of an
equalizer. Word embeddings are representations of words that capture lexical
semantics in language [23]. An embedding layer is often used as the first layer in
a neural network that performs NLP tasks such as machine translation, caption
generation, and automatic speech recognition [24]. We adopt this approach to
translate words to predict values of a parametric equalizer. This way, the neural
network has the ability to understand non-technical words and even descriptors
that it has not seen before. This finding is significant because artists without
training in audio production can express their creative goals directly to the
Al-powered mixing engine.

2 Methodology

2.1 Dataset

We adopted the SocialEQ dataset [13], which crowd-sources semantic descriptors
for EQ settings. In the raw format, each sample in the dataset contains a
semantic descriptor, language of the descriptor, audio id, a consistency rating,
and 40 values for EQ parameters. During the data collection, each participant
was asked to enter a word in their preferred language. For example, warm in
English, claro in Spanish, or grave in Italian. Subsequently, they pick a sound
file which will be modified by the EQ plugin. There were three sound files —
electric guitar, piano, and drums. Each sound file had a unique audio id.

After selecting a descriptive term and audio file, the participant was pre-
sented with 40 different modifications of the sound file made by different EQ
settings. Suppose the user has selected warm, they are asked to rate how warm
that sound is. Out of the 40 modifications, there are 15 repetitions to test for
consistency. The system processes the ratings of the user and develops a relative
boost/cut for 40 different frequency bands. Refer to Cartwright and Pardo [13]
for more details on the dataset.

The dataset has 1595 samples in it. For simplicity, we considered only de-
scriptors in English. The number of examples in English was 918. It is important
to note that the dataset contained examples with different EQ parameter set-
tings for the same word. Thus, the number of unique descriptors in English was
388.



2.2 Train-Test Split

An important hypothesis we wanted to test in this paper is that a word embed-
ding layer helps a model predict EQ parameter settings for semantic descriptors
it has not seen before. Therefore, words in the test set should not appear in the
training set. We adopted a four-fold cross-validation setup [25] and the strategy
is explained below.

We aggregated a list of semantic descriptors that are common in the audio
mixing literature. We labelled these as High Quality (HQ) words. In order
to avoid bias and objectively choose these words, we selected those that were
already listed in table 4.8 in Ref. [11]. Additionally, we included semantic de-
scriptors that fell under the hierarchical ontology presented by Pearce et al. [26].
The list of HQ words are presented in bold in table 1. There are 32 HQ words
present in the SocialEQ dataset.

Fold 1 Fold 2 Fold 3

Fold 4

Semantic
Descriptors

smooth, muffled, crisp,
punch, clean, brittle,
muddy, soothing, clear,
brassy, caring, mellow,
throbbing, cooing, fluffy,
good, excited, squeaking,
punchy, funky, whispered,
disgusting, beautiful,
reserved, serene, thumpy,
pleasurable, whispering,
gentle, energetic, peace

crunchy, woody, flat,
metallic, dull, tinny,
cold, booming, deep,
energizing,
heart-warming, edgy,
heavy, edge, strong,
enchanting, cheerful,
plodding, quiet,
radiant, biting, brass,
pleasing, light, taco,
gruff, exciting, love,

sweet, warm, airy,

full, boxy, bright,
boom, fat, shrill,
calm, velvety, hard,
rich, noisy, down,
rumble, sloppy,
relaxing, peaceful,
romantic, low, hot,
thunderous, frigid,
happy, poor, cool,
tense, jagged,

sharp, big, dark,
hollow, harsh, smooth,
muffled, crisp, punch,
mournful, clarity,
genius, bold, twangy,
soft, splash, slow,
wistful, brash, fancy,
cute, rousing, loud,
breezy, large,
passionate, baseball,
huge, icy, brassy,

heat, techno, solemn forceful, aggressive caring

Table 1: Four cross-validation folds from the dataset. The test words from each
fold are presented in the table. For each fold, the training set consists of words
that are not in the test set.

We also aggregated a list of words that were Highly-Rated (HR). HR words
need not semantically meaningful, but have a high consistency score in the
dataset. Words that have a consistency score greater than 0.7 were selected
as HR words. As these words have a high consistency score, the user strongly
associated the semantic word with a particular EQ setting. Words in table 1
that are not formatted as bold text are HR words. Totally, 86 HR words were
present in the SocialEQ dataset.

Each test fold contained 9 HQ words and 22 HR words. We ensured that
every HQ and HR word was tested at least once. In the last test fold, there
may be a few repetitions of words from the first test fold. There was no overlap
between the training set and test set. The test set only contained words that
were not present in the training set. Note that the network for each fold is
trained as a separate experiment. In other words, the network is totally trained
four times and tested four times on different folds and we report the average
performance.

As mentioned earlier, each word can have multiple EQ settings. Each setting




is a separate example and can have different consistency scores. In the test set,
we only included examples that had a consistency score of greater than 0.7. In
the training set, we did not exclude any words based on the consistency score.

2.3 Word Embeddings

A vocabulary consists of all the possible words that the neural network can
understand. Generally, a word is converted into a one-hot encoded vector before
passing into the neural network. For instance, in the SocialEQ dataset, there are
388 unique words, which means that the size of the vocabulary is 388. Therefore,
the dimensions of the one-hot encoded vector are 1 x 388. Each position within
the vector is assigned to a unique word. Thus, the respective position of the
word is labelled as 1 and the remaining elements are 0. However, it is important
to note that the Euclidean distance between any pair of words is equal. As each
word is equidistant from each other, the neural network would not develop the
capability of handling words that is not present in the training set. For example,
let us consider the semantic descriptor bright and assume that it is present in
the training set. Let us also assume that clear and boom are words in the
test set. According to Spyridon [11], clear is a synonym of bright and boom
is an antonym of bright. Thus, we expect similar EQ settings for clear and
bright, but considerably different EQ settings boom and bright. However, the
neural network cannot perceive this understanding unless it has seen all three
words because each word is equidistant from each other. Furthermore, this issue
becomes exaggerated if a non-technical user is adopting a semantic descriptor
that is not common in the audio mixing literature.

The purpose of a word embedding layer is to convert a one-hot encoded
representation into a vector space of reduced dimensionality. They are useful
for NLP tasks such as machine translation. Large vocabularies with millions
of words can be reduced to a 300-dimensional vector representation [27]. The
distances between words in the embedding space is governed by some form
of semantic correlation. Examples include synonyms or two words frequently
occurring together. There are different algorithms to train word embedding
models. Some of them include Word2Vec [28], GloVe [27], ConceptNet [29], and
Dict2Vec [30]. Each of these algorithms present unique methods to train on
large corpora of text such as Wikipedia. Effectively, they try to learn semantic
relationships between words and represent them through an embedding vector.

For this study, we investigated four different embedding models — GloVe-
6B, GloVe-840B, Tok2Vec, and Dict2Vec. GloVe is an unsupervised learning
algorithm for obtaining vector representations for words [27]. GloVe-6B refers
to the model that was trained on Wikipedia 2014 and Gigaword 5. It includes
6B tokens and a vocabulary size of 400k (B, M, k stand for Billion, Million, and
thousand respectively). On the other hand, GloVe-840B uses 840B tokens and
a vocabulary size of 2.2M. It trains on the World Wide Web using Common
Crawl, which is a larger corpus of text. Tok2Vec is a word embedding model
provided by a company called spaCy [31]. We did not find the entire details
regarding its implementation, but the model is publicly available and free to use.



Layer type Units Activation OQOutput shape

Embedding - - 300
Dense 300 ReLu 300
Dense 200 ReLu 200
Dense 100 ReLu 100
Dense 80 ReLu 80
Dense 60 ReLu 60
Dense 40 Sigmoid 40

Table 2: The neural network architecture

It is important to note that word embeddings are used for NLP tasks, which are
designed to accept sentences. In our application, we are considering only one
word, which is the semantic descriptor. As GloVe and Tok2Vec also focus on the
ordering of words in sentences, we thought it is a good idea to consider another
embedding model called Dict2Vec [30]. Dict2Vec is an embedding model that
uses lexical dictionaries. It builds new word pairs from dictionary entries so that
semantically-related words are closer to each other in the embedding space [30].
Similar to GloVe-6B, it was trained on the Wikipedia corpus.

2.4 Machine Learning Architecture
2.4.1 Word Embedding Layer

We evaluated four different pre-trained word embedding models in the study
— GloVe-6B, GloVe-840B, Tok2Vec, and Dict2Vec. All the models represent
words with 300-D semantic vectors. This is convenient because we can adopt the
same neural network architecture to compare different embeddings. Initially,
a word is converted into a one-hot encoded representation. Subsequently, an
embedding matrix converts this one-hot encoded representation into a 300-D
semantic vector. Then, this vector is connected to hidden layers in the network.
Note that the weights of the embedding matrix are frozen and the layer is not
trainable. We did not consider setting this to trainable because of the limited
data we have.

2.4.2 Hidden Layers

The neural network aims to translate a representation of word embeddings to
a prediction of equalizer parameters. Therefore, our network needs to be deep
enough to learn the translation between two domains. Deeper networks apply
the non-linear activation more number of times on the input and therefore have
the advantage of learning more complex translations. However, it is important
to note that our dataset is relatively small for our task.

All the layers in the neural network were fully connected layers. Table 2
shows an overview of the architecture. After the embedding layer, we had a



series of fully connected layers. The number of hidden units in these layers were
300, 200, 100, 80, and 60 respectively. Finally, it was connected to an output
layer with 40 units. Excluding the final layer, all the hidden layers were fitted
with ReLu activations and a dropout of 0.1. The output layer is explained in
section 2.4.4. The code and trained models associated with this study can be
found in this GitHub repository!.

2.4.3 Normalisation

Traditional min-max normalisation by calculating the maximum and minimum
in the training set was not appropriate for our dataset. This is because if there
exists any outliers amongst the values in the test set, specific features may get
magnified or diminished. Furthermore, as we are predicting values for 40 EQ
bands, this issue becomes more crucial. Therefore, we fixed the minimum and
maximum value for each EQ parameter to -4 dB and +4 dB respectively. In
other words, the highest cut/boost within each EQ band was 4 dB. The values
were linearly normalised to the range of 0 to 1. Hence, -4 dB would correspond
to 0 and +4 dB would correspond to 1 in the output layer.

2.4.4 Output Layer and Loss Function

The output layer of the network contained 40 neurons, with each of them pre-
dicting a value for one EQ band. As we normalised the data within the range
of 0 to 1, we used sigmoid activation functions for the output neurons. As we
are working with a regression problem, we adopted the mean absolute error loss
function, which is commonly adopted by many studies. All EQ bands were given
equal importance when averaging the error for the loss function. In future work,
it would be interesting to weight the EQ bands based on perceptual frequency
band weights. However, that is beyond the scope of this study.

3 Results

3.1 Error

Table 3 shows the mean absolute error for different embedding models calculated
across four test folds. As we can see, Tok2Vec obtains the lowest error rate of
0.76, followed by GloVe-840 with an error rate of 0.77. GloVe-840 obtains an
error lower than GloVe-6B, which conveys that it benefited from training on a
larger corpus. Dict2Vec and GloVe-6B were trained on similar dataset sizes and
the former obtained a better error rate. This suggests that the performance of
Dict2Vec can be improved with training on a larger corpus of text.

The ‘No Embedding’ model in table 3 means that no word embedding layer
was used in the neural network. The input of the network was a direct one-
hot encoded representation. All the neural networks with word embeddings

Thttps://github.com/satvik-venkatesh/word-eq
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Word Embedding Error

Tok2Vec 0.760 + 0.055
Glove-840 0.770 £+ 0.032
Dict2Vec 0.792 £ 0.058
Glove-6B 0.798 £ 0.046
No Embedding 0.836 + 0.016

Table 3: The error calculated across four folds. The smallest error in the column
is indicated in bold.

performed better than the model without word embeddings. However, the dif-
ference was not huge. The best model was Tok2Vec with an error rate of 0.76
vs ‘No Embedding’ with an error rate of 0.836. This is possibly due to two rea-
sons. Firstly, error may not be the best metric for our task. For example, the
semantic word warm may have a boost of 1.2 dB at 260 Hz. But, the neural net-
work may predict a boost at the adjacent EQ band, such as 317 Hz. Although,
the error rate in this case is high, the EQ effect applied to the audio may still
be semantically meaningful. Secondly, the test set contains many semantic de-
scriptors that occur only once. These examples may be highly subjective to
one individual, despite having a high consistency score. Therefore, in the next
subsection, we evaluate the top two performing models using Partial Curve
Mapping (PCM) [32], which is a method to quantify the similarity between two
curves. For instance, this technique is generally adopted to analyse similarities
between hysteresis curves pertaining to a magnetic field. Although this tech-
nique may not be ideal for our task, it would give us a better understanding of
our model’s performance compared to mean absolute error.

3.2 Partial Curve Mapping

In this section, we evaluate the models using PCM. PCM was implemented
using this Python package [33]. We also compare our model to human labels.
As mentioned earlier, each semantic descriptor had multiple EQ settings in the
dataset. To calculate the error in human labels, we considered the mean of
the different EQ settings as the ground truth. However, words that occur only
once in the dataset would not have an error associated with it. These words
would artificially reduce the average error. Hence, we only included words that
occur at least twice in the dataset. Figure 1 shows the distances for different
models. An ideal algorithm would obtain a distance of zero. Human labels
obtain the smallest distance of 2.9, which is an expected observation. GloVe
and Tok2Vec obtain similar distances with the former performing slightly better.
The distances were 9.3 and 10.5 respectively. Note that for this experiment, we
only considered words that occur at least twice, which is different from results
presented in section 3.1. The mean distance of the model with no embeddings
was 35.4, which was considerably higher. In addition, there was a much larger
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Figure 1: Distances obtained by different models calculated by using Partial
Curve Mapping (PCM). An ideal algorithm would have a distance of zero.

standard deviation for this model, which suggests that it was randomly guessing.

3.3 Plots of EQ Parameters

In this section, we perform an error analysis of predictions made by the machine
learning models. We look at individual test words to investigate if the neural
network is actually learning semantic meanings of EQ settings. We predomi-
nantly look at HQ words as they are common in the audio mixing literature
and would be more intuitive to evaluate. In figure 2 and 3, we plot the EQ set-
tings of human labels alongside the predictions of Tok2Vec, Glove-840B, and ‘no
embedding’. As the literature does not comprise an ‘ideal’ metric for our task
of predicting EQ parameters, we thought it is a good idea to plot graphs and
actually visualise the predictions of the algorithms. Figure 2 plots the graphs
for words selected from the test folds 1 and 2. Figure 3 plots the graphs for
words selected from the test folds 3 and 4. Note that for each word in the test
folds, the neural network has not encountered the word in the training set. The
human label chosen for each semantic word in the plots was the EQ setting with
the highest consistency score in the dataset.

In figure 2, human labels for muffled had boosts at 20 Hz and 3.5 kHz.
For Tok2Vec and GloVe, we saw slight boosts in the mid-rage and high-rage
respectively, which may convey that the neural networks did not interpret this
word correctly. The network with ‘no embedding’ was a basically a flat curve
for all the words in the first fold. For crisp, interestingly, the predictions of
Tok2Vec and GloVe did follow a similar pattern as the human labels. In the
human labels, we saw boosts at 2.1k and 9k. For GloVe and Tok2Vec, we saw a
gradual boost at 3k, which lifts the high-range of the frequency spectrum. Some
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Figure 2: Plots of human labels alongside EQ parameters predicted by GloVe-
840, Tok2Vec, and no embedding. These are for words in test folds 1 and 2.
Note that that each word in the test set does not occur in the training set.
The first two rows occur in fold 1 and the last two rows occur in fold 2. The
human label plotted for a semantic word was the EQ settings with the highest
consistency score in the dataset.
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semantic synonyms of crisp present in the training set for this respective fold
include bright, harsh, hollow, and sharp. This means that the word embedding
has delineated a relationship between the semantic word and EQ predictions.
Again, as mentioned earlier, we did not observe a meaningful pattern in the
neural network with ‘no embedding’ because the curves were flat.

Muddy had a gradual boost from 200 to 380 Hz in the human labels. Tok2Vec
follows a very similar pattern in its prediction by boosting the lows and cutting
the highs. GloVe’s prediction has slightly boosted lows and high, which is
not convincing for the semantic word muddy. Some semantic synonyms in the
training set include boom, muddled, dark, dull, and fat. The next test word,
brittle was well-understood by both Tok2Vec and GloVe. There was considerable
overlap with the human labels. The synonyms for brittle in the training set
would be similar to those listed for crisp. Punchy was understood GloVe, but
not by Tok2Vec. Gentle was not understood by both embedding models?.

Crunchy had boosts in the low and high frequency range in the human
labels. We observe a boost for GloVe and Tok2Vec in the high range. The ‘no
embedding’ model has a boost in the low range. However, if you observe, it has
made the same prediction for all the test words in the second fold. GloVe and
Tok2Vec and correctly understood the semantic descriptor metallic and have
significant overlap with human labels. For tinny, human labels have boosts at
1.3k and 9k. Whereas, the neural networks with embeddings have a gradual
boost around 3k. We are not certain if these predictions would have a tinny
effect. For test words enchanting and deep, we observed a noticeable overlap
with human labels. However, for cold, it seems as though GloVe and Tok2Vec
predicted the antonym.

In test fold 3, sweet was not understood by the networks at all. For warm,
Tok2Vec has a noticeable overlap with the human labels because both have a
boost of approximately 2 dB in the low frequency range. Airy was partially
convincing because GloVe recognised a boost at 9 kHz. Although, the networks
have boosted the lows for full, it seems like a random guess as the prediction
significantly overlaps with the one made by ‘no embedding’. The predictions
made by the networks for boxy were not convincing. Bright seemed plausible
with Tok2Vec and GloVe boosting the high frequency range.

In test fold 4, we saw reasonable overlap for sharp, dark, hollow, and harsh.
We did not observe a reasonable pattern for breezy and smooth. Interestingly, the
network with ‘no embedding’ predicted the EQ settings for harsh correctly. This
is a chance occurrence because the ‘no embedding’ model predicted a standard
template of settings for all the other words.

2If the reader is interested in more semantic synonyms present in the training set, please
refer to table 1. If fold 1 is selected as the test set, folds 2, 3, and 4 are included in the training
set.
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Figure 3: Plots of human labels alongside EQ parameters predicted by GloVe-
840, Tok2Vec, and no embedding. These are for words in test folds 3 and 4.
Note that that each word in the test set does not occur in the training set.
The first two rows occur in fold 3 and the last two rows occur in fold 4. The
human label plotted for a semantic word was the EQ settings with the highest
consistency score in the dataset.
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4 Discussion

The results presented in the previous section show that a word embedding layer
is helpful for automatic mixing. We analysed the error of models in section 3.1.
All the models with an embedding layer obtained lower errors than the one with-
out an embedding layer. We further analysed the performance of GloVe-840B
and Tok2Vec by using partial curve mapping. The mean distances obtained by
human labels, Tok2Vec, GloVe, and ‘no embedding’ were 2.9, 10.5, 9.3, and 35.4
respectively. This objectively demonstrates that the embedding models perform
better than models without an embedding layer, but definitely not as good as
human labels.

In section 3.3, we conducted an error analysis of predictions made by GloVe
and Tok2Vec. We observed that the machine learning models were able to
understand semantic descriptors that it had not encountered before. This is a
promising step towards understanding semantic descriptors from non-technical
users. It is important to note the word embedding layers used in the networks
were trained on corpora of written text. This concludes that there exists some
common ground for semantic relationships between words in written text and
for those adopted in EQ mixing.

Considering the fact that we have adopted such a small training dataset, this
performance is reasonable. The SocialF'X dataset comprises only 388 unique En-
glish words. Additionally, many of the high-quality and highly rated words were
used for testing in each fold. As our study has demonstrated that word embed-
dings are helpful for automatic EQ mixing, we hope to encourage researchers
the build larger datasets with semantic descriptors. In the literature, another
dataset called SAFE [20] focused on extracting semantic descriptions for equal-
ization from a DAW. We were unable to include the dataset within this study
for two reasons. Firstly, as these are extracted directly from the DAW without
post-processing, some labels can be noisy. Although the dataset contains many
examples with meaningful descriptors, some words are randomly typed letters
such as ‘xy’, which have no semantic meaning. Perhaps, this noise may not
matter when training the network with large-scale data. The second reason is
that both datasets use different EQ plugins. The SocialFX dataset uses a 40
band EQ, whereas the SAFE dataset uses a five band EQ. We are not certain
if additional noise would be induced in mapping one EQ domain to the other.

In this study, we analysed the performance of the machine learning model
using objective metrics. However, it is important to perform listening tests with
human participants to obtain subjective evaluations of the system. We need
to investigate if users are satisfied with the way the machine learning model
understands their semantic descriptors. After aggregating a larger dataset for
this task, this could be a potential future pathway.
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5 Conclusion

In this paper, we demonstrated the feasibility of adopting word embeddings for
automatic EQ mixing. We showed that the word embedding layer is capable of
providing relationships between semantic descriptors, which assists in predicting
EQ parameters. Using this technique, the machine learning model can predict
EQ settings for words it has not seen before. This is a step towards bridging
the gap between artists explaining their creative goals and mixing engineers
understanding them.

In this study, we looked at EQ parameters as a separate entity. This may
not be ideal in some scenarios. For example, the EQ settings for a drum track
may differ from a vocal track. In other words, the EQ settings for “make the
vocals sound brighter” maybe different from “make the drums sound brighter”.
Moreover, the number of EQ bands predicted were 40. This number is pretty
large for a network that performs regression. Future research could explore how
the neural network architecture can be optimised and regularised better. Fur-
thermore, it may be interesting to augment the size of training sets by adopting
well-known synonyms and antonyms in the mixing engineer’s vocabulary.

For some words, Tok2Vec captured relationships, but GloVe did not and vice
versa. For example, GloVe captured the meaning of punchy as shown in figure 2
and Tok2Vec captured the meaning of warm as shown in figure 3. This may
be simply because there is limited data in the training set. Otherwise, differ-
ent embedding models may capture different aspects of semantic relationships.
Therefore, an ensemble of different embedding models will improve performance
in this case. Furthermore, in our study, we discarded non-English words for sim-
plicity. Word embedding models such as ConceptNet [29] use a knowledge graph
to connect words from different languages. This may be an interesting avenue
to explore.
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