
Original Article

Hierarchical genetic structuring in the cool boreal kelp,
Laminaria digitata: implications for conservation
and management

Nathan G. King 1*, Niall J. McKeown 2, Dan A. Smale3, Sunny Bradbury2, Thomas Stamp4,
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genetic structuring in the cool boreal kelp, Laminaria digitata: implications for conservation and management. – ICES Journal of
Marine Science, 77: 1906–1913.

Received 21 January 2020; revised 11 March 2020; accepted 11 March 2020; advance access publication 27 May 2020.

Kelp are foundation species threatened by ongoing warming trends and increased harvesting pressure. This emphasizes the need to study ge-
netic structure over various spatial scales to resolve demographic and genetic processes underpinning resilience. Here, we investigate the ge-
netic diversity in the kelp, Laminaria digitata, in previously understudied southern (trailing-edge) and northern (range-centre) regions in the
Northeastern Atlantic Ocean. There was strong hierarchical spatial structuring with significantly lower genetic variability and gene flow
among southern populations. As these span the area of the Hurd’s deep Pleistocene glacial refuge, the current low variation likely reflects a
fraction of previous levels that has been eroded at the species southern edge. Northern variability and private alleles also indicate contribu-
tions from cryptic northern glacial refugia. Contrary to expectations of a positive relationship between neutral genetic diversity and resilience,
a previous study reported individuals from the same genetically impoverished southern populations to be better adapted to cope with ther-
mal stress than northern individuals. This not only demonstrates that neutral genetic diversity may be a poor indicator of resilience to envi-
ronmental stress but also confirms that extirpation of southern populations will result in the loss of evolved, not just potential, adaptations
for resilience.
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Introduction
Kelp are foundation species that form extensive forests along

rocky coastlines in temperate and Arctic regions (Steneck et al.,

2002; Smale et al., 2013; Teagle et al., 2017). These forests rank

among the world’s most diverse and productive ecosystems

(Steneck et al., 2002; Smale et al., 2013) and deliver a range of

ecosystem goods and services to human society (e.g. commercial

fisheries, biogenic coastal defence) (Beaumont et al., 2008).

Moreover, their role in coastal nutrient cycling, for example

as “Blue Carbon” donors, is increasingly gaining attention
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(Krause-Jensen and Duarte, 2016). Kelp distributions are strongly

constrained by temperature (Eggert, 2012), making them sensitive

to ongoing warming trends (Smale, 2020). Superimposed on

broad-scale climatic changes is a range of other local human

impacts (e.g. direct exploitation and eutrophication) that can also

drive population loss (Krumhansl et al., 2016). Given the funda-

mental role that kelp play in underpinning the wider ecosystem,

understanding the demographic processes and mechanisms of

ecological resilience to ongoing threats will be fundamental for

management and conservation.

Resolution of intraspecific genetic structure is a powerful way

to understand the responses of species and populations to histori-

cal, current, and future environmental changes. Genetic studies of

kelp populations have provided insights into the roles of life his-

tory, geographical distance, and other seascape factors in shaping

contemporary connectivity patterns (Durrant et al., 2014;

Durrant et al., 2018), which may influence local adaptation and

resilience in various ways (Heino et al., 1997; Almany et al.,

2009). Studies over wider geographical areas have also revealed

pronounced signatures of historical contractions and expansion

events associated with the Pleistocene glaciations (2.6 Ma to

12 ka) (Pielou, 1991; Webb and Bartlein, 1992; Hewitt, 1999).

These cycles have resulted in former glacial refugial areas, typi-

cally at low-latitude range edges, often accumulating high levels

of endemic genetic diversity, with decreasing diversity towards

leading edges of postglacial colonization routes (Hewitt, 2004).

This means that the bulk of species’ genetic diversity often lies at

its trailing edge, where populations are generally under the great-

est threat from contemporary warming (Diez et al., 2012;

Nicastro et al., 2013; Wernberg et al., 2013). The loss of endemic

or unique genetic lineages represents a species level loss of evolu-

tionary potential and, over shorter timescales, can reduce the

physiological versatility and ecological resilience of kelp forest

populations (Wernberg et al., 2018). Clearly, there is a pressing

need to study genetic variation and its drivers, across broad spa-

tial scales and within both trailing-edge and range-centre popula-

tions, to inform the conservation and management of kelp

populations and the ecosystems they underpin (Almany et al.,

2009; Coleman et al., 2017).

Laminaria digitata is a boreal kelp with a transatlantic distribu-

tion. In the Northeastern (NE) Atlantic, it is distributed from the

Arctic to the English Channel where it is threatened by ongoing

and predicted warming trends (Raybaud et al., 2013; Assis et al.,

2018a; Hereward et al., 2020). As the English Channel has been

identified as an important glacial refuge for several macroalgal

species (Provan et al., 2005; Provan and Maggs, 2012), trailing-

edge population loss may have serious genetic consequences for

the wider gene pool of L. digitata (Assis et al., 2018a). To date,

most genetic studies of L. digitata have been limited to French

trailing-edge populations (but see Brennan et al., 2014) where sig-

nificant structuring (Billot et al., 2003; Robuchon et al., 2014)

compatible with its limited dispersal potential (Valero et al.,

2011) has been reported. However, there have been no attempts

to resolve the patterns of genetic diversity over broader spatial

scales that encompass northern populations. This means that the

relative importance of loss of southern populations for overall ge-

netic diversity of L. digitata is still unknown. Here, we examined

and compared genetic variation from northern and southern

regions representing L. digitata’s contemporary range centre and

trailing edge in the NE Atlantic. We employed a similar hierarchi-

cal sampling strategy to Robuchon et al. (2014) with overlapping

marker sets and integrated data from both studies, which allowed

us to explicitly compare southern populations in both the UK

and French waters. As some of the sampled populations were also

used in a previous common garden thermal stress response exper-

iment (King et al., 2019), we were able to directly explore the rela-

tionship between neutral genetic variation, population

demographics, and empirical resilience characteristics.

Material and methods
Study design
Sampling followed a hierarchical design based on a total of four

established study regions in the United Kingdom (Smale et al.,

2016; Figure 1). These consisted of two northern (N1 and N2)

and two southern (S1 and S2) regions, representing L. digitata’s

contemporary core range centre (N1 and N2) and peripheral

trailing edge (S1 and S2). Within each of these four regions three

sites were selected at least 10 km from one another (Figure 1). A

sample was also collected from a single geographical outlier site

in Norway. At each site, 30 individuals were haphazardly sampled

from intertidal rocky reef habitats during periods of low tide

emersion. Mature, healthy-looking, sporophytes located at least

5 m apart from one another were sampled by excising fresh tissue

from directly above the meristem. Samples were dried in individ-

ual 1.5-ml tubes with silica drying crystals until DNA extraction.

DNA extraction and PCR conditions
Genomic DNA was isolated from 5 to 10 mg of dried tissue and

ground to a fine powder using a ball mill. Five hundred micro-

litres of extraction buffer (100 mM Tris, 25 mM EDTA, 1.4 M

NaCl, 1% PVP, and 2% CTAB, pH 8) was added, vortexed, and

left at room temperature (RT) for 10 min. RNA was digested by

adding 2 ll of RNAse A (10 mg/ml) to the solution and incubat-

ing at 55�C for 1 hr. Total DNA was extracted by chloroform ex-

traction, 500 ll of chloroform:isoamyl alcohol (24:1, v/v) was

added, vortexed vigorously, and centrifuged at 14 000g for

10 min, and the upper aqueous layer was transferred to a new

tube. DNA was precipitated out with 30 ll of ammonium acetate

and 200 ll of isopropanol at �20�C for 30 min. Samples were

centrifuged at 14 000g for 10 min at RT. Two EtoH washes were

performed at 70 and 95%, and pellets were recollected at 14 000g

for 10 min at RT. Pellets were air dried for 1 hr and then resus-

pended in 50 ll of DEPC-treated water. Twelve microsatellite

markers previously developed for L. digitata (Ld148, Ld158,

Ld167, Ld371, Ld531, and Ld704) and Laminaria ochroleuca

(Lo4-24, Lo454-17, Lo454-23, Lo454-24, Lo454-27, and Lo454-

28) were used (Robuchon et al., 2014). Microsatellites were am-

plified by individual PCR in 10 ll of final volumes containing 1�
GoTaq Flexi colourless reaction buffer, 2 mM MgCl2, 150 lm

dNTPs, 0.35 U GoTaq DNA polymerase (Promega), and 2 ll tem-

plate (1:50 dilution) following the protocol of Robuchon et al.

(2014). Amplicon fragment size was analysed on an ABI PRISM

377 automated DNA sequencer (Applied Biosystems), and alleles

were scored manually using PEAKSCANNER 1.0.

Statistical analysis of microsatellite data
Measuring genetic structure
Genotype frequency conformance to Hardy–Weinberg expecta-

tions (HWE) and genotypic linkage equilibrium between pairs of

loci were tested using exact tests (10 000 batches, 5000 iterations)

in GENEPOP 3.3 (Rousset, 2008).
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Genetic structure was investigated using the Bayesian clustering

method implemented in the programme STRUCTURE (Pritchard

et al., 2000) to identify the most probable number of genetic clus-

ters (K) (from a range of 1–13) within the data. The analysis was

performed both with and without prior sample information (as

recommended by Hubisz et al., 2009) and with multiple parame-

ter permutations (admixture and correlated allele frequencies, as

recommended by Pritchard et al., 2000). Each run consisted of a

burn-in of 106 steps followed by 5� 106 steps with three runs per-

formed for each K model tested. Optimal models were assessed

using DK (Evanno et al., 2005) and visual inspection of

STRUCTURE bar plots. Genetic differentiation among samples

was quantified using global and pairwise FST values with signifi-

cance assessed with P values following 10 000 permutations in

FSTAT (Goudet, 1995). FST values were also estimated using the

null allele correction method in FreeNA (Chapuis and Estoup,

2007). Pairwise FST matrices were visualized using the principal

coordinate analysis in GENALEX 6.2 (Peakall and Smouse, 2006).

Mantel tests, implemented in GENALEX, were used to test for iso-

lation by distance using the correlation between pairwise FST and

geographical (shortest sea distances) distances between sample

sites. Geographical distances were estimated by direct shipping

distance between sites using NETPAS DISTANCCE 2.0 (Seafuture

Inc.). Hierarchical Analysis of Molecular Variance (AMOVA;

Excoffier et al., 1992) was performed in ARLEQUIN (Excoffier

and Lischer, 2010) to partition genetic variance among groups of

samples (FCT) and among samples within groups (FSC) with sig-

nificances determined with 1000 permutations.

Measuring genetic variation
Genetic variation within samples was characterized using the

number of alleles (Na), allelic richness (Ar), observed heterozygos-

ity (HO), and expected heterozygosity (HE), all calculated using

GENALEX. Following Assis et al. (2018b), the number of private

alleles was used as a measure of endemism and calculated in

GENALEX. Randomization procedures in FSTAT were used to

detect significant differences in heterozygosity, Ar, FIS, FST, and

relatedness (r) among user-defined groups of samples following

10 000 permutations. For comparisons integrating data from

Robuchon et al. (2014), locus Lo454-27, not genotyped in that

study, was omitted.

Results
Genetic structure
The total number of alleles per locus ranged from 4 (lo454-27) to

27 (LD-167) with an average of 13. Global tests revealed no sig-

nificant linkage disequilibrium between any pair of loci except

Lo454-17 and Lo454-28 (P¼ 0.0003). However, inspection of in-

dividual samples revealed significant disequilibrium tests’ results

between this locus pair at only three sites (N1-B, N2-C, and S1-

A). Exclusion of any one of these samples resulted in a non-

significant global disequilibrium test result. All loci were therefore

considered independent and retained in downstream analyses.

Locus (n¼ 12) � sample (n¼ 13) tests of conformance to

Hardy–Weinberg expectations revealed significant deviations in

53 of 156 tests, in all cases due to heterozygote deficits. These

deviations were not associated with particular site–locus combi-

nations. Excluding S2-A, which reported significant heterozygote

deficit at only one locus, each site exhibited heterozygote deficits

at an average of 4.5 loci, while each locus reported deficits at an

average of 4.4 sites. Accordingly, all but two sites displayed highly

significant positive FIS values (Table 1).

Bayesian clustering analysis in STRUCTURE revealed a nearly

identical pattern of hierarchical differentiation irrespective of the

parameters employed. At K¼ 3, the best supported model indi-

cated that the Norwegian sample was differentiated from the

Northern samples (i.e. 3 groups ¼ Norway; N1þN2; and

S1þ S2) (Figure 2). Subdivision at K¼ 4 differentiated N1 and

N2 regions, while at K¼ 5, S1 and S2 were clearly partitioned.

Analysis of larger K values showed no additional groupings.

FST-based analyses supported these results and provided further

resolution by revealing significant differentiation among sites within

Figure 1. Sampling sites for Laminaria digitata. Extent rectangles represent corresponding study region.
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each of the four regions (S2: FST ¼ 0.13; P< 0.001; S1: FST ¼ 0.032,

P¼ 0.001; N2: FST ¼ 0.023, P¼ 0.003; N1: FST ¼ 0.032, P¼ 0.001).

Across all samples, FST was 0.174 (P< 0.0001), all pairwise FST val-

ues were significant (Table 2), and there was a significant correla-

tion between pairwise FST and geographical distance (Figure 3). In

line with the STRUCTURE results at K¼ 2 pairwise, FST supported

the strong differentiation of the Southern (S1þ 2) from Northern

(N1þ 2) region and Norway sample (Figure 4). The results were al-

most identical after null allele correction. AMOVA grouping sam-

ples according to Southern or Northern region revealed a higher

level of differentiation between these groups (FCT ¼ 0.114) than

within groups (FSC ¼ 0.093). AMOVA for regions separately sup-

ported a higher level of differentiation between regions and among

sites within regions for the Southern region (FCT ¼ 0.09,

P< 0.0001; FSC ¼ 0.08, P< 0.0001) compared to the Northern re-

gion (FCT ¼ �0.01, P¼ 0.932; FSC ¼ 0.06, P< 0.0001).

Permutation analysis also revealed the overall FST for the Southern

region (FST ¼ 0.131) to be significantly higher (P< 0.01) than that

for the Northern region (FST excluding N1¼ 0.056).

Genetic diversity
Applying the same group-based permutation analysis also

revealed that the Southern samples had significantly lower levels

of within-sample variation compared to the Northern samples as

measured by allelic richness (S¼ 2.8, N¼ 4.2, P¼ 0.003), ob-

served heterozygosity (S¼ 0.39, N¼ 0.51, P¼ 0.009), and related-

ness (S¼ 0.212, N¼ 0.09, P< 0.001). This trend was also

apparent when samples were analysed separately, with a clear de-

cline in variability reported by indices of diversity moving down

from the Northern to Southern region (Table 1 and Figure 5).

The Norwegian sample disrupted this inverse latitudinal cline,

most obviously in the level of mean intrasample relatedness

(Figure 5 and Supplementary Figure S1), compared to the

Northern samples. The highest number of private alleles was

Table 1. Summary information for individual sites including sample sizes (N), mean allele number (Na), allelic richness (Ar), observed and
expected heterozygosities (HO and HE, respectively), and multilocus FIS values.

Region and private alleles (Pa) Site Code N Na Ar HO HE FIS

Norway (Pa ¼ 13) Ness Nor 30 4.50 3.33 0.39 0.49 0.205*
UK N 1 (Pa ¼ 20) Birsay A 23 6.33 4.50 0.47 0.66 0.291*

Bay of Skail B 25 6.17 4.57 0.64 0.69 0.065*
Warbeth C 17 4.83 4.07 0.50 0.64 0.227*

UK N 2 (Pa ¼ 16) Ganovan A 24 5.25 3.97 0.47 0.54 0.246*
Easdale B 25 6.25 4.37 0.52 0.61 0.154*
Luing C 17 5 4.00 0.37 0.49 0.316*

UK S 1 (Pa ¼ 8) Abereiddy A 29 4.42 3.13 0.43 0.50 0.136*
Martin’s Haven B 29 3.67 2.75 0.39 0.44 0.116*
Dale C 20 3.83 3.08 0.44 0.48 0.084

UK S 2 (Pa ¼ 17) Trevone A 27 3.08 2.34 0.31 0.38 0.169*
Saint Mawes B 17 3.92 3.23 0.42 0.49 0.168*
Plymouth C 30 4.25 2.83 0.39 0.42 0.017

Reported are regional grouping of sites and the total number of private alleles (Pa) per group.
*Significant deviation from random mating expectations.

Figure 2. Genetic subdivision of Laminaria digitata based on STRUCTURE analysis. K1–13 were explored, and K3 and K5 represent the two
most likely number of clusters based on DK outlier identification.

Figure 3. Mantel tests result showing significant (P< 0.001)
correlation between geographical distance (km) and genetic
distance (FST) between pairs of samples.

Genetic structuring in L. digitata 1909

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/5/1906/5847977 by guest on 13 Septem
ber 2021

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa055#supplementary-data


detected for the N1 region. Interestingly, S2, despite showing the

lowest levels of variation, revealed a larger number of private

alleles than either S1 or N2 (Table 1).

Comparison with data from Robuchon et al. (2014) revealed

within-sample variation to be lower among populations in France

than among Northern populations (N1 and N2 grouped) when

quantified using allelic richness (France Ar ¼ 4.4; Northern Ar ¼
6.7; P¼ 0.02) and relatedness (France r¼ 0.176; Northern

r¼ 0.051; P< 0.001), while intersample differentiation was

greater in France than in our Northern region (France FST ¼
0.103; Northern FST ¼ 0.03; P¼ 0.001). FIS was significantly

larger in the Northern region than in France (France FIS ¼ 0.069;

Northern FIS ¼ 0.224; P¼ 0.001). French samples did not differ

significantly from samples from our Southern region (S1 and S2

grouped) for any these variables.

Discussion
Genetic studies on L. digitata have largely been restricted to south-

ern, trailing-edge populations found towards the equatorward ex-

treme of its distribution. Although a previous study (Brennan

et al., 2014) analysed local gene flow patterns around Lough

Neagh (Northern Ireland, UK), our study is the first to assess this

species’ genetic structure at multiple spatial scales and across both

southern trailing-edge and northern range-centre populations.

The data revealed a hierarchical structure including features such

as a macrogeographic correlation between genetic and geographi-

cal distances, and fine-scale differentiation, similarly reported in

studies of French populations (Billot et al., 2003; Robuchon et al.,

2014). A key finding was less variation within, and greater differ-

entiation among, southern populations compared to those in the

north. This pattern was consistent after the integration of data

from Robuchon et al. (2014), which revealed variation in northern

France to be similar to our southern UK populations.

Equatorward trailing-edge populations of poleward shifting

species have been highlighted as of special conservation signifi-

cance as many occur within low-latitude areas that were formerly

glacial refugia. This means that they often harbour a large pro-

portion of a species’ genetic variation and/or unique lineages

(Provan and Maggs, 2012). In this context, the low genetic vari-

ability in trailing-edge L. digitata populations on both UK and

French coastlines is striking as these areas flank the well-known

Hurd deep glacial refuge. Phylogeographic studies have shown

this to be a reservoir of relic variation for a number of macro-

phytes (Coyer et al., 2003; Provan et al., 2005; Hoarau et al.,

2007). It is likely this area played a similar role for L. digitata as

the considerably larger number of private alleles among S2 popu-

lations, compared to the more northern S1 populations, is com-

patible with a glacial refuge in the English Channel area.

Robuchon et al. (2014) reported similar decreases in the number

of private alleles in samples moving away from the English

Channel towards the absolute range edge of L. digitata in south-

ern Brittany. In light of this and expectations of refugial richness,

the present low diversity must be considered a reduction from

historically higher levels. This reduction is most likely due to in-

creased drift from a combination of low-quality habitat, lower ef-

fective population size, and greater isolation associated with

persistence at the trailing edge (Eckert et al., 2008).

There have been few studies investigating the phylogeography of

Arctic and cold-temperate seaweeds. Most inferences of glacial re-

fugia have been inferred from species with warm-water affinities

that penetrate into waters that remained ice-free during glacial

maxima. For L. digitata, the higher levels of variation and private

allele numbers for Northern vs. Southern regions and within N1

vs. N2 are compatible with a northern glacial refuge and are con-

trary to expectations of sequential founder effect patterns during

colonization from a southern refuge. Assis et al. (2018a) generated

hind-casted models of suitable areas for persistence during glacial

maxima for North Atlantic kelp. For L. digitata, and cold-

temperate and Arctic kelp more generally, the Faroe Islands and

southern Iceland were identified as potential northern refugia. This

is supported by phylogeographic studies on the arctic intertidal fu-

coid, Fucus distichus (Coyer et al., 2011; Neiva et al., 2016) and

Figure 4. Principal coordinate analysis of pairwise FST values.

Table 2. Pairwise FST values between samples (below diagonal) with associated P values of significance estimated after 10 000 permutations
(upper diagonal).

x1 Nor N1-A N1-B N1-C N2-A N2-B N2-C S1-A S1-B S1-C S2-A S2-B S2-C

Nor – 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
N1-A 0.104 – 0.005 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
N1-B 0.089 0.024 – 0.015 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
N1-C 0.111 0.038 0.025 – 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
N2-A 0.111 0.057 0.052 0.057 – 0.038 0.001 0.001 0.001 0.001 0.001 0.001 0.001
N2-B 0.106 0.048 0.048 0.043 0.022 – 0.001 0.001 0.001 0.001 0.001 0.001 0.001
N2-C 0.147 0.079 0.076 0.078 0.050 0.038 – 0.001 0.001 0.001 0.001 0.001 0.001
S1-A 0.162 0.102 0.089 0.076 0.078 0.076 0.116 – 0.002 0.001 0.001 0.001 0.001
S1-B 0.210 0.144 0.121 0.104 0.098 0.109 0.151 0.030 – 0.035 0.001 0.001 0.001
S1-C 0.207 0.130 0.110 0.093 0.096 00.098 0.132 0.031 0.021 – 0.001 0.001 0.001
S2-A 0.272 0.186 0.171 0.174 0.157 0.181 0.203 0.116 0.120 0.110 – 0.001 0.001
S2-B 0.206 0.119 0.105 0.101 0.088 0.099 0.126 0.054 0.068 0.052 0.095 – 0.001
S2-C 0.208 0.135 0.124 0.137 0.119 0.136 0.127 0.094 0.132 0.112 0.075 0.076 –
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studies on plants, birds, and marine invertebrates (Aegisdóttir and

Thórhallsdóttir, 2004; Maggs et al., 2008; Ingólfsson, 2009).

However, to confirm the location, number, and contribution of

northern glacial refugia for L. digitata, further range-wide sampling

is required. This will also allow a greater understanding of pan

Atlantic recolonization pathways as L. digitata may also have sur-

vived in southern glacial refugia in the NW Atlantic (Assis et al.,

2018a; Bringloe and Saunders, 2018).

Our study reported a significant correlation between genetic

separation and geographic distances across a broad spatial scale,

as has been observed in previous smaller-scale studies of L. digi-

tata (Billot et al., 2003; Brennan et al., 2014; Robuchon et al.,

2014) and other macrophytes (Durrant et al., 2014). However,

this pattern does not necessarily indicate a direct link between re-

current connectivity and geographical distance per se for two

main reasons. First, genetic structure may reflect historical rather

than contemporary connectivity patterns, as has been demon-

strated for European populations of the kelp Saccharina latissima

(Luttikhuizen et al., 2018). Second, correlations with geographical

distance may be detected despite more important contributions

of other seascape factors. For example, Durrant et al. (2018)

reported a more important role of habitat availability than geo-

graphical distance despite a significant correlation between geo-

graphical and genetic distances. Similar seascape effects could

explain the larger genetic differences between Southern and

Northern regions, separated by an area of interrupted rocky sub-

stratum, compared to N1 vs. N2 despite the similar intervening

geographical distances. This regional genetic differentiation may

also reflect restricted secondary contact between populations em-

anating from southern and northern glacial refugia, as suggested

by Hoarau et al. (2007).

With the exception of S2-A, all samples reported significant het-

erozygote deficits (positive FIS values). This differs from the gen-

eral conformance to Hardy–Weinberg proportions in French

populations (Billot et al., 2003; Robuchon et al., 2014). Technical

artefacts such as null alleles can be discounted as the same loci as

Robuchon et al. (2014) were employed. The detection of similar

heterozygotes in the Lough Neagh based study by Brennan et al.

(2014) points to biological drivers of the observed patterns. Such

biological drivers can include selection, inbreeding, and

Wahlund’s effect. Selection effects at multiple loci are unlikely as

microsatellites are typically selectively neutral. Inbreeding has been

detected in small kelp populations (Luttikhuizen et al., 2018) but

can be ruled out in the case of the Northern samples, given that lev-

els of relatedness were similar to expectations of a panmictic popu-

lation. Wahlund’s effect is commonly reported explanation for

heterozygote deficits. This occurs where a sample comprises indi-

viduals from more than one genetically differentiated group. In

this case, Wahlund’s effect could be due to any combination of

fine-scale population subdivision (Jorde et al., 2018), temporal dif-

ferences among cohorts (McKeown et al., 2017), or sampling of

multiple kin groups (Castric and Bernatchez, 2003). Disentangling

the exact type will require the fine-scale analysis of cohort and geo-

referenced individuals. However, the low dispersal capacity of sea-

weeds in general (Santelices, 1990) and the density barrier effects

of infrequent dispersal into saturated systems (Neiva et al., 2012;

Waters et al., 2013) would be expected to restrict mixing and in-

crease variances in reproductive success contributing to spatial/

temporal Wahlund’s effects. It seems the respective roles of in-

breeding and Wahlund’s effect likely vary throughout L. digitata’s

range but further study will be needed to assess if these are linked

to regional differences in the species’ reproductive ecology or envi-

ronmental (e.g. seascape) effects.

The positive relationship between genetic diversity and popu-

lation resilience is conceptually well understood, but empirical

data exploring this link are lacking for non-model species

(Reusch, 2003; Hughes and Stachowicz, 2004). Here, we explore

the link between neutral genetic diversity and resilience character-

istics, as the same sites analysed here were included in the com-

mon garden temperature experiments by King et al. (2019). King

et al. (2019) demonstrated that individuals in northern popula-

tions, identified here as being more genetically variable, were less

able to tolerate thermal insults than individuals in southern pop-

ulations, which were less diverse. This contrasts with the results

of Wernberg et al. (2018) who found a positive relationship be-

tween resilience to climatic stress (heatwaves) and intra-

population genetic variation. An important difference between

both systems is that for L. digitata there may be a higher level of

pre-existing local adaptation to thermal regimes (King et al.,

2018, 2019; Wernberg et al., 2018) associated with the strong se-

lection at trailing-edge populations (Kawecki, 2008). Such adap-

tive selection is undetected by neutral markers. Therefore, levels

of neutral genetic diversity per se may be a poor predictor of resil-

ience to thermal stress in this system as neutral genetic diversity

Figure 5. Mean (6 1 SE): (a) allelic richness and (b) expected heterozygosity for sampled Laminaria digitate sites.
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may be misaligned with spatial patterns of local adaptation that

are more important factors underpinning such resilience.

Cool-water kelps have been under-represented in phylogeo-

graphic studies to date. This study offers insight into how cool-

water kelps may have persisted in disjunct glacial refugia during

glacial maxima. In the NE Atlantic, much of L. digitata’s southern

extent is predicted to disappear over the coming decades (Raybaud

et al., 2013; Assis et al., 2018a). This study indicates that consider-

able ancestral genetic variation has likely already been lost at the

trailing edge. While the conservation value of such trailing-edge

populations is debated, in the case of L. digitata, it is indisputable,

as these populations harbour advantageous adaptations for climate

change resilience. There is also increased interest in expanding

commercial exploitation of L. digitata throughout its distribution.

The fine-scale differentiation reported here demonstrates that

management of harvested populations must be on a local scale to

ensure sustainability. In light of coarse patterns of neutral genetic

structure and local adaptation resolved here and by King et al.

(2019), species-wide and more local conservation and manage-

ment plans would benefit from a seascape genomics approach to

disentangle the respective influences of demographics, adaptation,

and plasticity on individual- and population-level fitness.
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G., and Provan, J. 2014. Understanding macroalgal dispersal in a

complex hydrodynamic environment: a combined population ge-
netic and physical modelling approach. Journal of the Royal
Society Interface, 11:20140197.

Bringloe, T. T., and Saunders, G. W. 2018. Mitochondrial DNA se-
quence data reveal the origins of postglacial marine macroalgal
flora in the Northwest Atlantic. Marine Ecology Progress Series,
589: 45–58.

Castric, V., and Bernatchez, L. 2003. The rise and fall of isolation by
distance in the anadromous brook charr (Salvelinus fontinalis
Mitchill). Genetics, 163: 983–996.

Chapuis, M. P., and Estoup, A. 2007. Microsatellite null alleles and
estimation of population differentiation. Molecular Biology and
Evolution, 24: 621–631.

Coleman, M. A., Cetina-Heredia, P., Roughan, M., Feng, M., Sebille,
E., and Kelaher, B. P. 2017. Anticipating changes to future con-
nectivity within a network of marine protected areas. Global
Change Biology, 23: 3533–3542.

Coyer, J. A., Hoarau, G., Van Schaik, J., Luijckx, P., and Olsen, J. L.
2011. Trans-Pacific and trans-Arctic pathways of the intertidal
macroalga Fucus distichus L. reveal multiple glacial refugia and
colonizations from the North Pacific to the North Atlantic.
Journal of Biogeography, 38: 756–771.

Coyer, J. A., Peters, A. F., Stam, W. T., and Olsen, J. L. 2003. Post-ice
age recolonization and differentiation of Fucus serratus L.
(Phaeophyceae; Fucaceae) populations in Northern Europe.
Molecular Ecology, 12: 1817–1829.

Diez, I., Muguerza, N., Santolaria, A., Ganzedo, U., and Gorostiaga, J.
M. 2012. Seaweed assemblage changes in the eastern Cantabrian
Sea and their potential relationship to climate change. Estuarine
Coastal and Shelf Science, 99: 108–120.

Durrant, H. M. S., Barrett, N. S., Edgar, G. J., Coleman, M. A., and
Burridge, C. P. 2018. Seascape habitat patchiness and hydrody-
namics explain genetic structuring of kelp populations. Marine
Ecology Progress Series, 587: 81–92.

Durrant, H. M. S., Burridge, C. P., Kelaher, B. P., Barrett, N. S.,
Edgar, G. J., and Coleman, M. A. 2014. Implications of macroalgal
isolation by distance for networks of marine protected areas.
Conservation Biology, 28: 438–445.

Eckert, C. G., Samis, K. E., and Lougheed, S. C. 2008. Genetic varia-
tion across species’ geographical ranges: the central-marginal hy-
pothesis and beyond. Molecular Ecology, 17: 1170–1188.

Eggert, A. 2012. Seaweed responses to temperature. In Seaweed
Biology, pp. 47–66. Ed. By C. Wiencke, and K. Kischof. Springer,
Berlin, Germany.

Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number
of clusters of individuals using the software STRUCTURE: a sim-
ulation study. Molecular Ecology, 14: 2611–2620.

Excoffier, L., and Lischer, H. E. L. 2010. Arlequin suite ver 3.5: a new
series of programs to perform population genetics analyses under
Linux and Windows. Molecular Ecology Resources, 10: 564–567.

Excoffier, L., Smouse, P. E., and Quattro, J. M. 1992. Analysis of mo-
lecular variance inferred from metric distances among DNA hap-
lotypes - application to human mitochondrial-DNA restriction
data. Genetics, 131: 479–491.

Goudet, J. 1995. FSTAT (Version 1.2): a computer program to calcu-
late F-statistics. Journal of Heredity, 86: 485–486.

Heino, M., Kaitala, V., Ranta, E., and Lindstrom, J. 1997.
Synchronous dynamics and rates of extinction in spatially struc-
tured populations. Proceedings of the Royal Society B: Biological
Sciences, 264: 481–486.

Hereward, H. F. R., King, N. G., and Smale, D. A. 2020. Intra-annual
variability in responses of a canopy forming kelp to cumulative
low tide heat stress: implications for populations at the trailing
edge. Journal of Phycology, 56: 146–158.

Hewitt, G. M. 1999. Post-glacial recolonisation of European biota.
Biological Journal of the Linnean Society, 68: 87–112.

1912 N. G. King et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/5/1906/5847977 by guest on 13 Septem
ber 2021

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaa055#supplementary-data


Hewitt, G. M. 2004. Genetic consequences of climatic oscillations in
the Quaternary. Philosophical Transactions of the Royal Society
of London Series B: Biological Sciences, 359: 183–195.

Hoarau, G., Coyer, J. A., Veldsink, J. H., Stam, W. T., and Olsen, J. L.
2007. Glacial refugia and recolonization pathways in the brown
seaweed Fucus serratus. Molecular Ecology, 16: 3606–3616.

Hubisz, M. J., Falush, D., Stephens, M., and Pritchard, J. K. 2009.
Inferring weak population structure with the assistance of sample
group information. Molecular Ecology Resources, 9: 1322–1332.

Hughes, A. R., and Stachowicz, J. J. 2004. Genetic diversity enhances
the resistance of a seagrass ecosystem to disturbance. Proceedings
of the National Academy of Sciences of the United States of
America, 101: 8998–9002.

Ingólfsson, A. 2009. A marine refugium in Iceland during the last gla-
cial maximum: fact or fiction? Zoologica Scripta, 38: 663–665.

Jorde, P. E., Andersson, A., Ryman, N., and Laikre, L. 2018. Are we
underestimating the occurrence of sympatric populations?
Molecular Ecology, 27: 4011–4025.

Kawecki, T. J. 2008. Adaptation to marginal habitats. Annual Review
of Ecology, Evolution, and Systematics, 39: 321–342.

King, N. G., McKeown, N. J., Smale, D. A., and Moore, P. J. 2018.
The importance of phenotypic plasticity and local adaptation in
driving intraspecific variability in thermal niches of marine mac-
rophytes. Ecography, 41: 1469–1484.

King, N. G., McKeown, N. J., Smale, D. A., Wilcockson, D. C.,
Hoelters, L., Groves, E. A., Stamp, T., et al. 2019. Evidence for dif-
ferent thermal ecotypes in range centre and trailing edge kelp
populations. Journal of Experimental Marine Biology and
Ecology, 514–515: 10–17.

Krause-Jensen, D., and Duarte, C. M. 2016. Substantial role of macroal-
gae in marine carbon sequestration. Nature Geoscience, 9: 737–742.

Krumhansl, K. A., Okamoto, D. K., Rassweiler, A., Novak, M.,
Bolton, J. J., Cavanaugh, K. C., Connell, S. D., et al. 2016. Global
patterns of kelp forest change over the past half-century.
Proceedings of the National Academy of Sciences of the United
States of America, 113: 13785–13790.

Luttikhuizen, P. C., van den Heuvel, F. H. M., Rebours, C., Witte, H.
J., van Bleijswijk, J. D. L., and Timmermans, K. 2018. Strong pop-
ulation structure but no equilibrium yet: genetic connectivity and
phylogeography in the kelp Saccharina latissima (Laminariales,
Phaeophyta). Ecology and Evolution, 8: 4265–4277.

Maggs, C. A., Castilho, R., Foltz, D., Henzler, C., Jolly, M. T., Kelly,
J., Olsen, J., et al. 2008. Evaluating signatures of glacial refugia for
north Atlantic benthic marine taxa. Ecology, 89: S108–S122.

McKeown, N. J., Hauser, L., and Shaw, P. W. 2017. Microsatellite
genotyping of brown crab Cancer pagurus reveals fine scale selec-
tion and ‘non-chaotic’ genetic patchiness within a high gene flow
system. Marine Ecology Progress Series, 566: 91–103.

Neiva, J., Pearson, G. A., Valero, M., and Serrao, E. A. 2012.
Fine-scale genetic breaks driven by historical range dynamics and
ongoing density-barrier effects in the estuarine seaweed Fucus
ceranoides. BMC Evolutionary Biology, 12: 78.

Neiva, J., Serr~ao, E. A., Assis, J., Pearson, G. A., Coyer, J. A., Olsen, J.
L., Hoarau, G., et al. 2016. Climate Oscillations, Range Shifts and
Phylogeographic Patterns of North Atlantic Fucaceae . In Seaweed
Phylogeography, pp. 279–308. Ed. By ZM. Hu and C. Fraser.
Springer, Dordrecht.

Nicastro, K. R., Zardi, G. I., Teixeira, S., Neiva, J., Serrao, E. A., and
Pearson, G. A. 2013. Shift happens: trailing edge contraction associ-
ated with recent warming trends threatens a distinct genetic lineage
in the marine macroalga Fucus vesiculosus. BMC Biology, 11: 6.

Peakall, R., and Smouse, P. E. 2006. GENALEX 6: genetic analysis in
Excel. Population genetic software for teaching and research.
Molecular Ecology Notes, 6: 288–295.

Pielou, E. C. 1991. After the Ice Age: the return of life to glaciated
North America. University of Chicago Press, Chicago, IL, USA

Pritchard, J. K., Stephens, M., and Donnelly, P. 2000. Inference of
population structure using multilocus genotype data. Genetics,
155: 945–959.

Provan, J., and Maggs, C. A. 2012. Unique genetic variation at a spe-
cies’ rear edge is under threat from global climate change.
Proceedings of the Royal Society B: Biological Sciences, 279:
39–47.

Provan, J., Wattier, R. A., and Maggs, C. A. 2005. Phylogeographic
analysis of the red seaweed Palmaria palmata reveals a Pleistocene
marine glacial refugium in the English Channel. Molecular
Ecology, 14: 793–803.

Raybaud, V., Beaugrand, G., Goberville, E., Delebecq, G., Destombe,
C., Valero, M., Davoult, D., et al. 2013. Decline in kelp in west
Europe and climate. PLoS One, 8: e66044.

Reusch, T. B. H. 2003. Floral neighbourhoods in the sea: how floral
density, opportunity for outcrossing and population fragmenta-
tion affect seed set in Zostera marina. Journal of Ecology, 91:
610–615.

Robuchon, M., Le Gall, L., Mauger, S., and Valero, M. 2014.
Contrasting genetic diversity patterns in two sister kelp species
co-distributed along the coast of Brittany, France. Molecular
Ecology, 23: 2669–2685.

Rousset, F. 2008. GENEPOP ‘007: a complete re-implementation of
the GENEPOP software for Windows and Linux. Molecular
Ecology Resources, 8: 103–106.

Santelices, B. 1990. Patterns of reproduction, dispersal and recruit-
ment in seaweeds. Oceanography and Marine Biology: An Annual
Review, 28: 177276.

Smale, D. A. 2020. Impacts of ocean warming on kelp forest ecosys-
tems. New Phytologist, 225: 1447–1454.

Smale, D. A., Burrows, M. T., Evans, A. J., King, N., Sayer, M. D. J.,
Yunnie, A. L. E., and Moore, P. J. 2016. Linking environmental
variables with regional-scale variability in ecological structure and
standing stock of carbon within UK kelp forests. Marine Ecology
Progress Series, 542: 79–95.

Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N., and
Hawkins, S. J. 2013. Threats and knowledge gaps for ecosystem
services provided by kelp forests: a northeast Atlantic perspective.
Ecology and Evolution, 3: 4016–4038.

Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson,
J. M., Estes, J. A., and Tegner, M. J. 2002. Kelp forest ecosystems:
biodiversity, stability, resilience and future. Environmental
Conservation, 29: 436–459.

Teagle, H., Hawkins, S. J., Moore, P. J., and Smale, D. A. 2017. The
role of kelp species as biogenic habitat formers in coastal marine
ecosystems. Journal of Experimental Marine Biology and Ecology,
492: 81–98.

Valero, M., Destombe, C., Mauger, S., Ribout, C., Engel, C. R.,
Daguin-Thiebaut, C., and Tellier, F. 2011. Using genetic tools for
sustainable management of kelps: a literature review and the exam-
ple of Laminaria digitata. Cahiers de Biologie Marine, 52: 467–483.

Waters, J. M., Fraser, C. I., and Hewitt, G. M. 2013. Founder takes all:
density-dependent processes structure biodiversity. Trends in
Ecology and Evolution, 28: 78–85.

Webb, T., and Bartlein, P. J. 1992. Global changes during the last 3
million years: climatic controls and biotic response. Annual
Review of Ecology and Systematics, 23: 141–173.

Wernberg, T., Coleman, M. A., Bennett, S., Thomsen, M. S., Tuya, F.,
and Kelaher, B. P. 2018. Genetic diversity and kelp forest vulnera-
bility to climatic stress. Scientific Reports, 8: 1851.

Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J.,
de Bettignies, T., Bennett, S., et al. 2013. An extreme climatic
event alters marine ecosystem structure in a global biodiversity
hotspot. Nature Climate Change, 3: 78–82.

Handling editor: W. Stewart Grant

Genetic structuring in L. digitata 1913

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/5/1906/5847977 by guest on 13 Septem
ber 2021


	fsaa055-TF1
	fsaa055-TF2

