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Abstract Phytoplankton biomass data often involve

zero outcomes preventing a description by continuous

distributions with positive support such as the lognor-

mal distribution commonly used to describe ecolog-

ical data. Two usual solutions: ignoring the zeroes and

adding a small positive number to all outcomes,

induce bias and reduce predictive power. To address

these shortcomings, we design a Bayesian two-part

model with a binary component for presence or

absence and a continuous component involving a

lognormal model for non-zero biomass. We specify

two equations relating species-specific occurrence

probabilities and expected log-biomasses when pre-

sent to potential covariates, with spike-and-slab priors

imposed on linear effects to selectively discard the

irrelevant predictors. We analyze the biomass data of

74 phytoplankton (57 diatoms and 17 dinoflagellates)

recorded weekly at Station L4 (Western English

Channel, UK) between April 2003 and December

2009, along with measurements of abiotic covariates.

Our results disclose different combinations of envi-

ronmental predictors for the occurrence and the

biomass of individual species. Overall, the occurrence

of dinoflagellates is associated with higher tempera-

ture and irradiance levels compared to diatoms, with

virtually no dependence on nutrient concentrations.

Irradiance emerges as the key predictor of biomass

when species are present. Optimum temperatures for

biomass accumulation and temperature sensitivities

vary widely among and within functional types.

Compared to one-stage models based on usual zero-

handling approaches, our two-part model stands out

with higher prediction accuracy. The two-part mod-

eling approach provides a valuable framework for

decoupling the predictors of species occurrence and

abundance from observational data.
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Introduction

Phytoplankton are the foundation of the aquatic food

web and key players in global biogeochemical cycles

of carbon and other elements (Field et al., 1998).

Long-term monitoring data are increasingly used to

analyze the environmental controls of phytoplankton

biomass distribution and community structure, and

anticipate the community response to climate change

(Mutshinda et al., 2013a,b, 2016). Phytoplankton

biomass data are often recorded on a continuous scale

and typically involve a substantial proportion of

zeroes and few extremely large values, resulting in

right-skewed and heteroskedastic distributions for the

non-zero values (e.g., Clarke & Green, 1988; Fletcher

et al., 2005; Martin et al., 2005). Continuously

distributed nonnegative values with a proportion of

zeroes are said to be semi-continuous (e.g., Min &

Agresti, 2002; Olsen & Shaffer, 2001; Wang et al.,

2020). The presence of a point mass at zero in semi-

continuous data prevents their description by usual

positive continuous distributions such as the lognor-

mal distribution commonly used to describe ecolog-

ical data on theoretical and empirical grounds (e.g.,

Preston, 1948; May, 1975; McGill, 2003; Sugihara

1980). There are two common solutions: (1) adding a

small positive number to all outcomes to get rid of the

zeroes and proceed with a positive continuous distri-

bution such as the lognormal distribution and (2)

ignoring the zeroes, both of which induce bias and

undermine the model’s predictive power. Appropriate

modeling approaches are required to address these

flaws without compromising data integrity.

A valuable strategy for handling the zeroes in semi-

continuous data is to consider the data as arising from

the interplay of two distinct processes: the first process

determines whether an outcome is strictly positive or

zero, and, conditional on the outcome being positive,

the second process determines its actual value (Su

et al., 2009). Two-part models accommodate excess

zeroes and asymmetries in the distribution of strictly

positive values by combining a Bernoulli distribution

for the binary indicator of whether an observation is

strictly positive or zero and a positive continuous

distribution, typically the lognormal distribution or the

Gamma distribution for the strictly positive outcomes.

The two-part modeling approach allows for explana-

tory variables to influence the outcome through their

role in the binary and/or the continuous model

components. For count data, excess zeroes can be

handled using zero-inflated models (Lambert, 1992)

describing the response variable as a mixture of a

Bernoulli distribution and a count distribution sup-

ported on nonnegative integers, typically the Poisson

or the negative binomial distribution, or hurdle models

(Cragg, 1971) where the conditional distribution of

non-zero values does not support zero.

The aim of this paper is to illustrate the value of

two-part models for decoupling the abiotic predictors

of species occurrence and biomass from semi-contin-

uous monitoring data. We will use this model to test if

the abiotic variables that influence presence (biomass

greater than 0) are distinct from the variables that

influence the biomass of cells present in a sample. We

will also show how the two-part model improves

predictions compared to a model considering only

strictly positive biomass data. Since two-part models

fall in the category of zero-modified models, we start

by providing a synopsis of zero-modified models

before delving into the details of our model. A dataset

is said to be zero-inflated (zero-deflated) with regard to

a hypothetical probability distribution if it involves

more (fewer) zeroes than expected under the presumed

distribution. While zero-deflation is uncommon in

practice, zero-inflated data abound across disciplines.

Following Neelon et al. (2016), we use the term zero-

modified data to collectively refer to zero-inflated and

zero-deflated data.

The challenges posed by zero-modified data are

well-documented (e.g., Amemiya, 1974; Feng et al.,

2014; Xu et al., 2015). Zero-modified models have

been proposed to handle zero-modified data primarily

in the context of count data. Zero-modified models for

count data can be separated into zero-inflated models

(e.g., Lambert, 1992; Mwalili et al., 2008) and hurdle

models (e.g., Cragg, 1971; Mullahy, 1986), which all

involve a Bernoulli distribution for the binary indica-

tor of whether an outcome is strictly positive or zero,

and a conditional count model. The fundamental

difference between zero-inflated and hurdle models

lies in the fact that conditional distributions under

zero-inflated models, as opposed to hurdle models, are

regular (untruncated) count distributions such as the

Poisson distribution or the negative binomial distri-

bution supporting not only strictly positive values but

also zeroes. The zeroes arising from the conditional

distribution are called sampling zeroes, in contrast to

so-called structural zeroes resulting from the Bernoulli
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component. On the other hand, conditional distribu-

tions under hurdle models are zero-truncated count

distributions such as the truncated Poisson and trun-

cated negative binomial distributions (Cameron &Tri-

vedi, 1998). The likelihood function of a hurdle model

is separable with regard to the parameters of the binary

and the assumed zero-truncated count model, meaning

that the log-likelihood can be written as the sum of the

log-likelihoods of the two model components, which

can be maximized separately. This explains why

hurdle models are called two-part or two-step models.

Although most of the attention regarding zero-

augmented models has been devoted to count data,

semi-continuous data (i.e., zero-inflated nonnegative

continuous data) arise frequently across disciplines,

but zero-modified models for semi-continuous data

have not received commensurate attention. A variable

is said to be semi-continuous if it takes either the value

0 or any value between a finite lower bound (b� 0)

and an upper bound (B[ b) which need not be finite.

There is no semi-continuous counterpart to a zero-

inflated count model, but delta-distributions (Aitch-

ison, 1955; Aitchison & Brown, 1957, p. 95; Rubec

et al., 2016) have been proposed as semi-continuous

counterparts of hurdle models. A delta-distribution is a

two-part model for semi-continuous data involving a

Bernoulli distribution for the indicator of whether an

outcome is positive or zero and a conditional distri-

bution that is continuous on the positive real line.

Typical choices of conditional distributions include

the Gamma distribution and the lognormal distribution

leading, respectively to the delta-gamma (Stefánsson,

1996) and delta-lognormal (Maunder & Punt, 2004;

Pennington, 1983) models.

In this paper we design, under the Bayesian

framework (McCarthy, 2007; Gelman et al., 2013), a

two-part model to disentangle the abiotic predictors of

the occurrence and biomass patterns of phytoplankton

species from semi-continuous monitoring data. The

model combines a binary model for the indicator of

whether a species has positive or zero biomass (the

occurrence model) and a quantitative model using a

lognormal distribution for the strictly positive bio-

masses (the biomass model). The occurrence and

biomass models involve equations relating, respec-

tively, the occurrence probability of each species at

any time and its expected log-biomass when observed

to abiotic covariates, with embedded stochastic search

variable selection (SSVS) mechanism (George &

McCulloch, 1993; Mutshinda et al., 2009, 2011) to

selectively discard the irrelevant predictors. We use

our model to analyze the abiotic predictors of the

occurrence and biomass patterns of 74 phytoplankton

species at Station L4 (Western English Channel, UK)

from semi-continuous biomass data and coincident

measurements of five abiotic covariates expected to

affect the occurrence probability as well as the growth

rate and biomass density (temperature, irradiance,

nitrogen, silicate and phosphate concentrations)

recorded weekly between April 2003 and December

2009.We carry out the model fitting to data byMarkov

chain Monte-Carlo (MCMC) simulation (Gilks et al.,

1996) implemented in OpenBUGS (Thomas et al.,

2006).

Materials and methods

Description of data

The data comprise weekly biomass data (mg C m�3)

for 74 phytoplankton species including 57 diatoms and

17 dinoflagellates (Table S1, Online Supplementary

Materials) recorded at Station L4 (50� 15.00’ N, 4�
13.02’ W) between April 2003 and December 2009,

and measurements of five abiotic covariates namely

temperature (�C), photosynthetically active radiation

(PAR;molm�2d�1), and concentration (lmolL�1) of

dissolved inorganic nitrogen (nitrate ? nitrite), sili-

cate, and phosphate. Station L4 is located in the

Western English Channel about 10 nautical miles

south-west of Plymouth, UK, with a water column

depth of approximately 50 m (Harris, 2010). It is a

typical temperate coastal site with well mixed waters

during the autumn and winter months under low sea

surface temperatures and relatively high nutrient

concentrations, whereas spring and summer months

are characterized by a weak stratification of the water

column accompanied with declining nutrients and

increasing sea surface temperature which typically

peaks at 18 �C in August (Widdicombe et al., 2010).

Phytoplankton samples were identified to genus or

species and counted by microscopy and abundance

data converted to biomass using conversion factors

based on empirically established carbon to volume

relationships (Menden-Deuer & Lessard, 2000).
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Figure 1 illustrates the general structure of species-

level biomass with data on three species: two diatoms

(Nitzschia closterium and Meuniera membranacea)

and a dinoflagellate (Ceratium lineatum). The his-

tograms shown in panels A-C are L-shaped with a

peak at zero indicating the zero-inflated nature of

species-level biomass data. When the zeroes are

omitted, the histograms of the strictly positive values

on the natural logarithmic scale (panels D-F) and

corresponding normal QQ plots (panels G-I) suggest

that the lognormal distribution provides a reasonable

description of the strictly positive values, lending

support to the two-part delta-lognormal model for

species-level biomass data.

Model specification

Let ps;t and Ys;t denote respectively the occurrence

indicator and the observed biomass concentration

(mg C m�3) of species s at time t, so that ps;t ¼ 1 if

Ys;t [ 0 and ps;t ¼ 0 if Ys;t ¼ 0. We model the

probability density of Ys;t as

f Ys;t

� �
¼ 1� ps;t
� �

I Ys;t ¼ 0
� �

þ ps;t LNðls;t; r2s Þ IðYs;t [ 0Þ ð1Þ

where ps;t ¼ Prðps;t ¼ 1Þ, Ið:Þ is the indicator function
taking the value 1 when its argument evaluates to true

and the value 0 otherwise, and LNðls;t; r2s ) is the

density function of the lognormal distribution with

expected value expðls;t þ r2s=2Þ and variance

exp 2ls;t þ 2r2s
� �

� expð2ls;t þ r2s Þ, implying that

ys;t ¼ logðYs;tjYs;t [ 0Þ is normally distributed with

mean value ls;t and variance r2s , where log :ð Þ denotes
the natural logarithm function.

Equation (1) describes the semi-continuous bio-

mass data as arising from two entangled processes: a

Bernoulli distribution (occurrence model component)

governs the binary outcome of whether the outcome is

strictly positive ðps;t ¼ 1Þ or zero ðps;t ¼ 0Þ and

conditional on the binary outcome being 1, a

Fig. 1 Histograms of observed semi-continuous biomasses

(top), histograms of the strictly positive biomass values on the

natural logarithmic scale with overlaid fitted normal densities

(middle), and normal Q-Q plots of log-biomasses (bottom) for

the diatoms Nitzschia closterium (left) and Meuniera mem-
branacea (center) and the dinoflagellate Ceratium lineatum
(right)
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lognormal distribution (biomass model component)

describes the values of the strictly positive biomass. In

order to explore the abiotic predictors of biomass

distribution and community composition, we specify

two separate models: the occurrence model and the

biomass model relating respectively species-specific

occurrence probabilities ps;t ¼ Prðps;t ¼ 1Þ and

expected log-biomasses when present

ls;t ¼ E½y
s;t
jYs;t [ 0� to abiotic covariates. It is worth

emphasizing that the sets of covariates involved in the

two model components are not required to be identi-

cal. We next describe the occurrence model and the

biomass model which are both developed with a

Bayesian approach.

The occurrence model

The occurrence model describes the occurrence indi-

cator of species s at time t, ps;t, by a Bernoulli random

variable with success probability ps;t, where the logit

of ps;t depends linearly on the values assumed by the

abiotic covariates at time t. Letting Zj;t denote the z-

score of the j th environmental variable (temperature,

irradiance, nitrogen, silicate, phosphate) at time t, we

assume that

ps;t � Bernoulli ps;t
� �

ð2Þ

logit ps;t
� �

¼ gs þ
XJ

j¼1
hs;jZj;t ð3Þ

where logit ps;t
� �

¼ log
ps;t

1�ps;t

� �
; gs and hs;j are respec-

tively the intercept parameter specific to species s and

the linear effect of the j th environmental variable on

logit ps;t
� �

.

The model specification is completed with explicit

statements of prior distributions on all unknown

quantities. We placed standard normal priors inde-

pendently on the species-specific intercept parameters

gs, and assigned to each regression coefficient hs;j a
hierarchical mixture prior with a ‘‘spike’’ and a ‘‘slab’’

Gaussian components (George & McCulloch, 1993;

Mwanza 2010) to perform variable selection and

identify promising subsets of environmental covari-

ates. More specifically, we assume that

hs;j �Nð0; vs;jÞ ð4Þ

vs;j ¼ 1� cs;j
� �

� aþcs;j � A ð5Þ

where the constants a[ 0 and A[ 0 representing the

variances of the spike and the slab mixture compo-

nents are respectively set to a very small and a large

value to virtually exclude the irrelevant predictors

from the model by constraining their coefficients to a

narrow range around zero, while allowing the coeffi-

cients of relevant predictors to be freely estimated

from data. The variable inclusion indicator cs;j takes
the value 1 when the jth covariate is required in the

occurrence model of species s and the value 0

otherwise. This Bayesian variable selection method

known as stochastic search variable selection (SSVS)

was introduced by George & McCulloch (1993) in the

context of linear regression, but has since been

extended to other settings including generalized linear

models. Finally, we assigned Bernoulli (0.5) priors on

the variable inclusion indicators csj independently for

all species and all potential covariates, implying prior

odds of 1:1 for including versus excluding each

covariate in the occurrence models of individual

species. The prior distributions of all unknown quan-

tities are updated with the data information into

posterior distributions which serve as basis for

Bayesian inferences. As a rule of thumb for variable

selection, we consider all predictors with posterior

inclusion probability 0.75 or larger to be relevant and

vice-versa. Compared to the prior inclusion probabil-

ity of 0.5 assumed here, a posterior inclusion proba-

bility of 0.75 corresponds to a Bayes factor of 3 in

favor of variable inclusion. On the Jeffrey’s scale of

evidence for interpreting Bayes factors (Jeffreys,

1961) as amended by Kass & Raftery (1995), a Bayes

factor of 3 for hypothesis H1 against H2 implies

positive evidence for H1.

The biomass model

Conditionally on species s being observed at time t

with biomass Ys;t, the biomass model assumes that Ys;t

follows a lognormal distribution with location param-

eter ls;t and scale parameter r2s , where ls;t depends on
abiotic variables. Letting Zk;t denote the z-score of the

k th environmental variable (PAR, nitrogen, silicate,

and phosphate) and Tt denote the observed tempera-

ture (�C) at time t, it follows that
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½Ys;t Ys;t [ 0
�� �

� LN ls;t; r
2
s

� �
ð6Þ

ls;t ¼ as þ
XK

k¼1
bs;kZk;t � ds Tt � qsj j ð7Þ

where bs;k is the linear effect of the k th environmental

variable on the expected log-biomass of species s,

representing the change in ls;t corresponding to the

effect of a 1 standard deviation change in the

corresponding variable, everything else being held

constant. The parameter qs represents the optimum

temperature for the biomass of species s and ds [ 0 is

the temperature sensitivity parameter quantifying the

increase in the expected log-biomass of species s for a

1 �C change in temperature towards qs, and alterna-

tively, the decrease thereof for a 1 �C change in

temperature away from qs at average values of other

abiotic variables. The species-specific intercept as
represents the expected log-biomass of species s at its

optimum temperature when all resources (irradiance

and nutrients) are at their average values over the time

series. Ecological data are often fraught with obser-

vation errors, which may result from the sampling

techniques. In our model, observation error is lumped

together with the residual environmental variance r2s .
However, we expect the observation error to be small

since the sample size is large and the sampling

technique remained the same throughout the study

period.

The model is developed with a Bayesian approach,

which requires explicit statements of prior distribu-

tions on all unknown quantities. We independently

assigned on the species-specific optimal temperatures

for biomass qs, normal priors centered at the average

temperature over the time series, 13 �C, with variance
10, and independent Gammað1,1Þ priors on the

temperature sensitivity coefficients, ds. We placed

exchangeable InvGammaðu; vÞ priors on the species-

specific variance parameters r2s , with independent

Gammað1,1Þ priors on the hyper-parameters u and v.

To uncover the relevant environmental predictors of

species biomass patterns, we assigned, as in the

occurrence model, spike-and-slab priors (George &

McCulloch, 1993; Owusu et al., 2016) on the linear

effects bs;k of the environmental variables on the

expected log-biomass. That is,

bs;k �Nð0;ws;jÞ ð8Þ

ws;k ¼ 1� ns;k
� �

� bþ ns;k � B ð9Þ

where the constants b[ 0 and B[ 0 representing the

variances of the spike and the slab parts of the mixture

prior are respectively selected to be small and large to

perform variable selection. Since temperature is

typically one of the most informative variables in

biomass models, we anticipated that it will be an

important predictor in the biomass model which we

parameterized in terms of species-specific optimum

temperatures and temperature sensitivities to be freely

estimated from the data. A zero temperature sensitiv-

ity would indicate that deviations from the optimal

temperature do not induce a significant change in

biomass of the focal species.

Model validation and model comparison

Model validation is a crucial part of the statistical

modeling workflow. It involves the assessment of the

model’s adequacy at describing the data, by exploring

potentially deficient aspects (if any) and finding ways

of remedying them, independently of any other model.

In the Bayesian framework, a standard approach to

model validation is based on the notion of posterior

predictive checks (Gelman et al., 1996, 2013), which

relies on the ability to approximate the posterior

predictive distribution, i.e., the distribution of unob-

served values conditional on observed data. For a

model with likelihood L yjhð Þ and prior p hð Þ, the

posterior predictive distribution of an observable ~y

conditional on data y is defined by

p ~yjyð Þ ¼
Z

L ~yjhð Þp hjyð Þdh ð10Þ

In Eq. (10), it is assumed that ~y and y are

conditionally independent given h. Since all parame-

ters are integrated out, only information in observed

data contributes to the prediction. The optimal

Bayesian prediction under a quadratic loss function

is the posterior predictive mean value E½~yjy�.
The idea behind posterior predictive checks is to

compare the observed data with replicated data

simulated from the posterior predictive distribution,

or alternatively to compare some test quantity Tðy; hÞ
based on the observed data to the same statistic

Tðyrep; hÞ for replicated data from the posterior

predictive distribution, and interpret systematic dis-

crepancies between the two as evidence of model
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misfit. The comparison may be done visually using,

for instance histograms, or formally using posterior

predictive P-values or Bayesian P-values defined as

PB ¼ Pr Tðyrep; hÞ� T y; hð jyð Þ ð11Þ

(Gelman et al., 1996, 2013). If the observed data are

consistent with the model predictions, then PB should

be close to 0.50. Values of PB close to 0 or 1 provide

evidence for model inadequacy with PB close to 0

indicating a lack of fit and PB values close to 1 pointing

to overfitting, which may occur when a model is

needlessly too complex. A simulation-based approx-

imation of the posterior predictive P-value is obtained

as the proportion of posterior predictive data replicates

for which the test quantity exceeds the one based on

the original data. At the most basic level, posterior

predictive checks involves the comparison of observed

data to their posterior predictions. If the model fits the

data, the replicated data should closely resemble the

observations (Gelman et al., 1996). As a result, the

difference � ¼ ðy� yrepÞ between each data point, y;

and its posterior predictive replicate, yrep, should be

distributed around zero.

When it comes to selecting among plausible

models, cross-validation (e.g., Stone, 1974; Hastie

et al., 2009) remains the most commonly used method

for identifying the model with best out-of-sample

predictive performance and presumably the model that

best mimics the data-generating mechanism. The

cross-validation procedure for model selection

involves the following steps: (i) split the data into a

training set and a validation set or test set; (ii) fit each

competing model to the training data holding out the

validation data; (iii) use the fitted model to predict the

test data and compute a measure of predictive

performance; (iv) select the model with the best

overall performance. A widely used performance

measure is the root mean squared predictive error

(RMSPE) defined as

RMSPE ¼ 1

N

XN

i¼1

yi � ~yið Þ2
 !0:5

ð12Þ

where yi and ~yi are respectively the i th omitted value

and its model prediction, and N is the number of held-

out values. The model with lowest RMSPE is

preferable.

It is worth noting that biomass prediction under the

two-part model integrates information from the

occurrence and the biomass model components

according to the following property: if X is a semi-

continuous variable such that E XjX[ 0½ � ¼ l and

PrðX ¼ 0Þ ¼ h, then E X½ � ¼ ð1� hÞl. Stated

otherwise,

E X½ � ¼ E XjX[ 0½ � 1� PrðX ¼ 0Þf g ð13Þ

We assessed the validity of our two-part model

hereafter identified as Model 1 through posterior

predictive checks (Gelman et al., 1996, 2013). We

subsequently compared our model’s out-of-sample

predictive performance in terms of RMSPE (Eq. 12)

to two one-stage models based on prevailing zero-

handling methods namely, adding a small positive

number to all outcomes (Model 2) and ignoring the

zeroes (Model 3), which is virtually identical to the

continuous part of our two-part model, except that the

latter model is conditioned on the binary response.

We used Markov chain Monte-Carlo (Gilks et al.,

1996) implemented in OpenBUGS (Thomas et al.,

2006) to simulate from the joint posterior distributions

under both the occurrence model and the biomass

model. We ran 30,000 iterations of three parallel

Markov chains starting from scattered initial values

and discarded the first 10,000 iterations of each

Markov chain as burn-in, thinning the remainder by

a factor of 10. We assessed the convergence of the

Markov chains informally through visual inspection of

traceplots and autocorrelation plots.

Results

The results of the occurrence model component

revealed different combinations of environmental

predictors for the presence of individual phytoplank-

ton species at Station L4, with temperature, irradiance

and phosphate concentration standing out as key

predictors (Fig. 2A). The temperature and irradiance

coefficients were consistently positive among

dinoflagellates, indicating high occurrence probability

at higher temperature and irradiance levels, with

virtually no dependence on nutrient concentrations. In

contrast, temperature and irradiance effects on occur-

rence probabilities of individual diatoms were broadly

negative, implying higher occurrence probability at

lower temperature and irradiance levels. Of all the

nutrients under consideration, phosphate emerged as

the most important predictor of species occurrence in
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Predictors of Occurrence Predictors of Biomass

D
iatom

s
D

inoflagellates

Nitrogen PAR Phosphate Silicate Temperature Nitrogen PAR Phosphate Silicate

B.paradoxa
C.affinis

C.criophilum
C.danicus
C.debilis

C.decipiens
C.densus
C.pelagica
C.radiatus
C.simplex
C.socialis

D.brightwellii
D.cabro

D.fragilissimus
D.pumila

E.zodiacus
G.delicatula
G.flaccida
G.striata

L.annulata
L.danicus

L.mediterraneus
L.minimus

M.membranacea
N.closterium

N.distans
N.sigmoidea
Navicula sp.

O.mobiliensis
P−n.delicatissima

P−n.pungens
P−n.seriata

P.alata
P.alata 5 µm

P.panduriforme
P.planctonicum

P.stelligera
P.sulcata
P.truncata

Pennate 30 µm
Pennate 50 µm
Pleurosigma

R.imbricata 10 µm
R.imbricata 15 µm
R.imbricata 5 µm
R.setigera 25 µm
R.setigera 5 µm

R.styliformis
R.tesselata
S.costatum

Small pennate
T.nitzschioides

T.punctigera
T.rotula

Thalassiosira 10 µm
Thalassiosira 20 µm
Thalassiosira 4 µm

C.fusus
C.horridum
C.lineatum

C.tripos
D.acuminata
G.pygmaeum
G.spinifera

Gymnodinium sp.
K.mikimotoi
M.perforatus

Micranthodinium sp.
P.balticum
P.micans

P.minimum
P.triestinum
S.trochoidea

Scripsiella sp.

−4

0

4
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diatoms and was selected in 40% of them, with

negative coefficients in most cases.

One of the premises of the two-part modeling of

ecological data is that different ecological mecha-

nisms may underlie the occurrence of individual

species and their biomass when present, which may

result in different sets of covariates being associated

with species presence and their biomass when present,

as it turns out to be the case for our study species at

Station L4. The results of our biomass model

displayed in Fig. 2B indicate that irradiance is the

most important and most frequently selected predictor

of biomass when species are present, with a positive

effect for roughly 30% of all species including both

diatoms and dinoflagellates, implying higher biomass

at high irradiance levels. Phosphate and nitrogen were

each selected as important predictors of biomass for

20% of the diatoms, with a mix of positive and

negative effects. Silicate was selected as an important

predictor of biomass for three diatoms and three

dinoflagellates with negative coefficients for the

diatoms and positive coefficients for the

dinoflagellates.

Our parameterization of the biomass model allowed

us to estimate species-specific optimum temperatures,

along with temperature sensitivities. Temperature

sensitivities vary considerably among and within

functional types (Fig. 3). Some of the species with

high temperature sensitivity such as the diatoms

Pseudo-nitzschia delicatissima, Chaetoceros socialis

Leptocylindrus minimus, Leptocylindrus danicus,

Thalassiossira sp.4 lm, Skeletonema costatum and

the dinoflagellates Prorocentrum minimum, Proro-

centrum balticum, Karenia mikimotoi, and Prorocen-

trum micans are among the species identified by

Widdicombe et al. (2010) as being most responsible

for the patterns of abundance observed at Station L4

over the 15-year period (1992–2007) covered by their

study.

In diatoms, optimum temperatures for biomass

spanned the entire range (7 �C–19 �C) of observed

temperatures at Station L4 over the study period. The

substantial disparities in species-specific optimum

temperatures suggest the existence of distinct thermal

niches. Based on the posterior distributions of species-

specific optimum temperatures as displayed in Fig. 4,

diatoms can be separated into low-temperature species

with posterior median optimum temperatures lower

than 12 �C (from S. costatum to M. membranacea in

Fig. 4), mid-range temperature species with posterior

median of optimum temperatures between 12 and

16 �C (from Small pennate to C. affinis in Fig. 4), and

high temperature species whose posterior medians of

optimum temperature range from 16 to 18 �C (from

P.-n. pungens to L. mediterraneous in Fig. 4).

On the other hand, optimum temperatures for

individual dinoflagellates range from intermediate

(posterior medians between 12.5 �C and 15 �C) to

high (posterior medians larger than 16 �C). Interme-

diate-temperature dinoflagellates involve species from

Scripiscella sp. to M. perforatus in Fig. 4, while high

temperature species go from G. pygmaeum to P.

minimum. In the latter category, Prorocentrum mini-

mum and Karenia mikimotoi stand out with excep-

tionally high optimum temperatures (posterior

medians larger than 18 �C).
We assessed the validity of our model through

posterior predictive checks by comparing simulated

data yrep from the posterior predictive distribution to

the observed data y, and found the posterior predictive

P-value PB ¼ Pr yrep � yð Þ to be 0.48, which is close to
the target value of 0.5 and far from the extremes 0 and

1, indicating that the model predictions do not

systematically underestimate or overestimate the

observed data.

After the model validation, e.g., through posterior

predictive checks, it is often useful to compare its

performance to alternative models embodying differ-

ent hypotheses with regard to suitable performance

measures (Conn et al., 2018). The model with best out-

of-sample predictive performance is usually preferred,

as a common goal is to optimize predictive ability. We

compared the prediction accuracy of our two-part

model (Model 1) against two single-stage models

based on prevailing zero-handling approaches, namely

Model 2 which involves the addition of a small

bFig. 2 Heatmaps conveying the sign andmagnitude of posterior

mean effects of relevant covariates (posterior inclusion proba-

bility C 0.75 implying Bayes factor for inclusion C 3 under the

assumed 0.5 prior inclusion probability) for (A) the occurrence
model (Eqs. 2–5) and (B) the biomass model (Eqs. 6–9). The

heat scale ranges from blue (negative effect) through white (no

effect) to red (positive effect), with color intensity reflecting the

effect magnitude according to the displayed color bar scale. The

horizontal line separates diatoms from dinoflagellates. Nitrogen

represents the combined concentration of nitrate and nitrite
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positive number e to all response values to avoid zero

outcomes (Model 2) and ignoring the zeroes (Model

3). For the purpose of the present analysis, we used

e ¼ 1:18� 10�5mg C m�3), which represents half of
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lates. The height of the box indicates the 25th (Q1) and 75th

(Q3) per-centiles; the horizontal line inside the box is median,

and the lower and upper whisker limits are defined as Q1�
1:5� IQR and Q3þ 1:5� IQR, respectively, where IQR

represents interquartile range (IQR ¼ Q3� Q1). Species are

sorted by increasing median of optimum temperature of biomass

within each functional type

123

Hydrobiologia



the minimum observed biomass for either functional

type. We omitted 10 randomly selected outcome

values (5 positive values and 5 zeroes) and evaluated

the model performance at predicting the omitted

values through the root mean squared prediction error

(Eq. 12). For Model 2, we compared the predicted

values over zero outcomes to e. In computing the

RMSPE. The RMSPE of 2.20 mg C m�3 under our

two-part model on the scale of the observed data was

30–50% lower than the RMSPEs 4.30 mg C m�3

underModel 2 considering the observed the data plus a

positive offset to get rid of zero outcome and 3.06

mg C m�3 under Model 3 considering only the strictly

positive outcomes unconditionally ignoring zero

outcomes.

The two-part model (Model 1) reduces the predic-

tion error by weighing the prediction from Model 3 by

the occurrence probably estimated from the binary

component of the two-part model according to Eq. 13.

Model 3 is ostensibly identical to the continuous

component of our two-part model, but the two models

differ fundamentally in that the continuous part model

is conditioned on the binary response when the

response in Model 3 was wrongly assumed to be

unconditioned.

Discussion

Semi-continuous data consisting of a point mass at

zero followed by a right-skewed continuous distribu-

tion supported on strictly positive real numbers arise

frequently across disciplines, particularly in ecology.

Positive continuous distributions such as the gamma

and the lognormal distributions cannot be directly

fitted to semi-continuous data since their support

excludes zero. Models based on ad hoc zero-handling

techniques perform poorly at fitting data or predicting

new data. Two-part models harness the flexibility to

accommodate excess zeroes by separately modeling

the probability that an outcome is non-zero and

describing the non-zero outcomes by a positive

continuous distribution. This two-step modeling

approach allows for different ecological mechanisms

to determine the occurrence of a species in a specific

environment and its abundance when present, by

relating species-specific occurrence probabilities and

expected log-biomasses of species that are observed to

potentially different sets of covariates.

In this paper, we designed a two-part Bayesian

model to disentangle the abiotic predictors of the

occurrence and biomass patterns of phytoplankton

species from semi-continuous monitoring biomass

data and coincident measurements of abiotic covari-

ates expected to affect species’ occurrence, and

biomass. Our two-part model integrated a Bernoulli

distribution for the indicator of whether a species has

positive or zero biomass and a lognormal distribution

for the strictly positive biomasses, with two equations,

Eqs. (3) and (7) relating respectively the occurrence

probability of each species at any time and its expected

log-biomass when observed to abiotic covariates. We

parameterized the biomass model in terms of species-

specific optimum temperature and temperature sensi-

tivity, two traits we expected to be important in

shaping species biomass patterns given the critical role

of temperature in phytoplankton ecology. We linearly

related the four other biotic variables (PAR, nitrogen,

silicate, phosphate) to each species’ expected log-

biomass and imposed spike-and-slab hierarchical

priors on linear effects of environmental covariates

to perform variable selection by constraining the

effects of irrelevant covariates to be virtually zero

while freely estimating the relevant effects from the

data.

We found that at Station L4 the occurrence of

individual species is governed by different combina-

tions of environmental variables with temperature,

irradiance and phosphate concentration standing as the

most important predictors of species occurrence

(Fig. 2A). The sign and magnitude of the coefficients

of abiotic variables deemed relevant by the Bayesian

variable selection mechanism included in the occur-

rence model imply greater occurrence probability of

dinoflagellates as a group at higher temperature and

irradiance levels, with virtually no dependence on

nutrient concentrations. This result supports the doc-

umented tendency of dinoflagellates to thrive in

warmer, stratified and nutrient-depleted waters in

contrast with diatoms (Le Quéré et al., 2005), and

corroborates the findings of previous analyses of the

L4 phytoplankton data (Mutshinda et al., 2017, 2019).

In diatoms, irradiance effects on species’ occurrence

probabilities are broadly negative, in line with the

notion that diatoms are generally adapted to low light

levels (Reynolds, 2006). On the other hand,
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temperature effects vary widely among the diatom

species with negative effects for 15% of them,

implying higher occurrence probability at lower

temperatures and positive effects for about the same

proportion of species indicating higher occurrence

probability at higher temperatures. This result sub-

stantiates the documented diversity of diatoms (Arm-

brust, 2009; Mutshinda et al., 2020), with collections

of species adapted to different and even contrasting

conditions. Of all nutrients under consideration,

phosphate emerged as the most important predictor

of species occurrence in diatoms, with mostly negative

coefficients when deemed relevant.

For the biomass component of our two-part model,

irradiance stood out as the most important predictor

among all resources under consideration, with positive

effects for roughly a third of the study species,

indicating higher biomass with increasing irradiance.

Phosphate and nitrogen (nitrate ? nitrite) appeared to

be important predictors of biomass for roughly 20% of

the diatoms, with a mix of positive and negative

effects. In dinoflagellates, nitrogen concentration

emerged as an important predictor of biomass for

three species, with negative effect for one of them

(Prorocentrum micans) and positive effects for the

two others (Prorcentrum triestinum and Scripiscella

sp.). Thus as a rule different predictors were selected

for the presence and biomass models and the sign of

the effects differed as well. Most notably, higher

biomass was predicted with higher irradiance for

many dinoflagellate taxa while diatom presence was

more likely at lower irradiance.

Optimum temperatures varied widely, suggesting

the existence of difference thermal niches within each

functional type. Posterior medians of diatoms’ opti-

mum temperatures spanned the entire range of the

observed temperatures over the time series. Based on

species-specific optimum temperatures, diatoms can

be separated into spring species characterized by low

optimum temperatures (posterior medians\ 12 �C),
fall species with mid-range optimum temperatures

(posterior medians between 12 and 16 �C) and sum-

mer species with higher optimum temperatures (pos-

terior medians[ 16 �C).
Optimum temperatures for the study dinoflagellates

ranged from intermediate to high, suggesting an

increase in dinoflagellate biomass with increasing sea

surface temperature from low biomass during spring to

high biomass during summer,with potential for intense

but brief blooms of species with high optimum

temperatures such as Prorocentrum minimum and

Karenia mikimotoi. These are well-documented harm-

ful algal bloom taxa (HABs). In 2003, the English

Channel experienced a massive bloom of K. mikimotoi

from the end of June to the beginning of August due to

exceptionally warm conditions (Vanhoutte-Bruniera

et al., 2008).

HABs may impact the marine ecosystem either

directly, through its hemolytic cytotoxin, or indirectly

through hypoxia, with far-reaching implications,

including widespread mortality of wild fishes and

benthic invertebrates. The economic losses induced by

fish kills due to red tides can be enormous. Certain

types of HABs are also linked to low oxygen (hypoxic)

conditions. HABs are notoriously difficult to predict

using mechanistic models. Although a full exploration

of this issue is beyond the scope of this study, we

suggest that the optimum temperatures and sensitiv-

ities documented here may be relevant for this

problem and anticipate that the two-part modeling

approach proposed here can be used, in conjunction

with environmental forecasting models, to predict the

location and magnitude of HABS.

Our two-part model achieved a reduction of about

one-third to one-half in root mean squared prediction

error relative to the two most common methods for

describing biomass data with many zeroes, indicating

a dramatic improvement in model error is possible

with our two-step approach.

While some of our results confirm well-known

phenomena, other findings, such as the difference

between variables predicting presence vs. biomass

magnitude, are hardly ever documented. This finding

has significant ecological implications: the important

predictors of presence/absence are relatable for niche

characterization while the predictors of biomass/

abundance are potentially pertinent for modeling other

contributions to ecosystem services. This dichotomy

illustrates the value of the two-part modeling approach

for analyzing semi-continuous ecological data without

wasting information or compromising the data integ-

rity as implied by models based on commonly used

zero-handling techniques. In addition, the identifica-

tion of optimal temperature for biomass and the

sensitivity of biomass magnitude to temperature from

observational data is infrequent.

In conclusion, two-part models provide the flexi-

bility to accommodate excess zeroes in semi-
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continuous data beyond the dominant ad hoc

approaches. With this flexibility comes great benefits

including a better fit to data, a higher predictive

performance, and the ability to decouple the drivers of

species occurrence and biomass patterns from obser-

vational data. In addition to these statistical findings,

our model identified under-appreciated differences

between the factors that promote species presence and

the factors that promote higher biomass of individual

species, with clear differences between diatoms and

dinoflagellates.
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