
Research Article Vol. 30, No. 6 / 14 Mar 2022 / Optics Express 9655

Improved hyperspectral inversion of aquatic
reflectance under non-uniform vertical mixing

STEFAN G. H. SIMIS,1,* PETER D. HUNTER,2 MARK W.
MATTHEWS,3 EVANGELOS SPYRAKOS,2 ANDREW TYLER,2 AND
DIANA VAIČIŪTÉ4
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Abstract: Estimating the concentration of water constituents by optical remote sensing assumes
absorption and scattering processes to be uniform over the observation depth. Using hyperspectral
reflectance, we present a method to direct the retrieval of the backscattering coefficient (bb(λ))
from reflectance (> 600 nm) towards wavebands where absorption by water dominates the
reflectance curve. Two experiments demonstrate the impact of hyperspectral inversion in the
selected band set. First, optical simulations show that the resulting distribution of bb(λ) is
sensitive to particle mixing conditions, although a robust indicator of non-uniformity was not
found for all scenarios of stratification. Second, in the absence of spectral backscattering profiles
from in situ data sets, it is shown how substituting the median of bb(λ) into a near infra-red / red
band ratio algorithm improved chlorophyll-a estimates (root mean square error 75.45 mg m−3

became 44.13 mg m−3). This approach also allows propagation of the uncertainty in bb estimates
to water constituent concentrations.
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1. Introduction

Analytical solutions to determining water quality from optical remote sensing commonly face
three unknown parameters. These are (1) the concentration-specific optical properties (absorption
and scattering) of each optically active substance in the water (e.g. phytoplankton pigments, cell
material and other organic as well as inorganic suspended solids, coloured dissolved matter), (2)
the concentrations of said substances and (3) their individual distribution with depth. Reciprocally,
to diagnostically estimate the concentrations of optically active water constituents, several criteria
must be met: the absorption and scattering properties of the target substances should be a priori
characterized, these properties should not vary over the depth layer observed from remote sensing,
and the depth distribution of the substances should be uniform (or at least known) over the depth
layer observed by the remote sensor.

Continuous improvements of remote sensing technologies and computing over the last decades
have supported a wide range of algorithmic approaches to estimate optically active substance
concentrations. Improved multispectral waveband configurations and sensitivity, particularly in
the near infra-red (NIR), have advanced water quality remote sensing in optically complex waters.
In all but the most turbid water systems, water itself increasingly dominates absorption with
increasing wavelength into the NIR. Inversion of subsurface reflectance into spectral absorption
(a(λ)) and backscattering (bb(λ)) coefficients can exploit this behaviour, under the assumption
that (1) absorption by other substances can be assumed negligible, (2) scattering by hydrosols is
without significant spectral features, and (3) vertical mixing is uniform over the visible water
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column. This set of conditions allows bb to be isolated and extrapolated to the visible light
spectrum (with increasing uncertainty towards shorter wavebands). Applications of this inversion
mechanism include widely used examples such as the Quasi-Analytical Algorithm [1] and
Garver-Siegel-Maritorena semi-analytical algorithm [2,3].

The assumption of vertical homogeneity is not without problems. It can break down in cases of
shallow thermal or density stratification or when particle distributions form non-uniform layers in
the ocean [4]. These non-uniform distributions can only be corrected for in global biogeochemical
models if an appropriate distribution profiles can be assumed [5]. Shallow thermal or density
stratification is more likely to occur in coastal and inland waterbodies, which tend to have higher
optical complexity, such that generalisations on vertical distributions are less likely to hold. In
addition, motile or buoyant phytoplankton may form discrete layers, either near or away from the
surface [6]. Under any of these conditions, estimates of optically active substance concentrations
derived from remote sensing are likely to deviate from their true values. Observation uncertainty
is associated with the optical ambiguity of the remotely sensed reflectance: a thin optical layer
with high absorption and scattering is readily confused with a thicker homogeneous layer having
smaller absorption and scattering coefficients. Thus, in the absence of a priori information on
vertical structure, the quality of the estimate will be strongly influenced by the assumption of
either a specific vertical gradient or uniform mixing over the observed depth.

It has been shown [7] that depth distribution and optical properties are unambiguously related
in a non-homogeneous water column, such that bulk inherent optical properties retrieved through
reflectance inversion are equivalent to the average optical properties over the light penetration
depth [7,8]. Knowing the depth distribution of the inherent optical properties and relating these to
the depth from where the reflected signal originates, further improves optical closure [9]. While
the spectrally variant bulk absorption properties of the water column predominantly determine the
curvature of the reflectance spectrum, the amplitude of reflectance is related to light penetration
depth [10] as it is modulated by the efficiency of light scattering relative to absorption. While
still under the assumption of uniform mixing, the light penetration depth itself may be estimated
from reflectance [11].

When light penetration depth exceeds vertical mixing depth, some spectral regions are likely
to show larger inconsistencies between reflectance amplitude and the depth-averaged inherent
optical than others, based on how much of the light beam was already attenuated in the overlying
layer. Observing such spectral inconsistencies in bulk absorption or scattering should be
cause for caution to further attempt interpreting the reflectance spectrum, at least in terms of
substance concentrations. These inconsistencies can only be identified when their depth-weighted
contribution to reflectance is already known, which will not be the case in typical remote sensing
scenarios. The well-described absorption and scattering properties of water itself form the
only exception: they are predictable across the visible to near-infrared light spectrum and, for
current purposes, unlikely to vary greatly with depth. The shape of the reflectance spectrum
(under vertically homogeneous conditions) is therefore predictable in parts of the spectrum
where water dominates the absorption, and in the absence of significant curvature introduced by
scatterers. This has been demonstrated for clear to relatively turbid waters in the NIR part of the
spectrum [12]. In the visible domain, increasing overlap between the absorption features of water
constituents and those of water itself present a different challenge. Small variations in water
absorption are, however, detectable throughout the visible and near infrared, associated with
different vibrations and overtones of the water molecule. These features are narrow and not well
captured by the most common wavebands on multispectral ocean colour instruments on satellites.

Hyperspectral reflectance measurements extend the state-of-the-art in aquatic remote sensing
by offering more degrees of freedom in inverse optimization problems designed to derive optically
active substance concentrations. Hyperspectral bio-optical model-based inversion using a priori
assumed absorption and scattering models have been used widely for optically complex waters
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to resolve the individual optical components (e.g. [13–15]). Here, we hypothesize that it is
possible to identify specific regions of the reflectance spectrum that are primarily shaped by
light absorption by water. The inversion of reflectance in these wavebands then yields a value
distribution of bb, and the shape of this distribution may be analysed to assess consistency
in retrieval across the spectrum, potentially bringing conditions of vertical non-uniformity to
light. Ideally, practical thresholds for this consistency can then be established so that suspect
observations, possibly related to the vertical distribution of optical components in the water
column, can be identified.

This work presented here details a waveband selection concept from hyperspectral reflectance,
aimed to improve confidence with respect to the assumption of uniform vertical mixing in
optical remote sensing. The procedure retrieves the bulk inherent optical properties and exploits
the widest possible range of the reflectance spectrum to determine a distribution of bb values,
compared to conventional NIR band based approaches. We present this concept using a
combination of simulated reflectance for water columns with varying vertical uniformity and
a wide range of in situ observations from optically complex inland water systems covering
oligotrophic to hypereutrophic systems.

2. Methods

2.1. Band selection and inversion procedure

The proposed procedure consists of six steps which are illustrated in a flowchart (Fig. 1) and in
four examples of in situ data included in the Results section (Figs. 3–6). These steps are detailed
in this section.

Fig. 1. Steps taken during (1-2) pre-processing of reflectance and aw spectra, (3) spectral
matching of features in reflectance and aw(λ), (3-4) selecting wavebands where aw(λ)
strongly influences the shape of the reflectance spectrum, (5) reflectance inversion, and (6)
analysing the distribution of retrieved bb(λ) values. Each of the numbered steps are detailed
in Section 2.1

Step 1 rescales the amplitude of reflectance (R) and water absorption (aw) spectra linearly
between 0 and 1 (further noted as R̂ and âw). Because of this normalization between minimum
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and maximum amplitude, any form of reflectance may be used (i.e. subsurface or above-surface,
irradiance or radiance reflectance) as long as any effects of bidirectional reflectance at the air-water
interface, sun-glint, white caps, floating vegetation or scums masking the water absorption
signature, or other disturbances can be assumed negligible and without spectral dependencies.
We also note that the case of optically shallow water (bottom reflectance) is not considered here.
Reflectance must further be sufficiently spectrally resolved and free of noise to evaluate their
shape over multiple relatively narrow (10-nm) intervals. In Step 2, both R̂ and âw spectra are
locally smoothed (LOWESS algorithm from statsmodels v.0.9.0 for Python 2.7) over a 10 nm
window to reduce noise while maintaining general spectral features. Wherever spectral intervals
are indicated in these processing steps, any wavebands with a centre wavelength within the stated
interval are included. The aw spectrum used here was obtained from [16] adjusted to 15◦C
and zero salinity which is assumed representative of sampling conditions in our in situ data set
(described in Section 2.2), and interpolated to the spectral resolution of the R of each specific
sensor following the above procedures. The strongest effects of temperature on water absorption,
when observed, may be avoided by omitting the 750 nm spectral region; this was not done here
to allow for any prominent effects to show in the results.

Step 3 locates wavebands where the shape of R is strongly influenced by the shape of aw(λ),
which is done in two parts (Steps 3A-B in Fig. 1). We first determine the ratio of reflectance
wavebands sampled along the spectrum over set intervals, which characterizes the changing slope
along the spectrum. The along-spectrum ratio of R̂ and inverse along-spectrum ratio of âw at a
given waveband λ (in nm) are defined, respectively, as the dimensionless R̂′(λ) and â′

w(λ):

R̂′(λ) =
R̂(λ + ∆)
R̂(λ − ∆)

(1)

â′
w(λ) =

âw(λ − ∆)

âw(λ + ∆)
(2)

where ∆ defines the sampling window as the half-interval (here 5 nm, for a total 10-nm bandwidth)
over which the ratio spectra are determined.

Wavebands, where the difference between R̂′ and â′
w are within a specified threshold, are taken

forward. A tolerance of ±5 % between the along-spectrum ratios was empirically determined to
distinguish between similar and dissimilar spectral regions in our test data sets (see Section 2.2).
To determine tolerance thresholds, R̂′ and â′

w are assumed to be compared on similar scales and
units of measurement, which is valid as long as the amplitude of R is approximately proportional
to the absorption coefficient (R ≈ a−1). In the simplest case, for clear natural waters, subsurface
irradiance reflectance is proportional to the ratio bb / a, and because bb « a this assumption holds.
For increasingly turbid waters, the relation between R and the inherent optical properties is better
approximated as proportional to bb(λ) / (bb(λ) + a(λ)), while bb(λ) « a(λ) may still be valid
in parts of the spectrum, particularly at longer wavelengths where water absorption dominates
the inherent optical properties [17]. As an optional quality control step, omitting wavebands
where the reflectance spectrum is noisy can be helpful to remove outlier results including those
which may fall within the stated threshold. For results shown here, noise was removed where the
coefficient of variation within directly adjacent wavebands of R̂ exceeded 1, although instrument
dependent thresholds and wavelength intervals may be considered.

The ratio values R̂′(λ) and â′
w(λ) may intersect in areas where they diverge rather than align,

which is an indication that the shape of R is influenced by another optical constituent than aw
in the given spectral region. These divergent areas should be excluded and may be removed by
comparing the derivative spectra of R̂′(λ) and â′

w(λ) (Step 3B). The first derivative spectra were
computed by convolving the curves over a window of ± 5 spectral channels (noting that this
implies broader windows for sensors with coarser resolution, but narrow windows increase noise),
using the signal convolution function of scipy v1.5.4. Wavebands, where the derivative spectra
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of R̂′(λ) and â′
w(λ) differed by more than ±0.025 nm−1, were omitted from further analysis here.

This threshold value retained multiple adjacent wavebands per area of spectral convergence,
while omitting the areas in between such features, i.e. where aw(λ) does not determine the shape
of R(λ).

In relatively clear waters, a decrease in R(λ) can often be observed around 605 nm. This
is associated with the fifth O-H harmonic stretch vibration of the water molecule [18] and a
doubling of aw over a 20-nm interval. A similar change in R(λ) can be caused in more productive
waters by accessory photosynthetic pigment absorption, notably chlorophyll-c or phycocyanin, in
the 615-625 nm region. In such cases, misinterpreting the shape of R(λ) as being caused by aw
alone would lead to strong underestimation of bb(λ) in this region compared to other (longer)
wavelengths where aw typically dominates absorption. A simple workaround (Step 4) is to
detect the presence of phytoplankton absorption in the red spectral region. We apply a ’red edge’
detection to determine whether phytoplankton absorption is evident at wavelengths < 700 nm. If
R(700) exceeded R(675) by 10 %, only the region > 700 nm was considered. In the case where
1.1× R(675)>R(700), no red edge is detected and the wavelength interval is considered where aw
> 0.1 m−1 (i.e., wavelengths > 583 nm for pure water at 15◦C).

Having identified a set of wavebands where aw defines the shape of R, it is now possible to
invert the original reflectance values (before normalization) at these wavebands into the bulk
inherent optical properties (Step 5). Given that aw(λ) must dominate absorption for the change
in R(λ) to correspond to the change in aw(λ) over the small spectral intervals considered, and
with bb(λ) unknown, the solution for the latter only depends on how reflectance was recorded
(above vs. below-surface). Rearranging the reflectance inversion model from [19] for subsurface
radiance reflectance RL(0−, λ), the backscattering coefficient is retrieved for a waveband where
aw dominates total absorption, as (see e.g. [20,21]):

bb(λ) =
RL(0−, λ) · aw(λ)

0.082 − RL(0−, λ)
(3)

where the factor 0.082 accounts for the angularity of the light field through the f /Q ratio detailed
in [22,23] but determined for rivers and lakes by [20]. In the in situ datasets described in the next
section, reflectance was expressed as the above-surface remote-sensing reflectance Rrs(0+, λ)
which is related to RL(0−, λ) by accounting for transmittances at the air-water interface [24,25] as:

RL(0−, λ) =
Rrs(0+, λ)

0.54
(4)

Following these steps, a number of bb(λ) wavebands will be available, located between the
yellow-orange (for very clear waters) to red and near infra-red spectral region. Each waveband
corresponds to a particular sunlight penetration depth, depending on variant volume absorption
and scattering properties. In homogeneously mixed waters we should expect to observe only
minor variations in bb between wavebands where absorption is dominated by aw, while allowing
for a gradual decrease with wavelength depending on the shape of the particle size distribution
and local absorption peaks [26]. However, if the population of scatterers, or the absorption by
dissolved matter, are not uniformly mixed over the sunlight penetration depth, this should show
as larger inconsistencies in the retrieved values of bb(λ). Step 6 in the proposed scheme therefore
inspects the retrieved and filtered set of bb(λ) for spectral consistency. The selection of suitable
wavebands is expected to correspond to the molecular vibrations of the water molecule, because
these are associated with (from shorter to longer wavelengths) increasingly efficient absorption
properties. This property of the results distribution is used to further filter out results which
are not consistent with the surrounding spectrum, by removing clusters with ≤ 3 results. In
the examples given below, one-way analysis-of-variance (ANOVA, scipy v1.0.0) is used as a
first-order test of consistency of bb(λ) results between clusters of wavebands grouped by their
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nearest vibrational moment, while the Quartile Coefficient of Dispersion (QCD) is used to inspect
how closely the full set of results is grouped. The QCD is calculated as half the interquartile
range normalized to the midpoint of their range, i.e. ((Q3 – Q1)/2) / ((Q3 + Q1)/2) where Q1 and
Q3 are the 25th and 75th percentiles, respectively.

2.2. In situ reflectance data

Hyperspectral reflectance and associated biogeochemical and optical sample analysis data were
sourced from the community-owned Lake Bio-optical Measurements and Matchup Data for
Remote Sensing (LIMNADES) database [27]. The datasets used here originate from campaigns
in six lakes in the United Kingdom (Bassenthwaite Lake, Coniston Water, Derwent Water, Loch
Leven, Windermere, Ullswater and Loch Lomond), three South African reservoirs (Loskop,
Hartbeespoort, Theewaterskloof), Lake Geneva in Switzerland and the Lithuanian part of
the Curonian Lagoon. All reflectance data were above-surface remote-sensing reflectance
(Rrs, units sr−1) and ranged from the ultraviolet (350 nm) into the near infrared (800-1000
nm depending on instrument used) while satisfying the criteria for collection of above-water
reflectance measurements set out in [28–30], obtaining radiance and irradiance signals of the
water and sky either simultaneously or sequentially. Radiance sensors were pointed between
90 and 135◦ away from the solar azimuth and pointed 40-42◦ from the vertical at either the sky
or the water surface. In the European lakes, two Satlantic HyperSAS spectroradiometers were
positioned on the bow of a small vessel to simultaneously record water-leaving radiance and
downwelling sky radiance, while downwelling irradiance was recorded with a cosine-corrected
instrument. Rrs(λ) was calculated using the fingerprint method [31], which lets a scalar correction
factor for skylight reflected on the water surface vary while optimizing the Rrs spectrum until
atmospheric absorption features are minimized. The (ir)radiance spectra were interpolated to a
common 3.3-nm interval prior to deriving reflectance. In all other cases, the skylight reflectance
factor was assumed 0.0256, i.e. the Fresnel reflectance for a flat surface corresponding to a
viewing angle 42◦ and refractive index of freshwater (1.333 relative to air), while instruments
were hand-held, maintaining the optimal viewing geometry, and reported at a 1-nm spectral
interval. For the South African reservoirs an Analytical Spectral Devices FieldSpec3 was used,
sequentially recording water-leaving radiance, sky radiance and the radiance from a horizontally
positioned 99 % Spectralon diffuse reflectance panel (calibrated to yield a signal equivalent to
downwelling irradiance). In the Curonian Lagoon a WISP-3 handheld spectroradiometer was
used to simultaneously obtain sky and water radiance and downwelling irradiance, spectrally
binned to a common 1-nm grid. The WISP-3 internally averaged three sequential measurements
on each channel before producing Rrs(λ). Further differences between the instruments, such as
their field-of-view, spectral resolution (bandwidth), and post-processing of the measurements
from each individual instrument are not considered relevant here.

An overview of the reflectance data from field measurements and those generated in optical
simulations (described further below) is provided in Fig. 2. The data span a wide range in
phytoplankton biomass (chlorophyll-a up to 350 mg m−3) but do not include cases of very high
turbidity due to mineral matter, such as may be found in and near rivers or shallow areas.

2.3. Validation and assessment

Optical and biogeochemical data were used here to demonstrate the waveband selection scheme
over a range of optical conditions. In situ bb(λ) are generally scarce and limited to a small set
of wavebands, particularly from depth-profiles. Therefore, validation of bb(λ) is done here in
controlled optical simulations (described next). The impact of retrieving a band set of bb(λ)
is then assessed by comparing results from a semi-analytical red to near infra-red band ratio
algorithm to retrieve the chlorophyll-a concentration [21]. In this algorithm, the term which
retrieves bb from a single near infra-red waveband (778 nm) was replaced with the median
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Fig. 2. Above-surface remote-sensing reflectance (Rrs(λ), sr −1) spectra (A) obtained from
in situ datasets and (B) generated in optical simulations, coloured by the log-transformed
concentration of chlorophyll-a extracted from surface water samples.

of retrieved bb(λ) values from the proposed method. Retrieved chlorophyll-a results using
both single-band and hyperspectral retrieval of bb were then compared to extracted pigment
concentrations from surface water samples. The variability in bb(λ) was further propagated to
chlorophyll-a estimates.

For the South African sites, chlorophyll-a was determined spectrophotometrically from extracts
produced with boiling ethanol (95%) as described in [32]. Sampling and analytical procedures
for pigments and absorption properties are described in further detail in [33]. For the European
lakes sampled in the GloboLakes project, chlorophyll-a was similarly extracted in hot ethanol
(90 %) according to ISO 10260:1992. For the Curonian Lagoon, pigments were extracted in 90
% acetone for 24 h at 4◦C and quantified spectrophotometrically according to [34], including
sample acidification (1N HCl) to correct for phaeopigment.

EcoLight v5.2.0 (Sequoia scientific) was used to simulate Rrs(0+, λ) over a wide concentration
range (see below) of particles having phytoplankton absorption and scattering properties to
evaluate whether uniformly mixed versus shallow and deep stratification conditions can be
adequately handled by the inversion scheme. A water column of 25 m depth was simulated
using only this scatterer and pure water. The scatterer was placed in discrete layers starting
at either 0, 1, 3, 5, or 10 m depth, and extending downward over an interval ranging between
1 and 25 m depth, covering 20 variations in total (0-1 m, 0-2 m, 0-3 m, 0-5 m, 0-10 m, 0-15
m, 0-20 m, 0-25 m, 1-3 m, 1-15 m, 1-25 m, 3-5 m, 3-15 m, 3-25 m, 5-7 m, 5-15 m, 5-25 m,
10-12 m, 10-15 m, 10-25 m). Clear water was always included in the simulation below this layer
of scatterers. The simulations were run at three chlorophyll-a concentrations (1, 5 and 10 mg
m−3) using phytoplankton absorption and (back)scattering properties recorded in the Baltic Sea
during spring bloom [35]. The resulting reflectance (Fig. 2(B)) was inverted using the proposed
procedure to yield the distribution of bb(λ) in the selected wavebands. It should be noted that the
optical properties of the scatterer used in the simulations is arbitrary. While chosen to reflect a
realistic range of concentrations from relatively clear to more productive water bodies, the effect
of a non-uniformly mixed scatterer on the distribution of retrieved bb(λ) is expected to show for
all types of scatterers.
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3. Results

3.1. Inversion of in situ reflectance spectra

Results from the proposed inversion procedure are illustrated in further detail through a number
of examples from optically varying water bodies (Figs. 3–6). The first three examples are from
South African reservoirs, where a wide range of optical properties can be encountered and
reflectance was measured in the 350-950 nm range. A further example from the Curonian Lagoon
(Lithuania) uses reflectance in 400-800 nm range. These examples serve to demonstrate the
retrieval capability across a range of optically complex water types which are not expected to be
severely affected by non-uniformity of the water column.

Fig. 3. Stepwise retrieval of bb(λ) from Loskop dam, 29 July 2011. (A) Normalized,
smoothed reflectance and absorption by pure water, corresponding to processing Steps 1-2.
The dashed line marks aw = 0.1 m−1. (B-C) Resulting bb values obtained from Eq. (3),
assuming dominant aw. Wavebands selected in processing Step 3 are overlaid in panel C as
circular markers, grouped (marker colour) by their nearest molecular vibration wavelength
of water (panel C legend). Statistically similar group means (Bonferroni-corrected t-test)
are indicated by matching characters (A, B, C) at the top of panel C. Panel B provides a
histogram and QCD of the retrieved bb(λ) estimates. (D) Spectral slopes for reflectance and
(inverted) aw corresponding to processing Step 3A. Wavebands with slopes matching within
±0.05 are marked. (E) Derivatives (Step 3B) of the slopes from panel B, with locations of
matching derivatives within 0.025 nm−1 marked.

The first example (Fig. 3) is from Loskop dam (25.453◦S, 29.288◦E) for an observation recorded
on 29 July 2011 in relatively clear water (Secchi disk depth 2.35 m, chlorophyll-a 2.8 mg m−3) with
strong dissolved and non-phytoplankton particulate absorption determined spectrophotometrically
from water samples (38 % and 43 % of absorption at 440 nm, respectively) and <20 % inorganic
matter in a particulate dry weight of 2.63 g m−3. The resulting reflectance spectrum has a
distinct peak in the green region and no obviously discernible features corresponding to pigment
absorption (no red edge was detected). When comparing normalized reflectance and aw spectra
(Fig. 3(A)), it is clear that significant drops in reflectance coincide with the stepwise increase
of aw around the H2O vibrations at 606, 660, 739 and 836 nm. Locations along the spectrum
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Fig. 4. Stepwise processing results from Hartbeespoort dam, 19 Oct 2010. Legends are as
in Fig. 3 and red dashed line in panel A indicating that a red-edge was identified.

Fig. 5. Stepwise processing results from Theewaterskloof dam, 26 Apr 2012. Legends are
as in Figs. 3–4.
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Fig. 6. Stepwise processing results from the Curionian Lagoon, 3 Sep 2014. Legends are
as in Figs. 3–5.

where the reflectance and the inverse of aw(λ) have similar local waveband ratios are seen to
coincide with the same features in aw(λ) (Fig. 3(D)) and notably include results at wavelengths
as short as 600 nm. Further filtering by the derivative of the ratio spectra (Fig. 3(E)) removes
wavebands associated with the weakest changes in reflectance (and higher noise), and leaves only
three results in the region around 606 nm. The remaining wavebands (11 around 660 nm, 17
around 739 nm and 16 around 839 nm) are marked in Fig. 3(C), superimposed (for illustration
purposes) on the spectrum of bb(λ) that would be obtained when assuming all absorption is
due to aw(λ). A relatively high degree of consistency is observed between the values of bb in
the range 0.020 – 0.045 m−1), in regions corresponding to the stepwise increase in absorption
efficiency by water, although the 660 nm region includes a high outlier. ANOVA (p<0.0001)
statistically separates the three clusters, despite an apparent close distribution of values in the
739 nm and 836 nm clusters. Bonferroni-corrected t-tests (p<0.017) for the three cluster pairs
also reject close similarity. The QCD for this sample is 2.2 %.

The second example (Fig. 4) is from Hartbeespoort dam (25.7479◦S, 27.8635◦E), recorded
on 19 October 2010 in eutrophic water where the optical properties were dominated by a high
abundance of phytoplankton (Secchi disk depth 0.74 m, chlorophyll-a 3443.0 mg m−3, suspended
solids dry weight 500 g m−3), in particular the cyanobacterium Microcystis aeruginosa. Under
calm weather, the buoyancy of this species can overcome vertical mixing leading to accumulations
at or near the surface. At the time of sampling, wind speed was 10 m s−1 which would have
introduced mixing. A red edge is clearly visible (Fig. 4(A)) and therefore only wavebands > 700
nm are considered. Wavebands suitable for inversion are identified only in the regions around
739 and 836 nm (n=34 and 20, respectively) and the two clusters belong to the same population
if judged by t-test (p=0.20), with only few of the values in the 839 nm region clearly separated
from the median at 0.46 m−1. The QCD is at 0.8 % in this case.

The third example (Fig. 5) is from Theewaterskloof dam (34.029◦S, 19.209◦E), recorded on 26
April 2012 in moderately eutrophic but turbid conditions (Secchi disk depth 0.65 m, chlorophyll-a
concentration 35.3 mg m−3, suspended solids 17.13 g m−3). Predominant cyanobacteria and



Research Article Vol. 30, No. 6 / 14 Mar 2022 / Optics Express 9665

diatom species included Anabaena ucrainica, Sphaerodinium fimbriatum, Asterionella formosa
and Aulacoseria ambigua. Inorganic matter made up 45 % of particulate dry weight. The
phytoplankton component is less pronounced and mineral particles contribute relatively more
to light scattering compared to the previous example. Retrieved bb(λ) was again from the 739
and 836 nm regions (n=32 and 19, respectively) and ranged 0.12 – 0.16 m−1, with statistically
significant differences (t-test, p<0.05) between these regions whereas the QCD was 1.1%. It is
interesting to note that in all examples shown thus far, reflectance data spanned the wavelength
range up to 950 nm but retrieved bb(λ) was consistently lower in the region > 850 nm than at
shorter wavelengths. In this and the previous example, results asssociated with the 836 nm region
fall into two clusters, with those < 836 nm very similar to retrieval around 739 nm and those
from > 850 nm distinctly lower.

The final example is from the Curionian Lagoon (Fig. 6). Sampling was carried out at Vente
station (55.33568◦N, 21.18489◦E) using a WISP-3 (Water Insight, The Netherlands) to obtain
reflectance in the 400-800 nm region which is narrower than previous examples. The sample
shown was recorded on 3 September 2014, in similarly eutrophic, but less turbid, conditions
compared to the previous example (Secchi disk depth 1.6 m, chlorophyll-a concentration 30.0
mg m−3, suspended solids 9 g m−3). A phycocyanin : chlorophyll-a ratio of 2.1 indicates that
cyanobacteria were abundant. Inorganic matter was 36 % of particulate dry weight. bb(λ) was,
in this case, only retrieved from the 739 nm region (n=16), showing three sub-groups within a
narrow distribution (Fig. 6(D), left panel) around 0.05 m−1 and a low QCD of 1.2 %.

3.2. Validation with simulated reflectance

Optical simulations, with phytoplankton as the sole scatterers distributed over varying depth
intervals, show that the range of retrieved bb(λ) was narrowest for cases where the population of
scatterers was evenly distributed from zero depth, or when a clear water layer of at least 3 m
(for the lowest concentration) was overhead (Fig. 7). Shorter wavebands proved most sensitive
to non-uniformity in the vertical distribution, departing further from the median. This tended
towards underestimation when the scatterer layer was shallow (from 0 to several meters from
the surface depending on concentration) and towards overestimation when the surface layer was
uniform from 0 down to 5-25 meters in the case of the lowest phytoplankton concentration. The
presence of these outliers around an otherwise relatively narrow distribution would suggests that
the median of retrieved bb(λ) provides a reasonable first order of estimate of bb(λ) when mixing
conditions are either uniform, or as long as the optical properties of the depth layer containing
the scatterer are similar to the average of the observed layer.

When the phytoplankton layer was simulated below a layer of clear water of varying depth,
but within the observed light penetration depth, results were more varied. This is marked by a
broader interquartile range of the retrieved bb(λ). In these cases, wavebands in the 600-700 nm
range, where light penetration is presumed deepest, captured bb by the scatterer, leading to bb(λ)
values comparable to shallower distributions, whereas longer wavebands captured weaker average
backscattering by interacting less with the scatterer. The results for bb around 970 nm are in some
cases higher than expected given the efficient absorption by water. Whilst some of the retrieved
values in this spectral region corresponded to clear water (low bb) as expected, others showed up
in the mid-range of the distribution. This is most clearly seen in the lowest concentration range.
At higher concentrations, fewer results were produced in this spectral region, which suggests
relatively poor spectral matching of the reflectance and water absorption signatures. The QCD
was in the order of 2-5 % when the scatterer extended from the surface. For subsurface (1-3 m
clear water above the scatterer) and deeper distributions (10 m clear water above the scatterer),
QCD exceeded 30 %. For deep layers (> 5m) at the lowest concentration, QCD ranged 15-19 %.
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Fig. 7. Retrieval of bb(λ) for a range of depth distributions of a simulated phytoplankton
population at three chlorophyll-a concentrations (top, middle and bottom panel). From left
to right, scatterer distributions within the 25-m water column start at the surface over an
increasing depth layer (0 – 1 m to 0 – 25 m) followed by sub-surface layers and deeper
layers with clear water overhead. Boxplots (first and third quartiles) include the median
(orange line). bb coefficients retrieved at individual wavebands are overlaid as dots coloured
according to the nearest H2O molecular vibration moment (legend in top-panel). The QCD
is indicated on a scale of 0-1 at the top of each panel.

3.3. Impact on chlorophyll-a retrieval from the red to near-infrared spectrum

The influence of hyperspectral bb retrieval on chlorophyll-a estimates was assessed using the
semi-analytical algorithm of [21]. This algorithm was designed for use with narrow (in the order
of 10 nm) satellite sensor wavebands, relating the ratio of infra-red (709 nm) over red (665 nm)
bands to pigment and water absorption, and inverting the reflectance in the near infra-red (778
nm) to bb under the assumption that non-water absorption at 778 nm is negligible. The algorithm
is selected here because it has a wide validated concentration range of 10-200 mg m−3 [20,36,37]
and because it provides a straightforward opportunity to replace the bb estimate with that retrieved
from the hyperspectral approach. The in situ data set contained 215 stations for which both
chlorophyll-a concentration and reflectance data were available. Given the range of applicability
of the algorithm we only consider the 167 data points in the concentration range 5-1000 mg m−3.
Further removing stations where the single-band retrieval of bb(778) fails (yielding a negative
result, n=73) and/or where scums were detected (n=24) resulted in 94 observation points with an
associated chlorophyll-a concentration in the range 5.0 to 355 mg m−3.

Substitution of the median bb(λ) for bb(778) improved algorithm performance, as shown
in Fig. 8(A). Chlorophyll-a retrieval using the original NIR-based single-band retrieval of bb
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resulted in a coefficient of determination (R2) of 0.77, root-mean square error (RMSE, calculated
against regression fit) of 75.45 mg m−3, bias 0.51 and mean absolute percentage error 74.2 %
(MAPE, based on each data pair). The regression slope was 0.77 with an intercept of 11.67
mg m−3. After substitution of bb(778) with the spectral median bb, results improved to R2

= 0.82, RMSE 44.13 mg m−3, bias 0.40 and MAPE = 62.74 %, regression slope 0.82 and
intercept of 11.67 mg m−3. Improvements are particularly relevant in eutrophic water bodies
(Curonian Lagoon, Loskop dam), as shown in the per-lake regression statistics in Table 1, whereas
performance in mesotrophic water bodies was comparable in most cases but worse performance
was also observed (MAPE increased from 52.0 to 130.6 % in Theewaterskloof dam, whilst RMSE
improved from 3.9 to 2.2 mg m−3).

Fig. 8. (A) Chl-a retrieval adopted from [21] using the original method which resolves
bb(778) (red symbols and linear fit) and using the median bb from hyperspectral inversion
(blue symbols and linear fit). Regression fits (see main text) are based on data before log
transformation and dashed line marks unity. (B) The mean absolute difference of Chl-a
retrieval (vertical lines) around the in situ Chl-a sample concentration (markers as in panel A
legend), plotted as a function of the mean (crosses) and standard deviation (horizontal lines)
of all bb values retrieved per sample, and their linear regression fit (before log transformation,
drawn line). (C) Frequency of bb results as a function of wavelength (all bb wavebands,
all samples). (D-F) Frequency plots of (D) bb values from all bands, all samples; (E)
spectral-median bb per sample; (F) bb(778) per sample.

Uncertainty in the retrieval of chlorophyll-a can now be propagated from the variability in
the retrieval of bb(λ) from multiple wavebands. This is illustrated in Fig. 8(B) by showing both
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Table 1. Linear regression results for chlorophyll-a retrieval performance, per water body for which
> 3 data points are returned, with single NIR-band bb retrieval (’NIR’) or with the median of

hyperspectrally derived bb (’hyper’).

Water body bb n Regression fit R2 RMSE Bias MAPE Min Median Max

model - y = ax +b - mg m−3 - % mg m−3

Bassenthwaite NIR 5 0.07 9.24 0.07 2.45 −0.06 22.83 6.52 10.83 13.07

Bassenthwaite hyper 5 0 10.57 0 2.25 0.1 32.77 7.67 10.65 13.3

Curionian Lagoon NIR 39 0.5 40.54 0.5 30.76 1.02 102.62 19.13 69.44 200.1

Curionian Lagoon hyper 39 0.48 33.34 0.48 19.22 0.65 66.52 20.28 56.91 135.13

Derwent Water NIR 6 0 9.21 0 3.03 0.07 29.6 3.74 9.34 12.69

Derwent Water hyper 6 0 9.86 0 3.09 0.15 37.38 3.85 10.56 12.96

Loch Lomond NIR 12 0.15 9.55 0.15 2.66 0.17 31.28 6.21 11.81 14.74

Loch Lomond hyper 12 0.28 7.28 0.28 2.36 0.11 25.21 7.32 8.96 14.76

Loskop NIR 19 0.92 18.43 0.92 81 0.79 84.59 10.98 25.53 757.87

Loskop hyper 19 0.94 10.64 0.94 50.82 0.61 65.58 11.47 26.36 523.58

Theewaterskloof NIR 10 0.93 1.7 0.93 3.85 0.51 52.03 5.75 24.78 56.02

Theewaterskloof hyper 10 0.95 1.56 0.95 2.2 1.31 130.61 18.17 32.79 52.07

Windermere NIR 8 0.85 1.3 0.85 1.68 −0.44 44.49 2.32 9.45 15.07

Windermere hyper 8 0.78 2.02 0.78 1.98 −0.39 38.86 2.52 9.65 15.28

the variability in retrieved bb(λ) as the standard deviation around the mean, and the associated
spread in chlorophyll-a estimates, plotted around the in situ observed chlorophyll-a concentration.
Chlorophyll-a estimates for a single reflectance sample are linearly proportional with bb(λ) (not
shown), and therefore a wider range of bb(λ) is associated with a wider range of uncertainty in
chlorophyll-a. For the dataset as a whole, a weak correlation is found between chlorophyll-a and
mean bb(λ) (linear regression slope = 0.16, intercept 40.10 mg m−3, R2 = 0.16, on data before
log-transformation).

Figure 8(C-F) compare the retrieved distributions of bb(λ) across the dataset. The first panel
shows the frequency of wavebands contributing to the median bb(λ) estimates used in this analysis,
and panels D-F compare the resulting bb(λ) including all bands, the spectral median, and the
bb(778) per sample, respectively. We note that observations from the Curionian Lagoon do not
contain reflectance > 800 nm, which may explain a lower frequency in this range in Fig. 8(C).
The number of results returned in the 600-700 nm range is lower because it is not used when a red
edge shows in the reflectance spectrum. Distributions of the spectral median and the full bb(λ)
distribution are highly similar, with the majority of results < 0.1 bb(λ) and remainder associated
with the most eutrophic and turbid waterbodies (Loskop, Theewaterskloof dams and Curonian
Lagoon). Comparing distributions of bb(778) and the spectral median bb, however, suggests
clearer separation of these two groups of waterbodies using the spectral median, than observed
with bb(778).

4. Discussion

Hyperspectral radiometry is now the established standard for above-water in situ water-leaving
reflectance observations, ranging from handheld to shipborne and airborne platforms, and gaining
ground in new spaceborne missions (e.g. PRISMA, EnMap, SHALOM, PACE, FLEX, HyspIRI
and HYPXIM). These missions are complementary to multispectral ocean colour missions,
adding enhanced spectral resolution at lower temporal frequency. Regardless of the scale of
the application, there is a growing need to evolve reflectance spectroscopy from interpreting
key reflectance wavebands to the exploitation of spectrally resolved measurements. A key



Research Article Vol. 30, No. 6 / 14 Mar 2022 / Optics Express 9669

difference between these multi- and hyperspectral approaches is that the latter allow inspection of
consistency of information derived from a contiguous range of wavebands, such as demonstrated
here in the retrieval of bb(λ) allowing for initial spectral consistency checks in the orange to NIR
part of the spectrum. At the same time, however, validation of hyperspectral bb estimates are
hampered by lack of suitable in situ instrumentation outside of key wavebands.

The only constant in the interpretation of water-leaving reflectance is the well-characterized
absorption property of water, which is only altered by temperature and salinity (density). Salinity
effects may be considered negligible in the spectral domain (> 600 nm) considered here.
Temperature effects were not clearly observed here but may have influenced retrieval accuracy
in the region around 750 nm where temperature effects on absorption by water are in the order
of 0.5 % per degree, which is significant in this waveband but may be considered non-critical
in the retrieval of bb(λ) from a wide spectral range. A combination of simulated and field
observation retrieval results, representing a range of relatively clear and optically highly complex
waterbodies, confirm that aw features are observable in reflectance spectra of natural waters
from the yellow-orange domain where the absorption is in the order of 0.1 m−1. For reference, a
pigment absorption coefficient of 0.1 m−1 at the red peak of chlorophyll-a would correspond to a
concentration in the order of 5 mg m−3 for a pigment-specific absorption coefficient in the order
of 0.02 mg m−2 [38].

Optical simulations show that the distribution of retrieved bb(λ) widens when absorbing and
scattering matter is not mixed homogeneously within the observed depth layer. This effect was
most strongly observed when scatterers were concentrated in discrete layers with clear water
overhead. In near-surface stratification conditions the divergence is expected to be narrower
because the backscattered signal will predominantly originate from near the surface. The overall
effect is wavelength-dependent, relating to the specific light penetration depth in each considered
waveband. As the discrepancy widens, accurate inversion of water-leaving reflectance becomes
unlikely, at least without employing further efforts to model vertical distribution effects.

It is highly desirable to define a test on the bb(λ) value distribution which can consistently
identify the presence of non-uniform mixing, but this proves challenging. Testing for modality
(not shown) of the returned bb(λ) distribution did not prove useful to distinguish uniformly
mixed columns from heterogeneous mixing in either simulated or field data because the number
of individual bb(λ) results per sample is too small to generate continuous value distributions.
Grouping the distribution of bb(λ) retrievals by the vibration energy of water molecules is one
way to discern differences between spectral regions where they are most likely to diverge, and we
observe that the wavebands selected for retrieval indeed cluster around these regions. However,
conventional tests to compare distributions (t-tests and ANOVA) did not yield a consistent
approach. This may be caused by a significant range of aw within these regions, and separating
them further could be considered. Inspecting the results from individual wavebands, rather
than in clusters, is of interest because a relationship between aw(λ) and bb(λ), across a spectral
range where the absorption by water induces different light penetration depths, should not be
expected when the water is homogeneously mixed. However, such a test is not straightforward
because of the observed clustering, variable number of responses per region, and large data
gaps in between (result not shown). Ultimately, the clustering of bb(λ) per H2O overtone does
summarize which spectral domains contain significant water absorption signatures, as a proxy for
the optical complexity of the sample, which could be used to determine further processing steps,
including algorithm selection for biogeochemical properties. The sharp drop in bb(λ) observed
around 839 nm in two of the data processing examples from relatively turbid water conditions
was common in the in situ data set and requires additional consideration. Overall, the in situ
observations are not expected to include poor mixing conditions, prompting the question whether
the wavelength range > 850 nm provides reliable estimates. Simulated conditions do not show
this clear deviation, so signal saturation issues may need to be considered. Reflectance at longer
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wavebands, particularly in turbid conditions, will originate predominantly from shallow depths,
and near-surface effects with lower concentrations of scatterers are not implausible (e.g. motile
species moving away from the surface). On the other hand, bubbles or films of organic material
are more likely to increase the backscattering signal in the same range. In clear but shallow water
columns, the effect of bottom reflectance on the bb(λ) would be worthwhile to investigate since it
could potentially help to identify this condition.

In the search for a robust metric to determine (non-)uniform mixing, the quartile coefficient
of dispersion included in the simulated and in situ data examples was one of the more robust
indicators of spectral inconsistencies, suggesting that samples with QCD < 5 % were less likely
to have inversion issues if the mode of the distribution is carried forward to the next processing
step. 69 % of the in situ data fell within this range and no robust correlation between the
QCD and chlorophyll-a retrieval accuracy was found (result not shown). The eutrophic (turbid)
inland waterbodies included in the in situ dataset are generally more likely to show near-surface
accumulations due to positive buoyant cyanobacteria, than deeper (e.g. density or temperature)
stratification, and it is not yet clear whether such cases can be unambigously identified. In
simulations, shallow surface layers were not associated with strongly elevated QCD, while deeper
stratified layers had QCD > 15 %. There, the bb(λ) is retrieved from multiple spectral regions
(vibrations) with different light penetration depths (because water absorption dominates yet
increases with each overtone). Thus, when the light penetration depth associated with one spectral
region reaches through the stratification, the bb(λ) distribution is seen to widen. Because the
QCD is relatively insensitive to outliers it does not increase rapidly when only one of the spectral
regions shows a different response, even if this response is consistent within that region. Some
weighting on the number of results observed per spectral region should therefore be considered.

When inspecting the bb(λ) distributions it is important to consider that, the larger the number
of vibration regions considered, the wider the spectral region becomes from which bb(λ) is drawn.
Then, because bb(λ) is not spectrally neutral but follows a slope determined by the particle size
distribution, the bb(λ) distribution should also be expected to widen when more regions are
included. Any quality control thresholds, therefore, should take into account the nature of the
spectral distribution of bb(λ). Further simulations may prove useful, in order to control these
experiments with known inherent optical properties, whilst these thresholds should also be tested
against larger datasets including independently observed bb(λ) and underwater depth profiles of
inherent or apparent optical properties, to represent all measurement uncertainties. It is, however,
noted that instrumentation to record bb(λ) in situ has conventionally been multi-spectral (in the
order of 3-9 wavebands), making direct validation of the concept presented here, challenging. It
would be very useful to apply the proposed method to long data sets of high-frequency reflectance
observations from moored stations where independent information on vertical distributions, e.g.
from profiling measurements, is obtained.

Hyperspectral retrieval of bb(λ) showed improvements in the retrieval of chlorophyll-a
concentration with a semi-analytical algorithm, particularly in the more eutrophic and turbid
range of the data set. Whilst direct validation of bb(λ) is not feasible using (at best) multispectral
in situ backscattering sensors, we observe that the median bb(λ) better approximated bb in the
red and near-infrared bandset used by the algorithm compared to bb(778) for the majority of
samples considered. The hyperspectral retrieval procedure produced results in all cases where
the reflectance spectrum was non-negative. The improved result may, of course, be an indication
that retrieval of bb from a single band is more likely prone to noise or measurement artefacts,
which have a lower influence in the consensus solution drawn from the median bb(λ). It follows
that retrieval of (median) bb(λ) from the whole NIR, where aw is likely to dominate, will be
similar without the need for a waveband selection scheme, and this is how full-spectral inversion
methods already work. It should also be noted that the use of the 778 nm band in the original
algorithm was guided by the availability of wavebands on medium resolution satellite sensors
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and from in situ datasets at the time of publication, rather than being considered optimal for all
water conditions. The advantage of the selection scheme is, nevertheless, to draw information
from wavebands outside this range whilst using consistent selection criteria. By spanning a wider
spectral range (including regions nearer the band ratio used in the algorithm), extrapolation errors
should be diminished. It is tempting to extrapolate the spectral slope of bb(λ), although we note
that it is unlikely that non-uniformity of mixing and the spectral slope can be unambiguously
resolved together due to gaps between the selected wavelength ranges.

The distributions of per-sample bb(λ) observed within the in situ dataset vary widely between
waterbodies and across a wide phytoplankton biomass range. This suggests that there is a wealth
of information contained in the selected bb(λ) bandset, theoretically related to light penetration
depth as well as potential observation artefacts such as suggested above (films, bubbles near the
surface) as well as potential signal saturation or sensor inter-calibration issues resulting in noise.
Stricter quality control of (above-surface) reflectance observations available in community data
repositories, and harmonization of reflectance protocols used in the field, would help reduce
some of the uncertainties related to potential signal saturation and sensor inter-calibration. Per
definition, when relying on above-water spectroradiometry alone, these effects can not be fully
isolated, whilst propagation of the uncertainty from bb(λ) to substance concentration estimates
should prove useful to determine application-specific quality control thresholds.

In conclusion, it is shown here that selection of a set of wavebands, where absorption by
water changes rapidly with wavelength, can be effective to prioritise such a bandset for the initial
inversion of reflectance, optimising retrieval procedures and providing additional analytical
information on the spectral consistency of the backscattering coefficient. This helps address the
observation uncertainty associated with the unknown extent of vertical mixing in remote sensing
applications. Whether this spectral (in)consistency, shown here as proof-of-concept, can be
interpreted clearly as uniform versus non-uniform mixing still requires further definition, through
optical simulation with known depth profiles but ideally through field experiments with optical
measurements resolved hyperspectrally over depth. Such experiments would help to further
develop and validate this proof-of-concept. Limiting disturbance of vertical gradients during in
situ observation from (large) research vessels is a particular challenge, and the use of experimental
enclosures could therefore also be considered. The distribution of backscatttering retrieved from
a single sample can be used to propagate uncertainties in subsequent algorithms, which in remote
sensing imaging studies may theoretically be associated with the presence of fronts, near-surface
blooms and potentially other types of stratification. Stepwise implementation of the inversion
scheme allows testing for a range of conditions that prevent accurate interpretation of the spectrum
over given spectral intervals, such as prevalence of absorption by other water constituents. These
waveband intervals are then further ignored in the analysis. The presence of scums or floating
vegetation invalidates the expected relation between reflectance and inherent optical properties
entirely and should be determined (e.g. using a band ratio threshold as done here) to remove such
samples. The method can be applied to reflectance from clear to turbid waters as shown with
hyperspectral data from in situ observations from lakes, reservoirs and a lagoon, and to airborne
or spaceborne hyperspectral instruments, following appropriate atmospheric correction.
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