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Abstract. Air–sea carbon dioxide (CO2) flux is often indi-
rectly estimated by the bulk method using the air–sea dif-
ference in CO2 fugacity (1fCO2) and a parameterisation
of the gas transfer velocity (K). Direct flux measurements
by eddy covariance (EC) provide an independent reference
for bulk flux estimates and are often used to study processes
that drive K . However, inherent uncertainties in EC air–sea
CO2 flux measurements from ships have not been well quan-
tified and may confound analyses of K . This paper evalu-
ates the uncertainties in EC CO2 fluxes from four cruises.
Fluxes were measured with two state-of-the-art closed-path
CO2 analysers on two ships. The mean bias in the EC CO2
flux is low, but the random error is relatively large over
short timescales. The uncertainty (1 standard deviation) in
hourly averaged EC air–sea CO2 fluxes (cruise mean) ranges
from 1.4 to 3.2 mmolm−2 d−1. This corresponds to a rela-
tive uncertainty of ∼ 20 % during two Arctic cruises that ob-
served large CO2 flux magnitude. The relative uncertainty
was greater (∼ 50 %) when the CO2 flux magnitude was
small during two Atlantic cruises. Random uncertainty in the
EC CO2 flux is mostly caused by sampling error. Instrument
noise is relatively unimportant. Random uncertainty in EC
CO2 fluxes can be reduced by averaging for longer. However,
averaging for too long will result in the inclusion of more
natural variability. Auto-covariance analysis of CO2 fluxes
suggests that the optimal timescale for averaging EC CO2
flux measurements ranges from 1 to 3 h, which increases the
mean signal-to-noise ratio of the four cruises to higher than
3. Applying an appropriate averaging timescale and suitable
1fCO2 threshold (20 µatm) to EC flux data enables an opti-
mal analysis of K .

1 Introduction

Since the Industrial Revolution, atmospheric CO2 levels have
risen steeply due to human activities (Broecker and Peng,
1998). The ocean plays a key role in the global carbon cycle,
having taken up roughly one-quarter of anthropogenic CO2
emissions over the last decade (Friedlingstein et al., 2020).
Accurate estimates of air–sea CO2 flux are vital to forecast
climate change and to quantify the effects of ocean CO2 up-
take on the marine biosphere.

Air–sea CO2 flux (F , e.g. in mmolm−2 d−1) is typically
estimated indirectly by the bulk equation:

F =K660(Sc/660)−0.5α(fCO2w− fCO2a), (1)

where K660 (in cmh−1) is the gas transfer velocity, usu-
ally parameterised as a function of wind speed (e.g. Nightin-
gale et al., 2000); Sc (dimensionless) is the Schmidt number
(Wanninkhof, 2014); and α (molL−1 atm−1) is the solubility
(Weiss, 1974). Sc is equal to 660 for CO2 at 20 ◦C and 35 ‰
saltwater (Wanninkhof et al., 2009). fCO2w and fCO2a are
the CO2 fugacity (in µatm) at the sea surface and in the over-
lying atmosphere, respectively, with fCO2w− fCO2a the
air–sea CO2 fugacity difference (1fCO2). Uncertainties in
the K660 parameterisation and limited coverage of fCO2w
measurements result in considerable uncertainties in global
bulk flux estimates (Takahashi et al., 2009; Woolf et al.,
2019).

Eddy covariance (EC) is the most direct method for mea-
suring the air–sea CO2 flux F :

F = ρw′c′, (2)

where ρ is the mean mole density of dry air (e.g. in molm−3).
The dry CO2 mixing ratio c (in ppm or µmolmol−1) is mea-
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sured by a fast-response gas analyser, and the vertical wind
velocityw (in ms−1) is often measured by a sonic anemome-
ter. The prime denotes the fluctuations from the mean, while
the overbar indicates time average. Equation (2) does not rely
on 1fCO2 measurements, nor empirical parameters and as-
sumptions of the gas properties (Wanninkhof, 2014). EC flux
measurements can therefore be considered useful as an inde-
pendent reference for bulk air–sea CO2 flux estimates. Fur-
thermore, the typical temporal and spatial scales of EC flux
measurements are ca. hourly and 1–10 km2. These scales are
much smaller than the temporal and spatial scales of alterna-
tive techniques for measuring gas transfer, e.g. by dual tracer
methods (daily and 1000 km2) (Nightingale et al., 2000; Ho
et al., 2006). EC measurements are thus potentially better
suited to capture variations in gas exchange due to small-
scale processes at the air–sea interface (Garbe et al., 2014).

The EC CO2 flux method has developed and improved
over time. Before 1990, EC was successfully used to mea-
sure air–sea momentum and heat fluxes. EC air–sea CO2
flux measurements made during those times were unreason-
ably high (Jones and Smith, 1977; Wesely et al., 1982; Smith
and Jones, 1985; Broecker et al., 1986). After 1990, with
the development of the infrared gas analyser, EC became
routinely used for terrestrial carbon cycle research (Baldoc-
chi et al., 2001). Development of the EC method was ac-
companied by improvements in the flux uncertainty analysis,
which was generally based on momentum, heat and land–
atmosphere gas flux measurements (Lenschow and Kris-
tensen, 1985; Businger, 1986; Lenschow et al., 1994; Wien-
hold et al., 1995; Mahrt, 1998; Finkelstein and Sims, 2001;
Loescher et al., 2006; Rannik et al., 2009, 2016; Billesbach,
2011; Mauder et al., 2013; Langford et al., 2015; Post et al.,
2015).

In the late 1990s, the advancement in motion correction of
wind measurements (Edson et al., 1998; Yelland et al., 1998)
facilitated ship-based EC CO2 flux measurements from a
moving platform (McGillis et al., 2001; 2004). After 2000,
a commercial open-path infrared gas analyser LI-7500 (Li-
COR Inc. USA) became widely used for air–sea CO2 flux
measurements (Weiss et al., 2007; Kondo and Tsukamoto,
2007; Prytherch et al., 2010; Edson et al., 2011; Else et al.,
2011; Lauvset et al., 2011). The LI-7500 generated ex-
tremely large and highly variable CO2 fluxes in comparison
to expected fluxes (Kondo and Tsukamoto, 2007; Prytherch
et al., 2010; Edson et al., 2011; Else et al., 2011; Lauvset
et al., 2011). This problem is generally considered to be an
artefact caused by water vapour cross-sensitivity (Kohsiek,
2000; Prytherch et al., 2010; Edson et al., 2011; Landwehr
et al., 2014). Mathematical corrections proposed to address
this artefact (Edson et al., 2011; Prytherch et al., 2010) were
later shown to be unsatisfactory (Else et al., 2011; Ikawa
et al., 2013; Blomquist et al., 2014; Tsukamoto et al., 2014)
or incorrect (Landwehr et al., 2014).

The most reliable method for measuring EC air–sea CO2
fluxes involves the physical removal of water vapour fluc-

tuations from the sampled air. The simplest approach is to
combine a closed-path gas analyser with a physical dryer to
eliminate most of the water vapour fluctuation (Miller et al.,
2010; Blomquist et al., 2014; Landwehr et al., 2014; Yang
et al., 2016; Nilsson et al., 2018). The tuneable-diode-laser-
based cavity ring-down spectrometer (CRDS) made by Pi-
carro Inc. (Santa Clara, California, USA) is the most precise
closed-path analyser currently available (Blomquist et al.,
2014). The closed-path infrared gas analyser LI-7200 (LI-
COR Biosciences, Lincoln, Nebraska, USA) is another pop-
ular choice.

The advancements in instrumentation and in motion cor-
rection methods have significantly improved the quality of
air–sea EC CO2 flux observations, but, despite these changes,
the flux uncertainties have not been well quantified. The aims
of this study are to (1) analyse uncertainties in EC air–sea
CO2 flux measurements; (2) propose practical methods to re-
duce the systematic and random flux uncertainty; and (3) in-
vestigate how the EC flux uncertainty influences our ability
to estimate and parameterise K660.

2 Experiment and methods

2.1 Instrumental setup

The basic information of four cruises is summarised in Ta-
ble 1. Appendix A shows the four cruise tracks (Figs. A1
and A2). Data from the Atlantic cruises (AMT28 and
AMT29) are limited to 3◦ N–20◦ S in order to focus specifi-
cally on the performance of two different gas analysers in the
same region with low flux signal (tropical zone).

The CO2 flux and data logging systems installed on the
JCR and Discovery were operated autonomously. The EC
systems were approximately 20 ma.m.s.l. on both ships (at
the top of the foremasts; Fig. 1) to minimise flow distor-
tion and exposure to sea spray. Computational fluid dynamics
(CFD) simulation indicates that the airflow distortion at the
top of the JCR foremast is small (∼ 1 % of the free stream
wind speed when the ship is head to wind; Moat and Yel-
land, 2015). The hull structure of RRS Discovery is nearly
identical to that of RRS James Cook. CFD simulation of the
James Cook indicates that the airflow at the top foremast is
distorted by ∼ 2 % for bow-on flows (Moat et al., 2006). The
deflection of the streamline from horizontal and effects on
the vertical wind component is accounted for by the double
rotation (motion correction processes; see Sect. 2.2) prior to
the EC flux calculation for both ships.

The EC system on the JCR consists of a three-dimensional
sonic anemometer (Metek Inc., Sonic-3 Scientific), a mo-
tion sensor (initially Systron Donner Motionpak II, which
compared favourably with and was then replaced by a Life
Performance-Research LPMS-RS232AL2 in April 2019),
and a Picarro G2311-f gas analyser. All instruments sam-
pled at a frequency of 10 Hz or greater, and the data were
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Table 1. Basic information for all four cruises on the RRS James Clark Ross (JCR) and RRS Discovery that measured air–sea EC CO2
fluxes.

Cruise JR18006 JR18007 AMT28 AMT29

Data period 30 Jun–1 Aug 2019 5 Aug–29 Sep 2019 9–16 Oct 2018 4–11 Nov 2019
Visited region Arctic Ocean (Barents Sea) Arctic Ocean (Fram Strait) Tropical Atlantic Ocean Tropical Atlantic Ocean
Research vessel JCR JCR JCR Discovery
Gas analyser Picarro G2311-f Picarro G2311-f Picarro G2311-f LI-7200

Figure 1. EC system (upper panel) and a diagram of the system setup (bottom panel). EC instruments: (1) sonic anemometer, (2) motion
sensor, (3) air sample inlet for gas analyser, (4) data logger/gas analyser. Arctic and Atlantic data from 2018 were collected on the RRS James
Clark Ross (JCR; upper right) using a Picarro G2311-f, and Atlantic data from 2019 were collected using a LI-7200 on the RRS Discovery
(upper left).

logged at 10 Hz with a data logger (CR6, Campbell Scien-
tific, Inc.), similar to the setup by Butterworth and Miller
(2016). Air is pulled through a long tube (30 m, inner diame-
ter 0.95 cm, Reynolds number 5957) with a dry vane pump at
a flow rate of ∼ 40 Lmin−1 (Gast 1023 series). The Picarro
gas analyser subsamples from this tube through a particle fil-
ter (Swagelok 2 µm) and a dryer (Nafion PD-200T-24M) at
a flow of ∼ 5 Lmin−1 (Fig. 1). The dryer is set up in the
“re-flux” configuration and uses the lower pressure Picarro
exhaust to dry the sample air. This method removes ∼ 80 %
of the water vapour and essentially all of the humidity fluc-
tuations (Yang et al., 2016). The Picarro internal calculation
accounts for the detected residual water vapour and yields a
dry CO2 mixing ratio that is used in the flux calculations. A
valve controlled by the Picarro instrument injects a “puff” of
nitrogen (N2) into the tip of the inlet tube for 30 s every 6 h.
This enables estimates of the time delay and high-frequency
signal attenuation (Sect. 2.2).

The EC system on RRS Discovery consists of a Gill R3-50
sonic anemometer, a LPMS motion sensor package, and a LI-
7200 gas analyser. The LI-7200 gas analyser was mounted

within the enclosed staircase, directly underneath the meteo-
rological platform and close to the inlet (inlet length 7.5 m,
inner diameter 0.95 cm, Reynolds number 1042). A single
pump (Gast 1023) was sufficient to pull air through a parti-
cle filter (Swagelok 2 µm), a dryer (Nafion PD-200T-24M),
and the LI-7200 at a flow of ∼ 7 Lmin−1. There was no N2
puff system setup on Discovery, but equivalent lab tests con-
firmed that the delay time was less than on the JCR because
of the shorter inlet line. The dryer on the Discovery is set
up in the same re-flux configuration as the JCR and uses the
lower pressure at the LI-7200 exhaust (limited by an addi-
tional 0.08 cm diameter critical orifice) to dry the sample air.
This setup removes∼ 60 %–70 % of the water vapour and es-
sentially all of the humidity fluctuations. The dry CO2 mix-
ing ratio, computed by accounting for the LI-7200 temper-
ature, pressure, and residual water vapour measurements, is
used in the flux calculations.

2.2 Flux processing

The EC air–sea CO2 flux calculation steps using the raw data
are outlined with a flow chart (Fig. 2) and detailed below. The
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Figure 2. Flow chart of EC data processing. The raw high-frequency (10 Hz) wind and CO2 data were initially processed separately and then
combined to calculate fluxes. CO2 fluxes were filtered by a series of data quality control criteria. The 20 min flux intervals were averaged to
longer timescales (hourly or more). The data processing is detailed in the text.

raw high-frequency wind and CO2 data are processed first,
yielding fluxes in 20 min averaging time interval and related
statistics. These statistics are then used for quality control of
the fluxes. Further averaging of the quality-controlled 20 min
fluxes to hourly or longer timescales is then used to reduce
random error (Sect. 4.1). Linear detrending was used to iden-
tify the turbulent fluctuations (i.e. w′ and c′) throughout the
analyses.

To correct the wind data for ship motion, we first generated
hourly data files containing the measurements from the sonic
anemometer (three-dimensional wind speed components: u,
v, andw and sonic temperature Ts), motion sensor (three axis
accelerations: accel_x, accel_y, accel_z; and rotation angles:
rot_x, rot_y, rot_z), ship heading over ground (HDG; from
the gyro compass), and ship speed over ground (SOG; from
Global Position System). Spikes larger than 4 standard devia-
tions (SDs) from the median were removed. Secondly, a com-
plementary filtering method using Euler angles (see Edson
et al., 1998) was applied to the hourly data files to remove ap-
parent winds generated by the ship movements. The motion-
corrected winds were further decorrelated against ship mo-
tion to remove any residual motion-sensitivity (Miller et al.,
2010; Yang et al., 2013). The motion-corrected winds were
double-rotated to account for the wind streamline over the

ship, yielding the vertical wind velocity (w) required in
Eq. (2). Inspection of frequency spectra showed that the spec-
tral peak at the ship motion frequencies (approximately 0.1–
0.3 Hz) had disappeared after the motion correction (Fig. S1
in the Supplement). This indicates that the majority of ship
motion had been removed from the measured wind speed.
The last step in the wind data processing was the calculation
of 20 min average friction velocity, sensible heat flux, and
other key variables used for data quality control (Table S1 in
the Supplement).

The CO2 data were de-spiked (by removing val-
ues> 4 SDs from the median). The Picarro CO2 mixing ratio
was further decorrelated against analyser cell pressure and
temperature to remove CO2 variations due to the ship’s mo-
tion. The LI-7200 CO2 mixing ratio was further decorrelated
against the LI-7200 H2O mixing ratio and temperature to re-
move residual air density fluctuations, following Landwehr
et al. (2018). CO2 data were also decorrelated against the
ship’s heave and accelerations because these can produce
spurious CO2 variability (Miller et al., 2010; Blomquist et al.,
2014).

A lag between CO2 data acquisition and the wind data is
created because of the time taken for sample air to travel
through the inlet tube. On the JCR, we use the puff system
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where the lag time is the time difference between the N2
puff start (when the on/off valve is switched) and the time
when the diluted signal is sensed by the gas analyser. The
lag time can also be estimated by the maximum covariance
method, calculated by shifting the time base of the CO2 sig-
nal and finding the shift that achieves maximum covariance
between the vertical wind velocity (w) signal and the shifted
CO2 signal. The lag times estimated by the maximum covari-
ance method agree well with the estimates of the puff proce-
dure (Fig. S2 in the Supplement). These estimates indicate a
lag time of 3.3–3.4 s for the Arctic cruises and 3.3 s for cruise
AMT28 on the JCR. The lag time on Discovery (AMT29) es-
timated by the maximum covariance method was 2.6 s, con-
sistent with laboratory test results prior to the cruise.

The inlet tube, particle filter, and dryer cause high-
frequency CO2 flux signal attenuation. The N2 puff was also
used to assess the response time by considering the e-folding
time in the CO2 signal change (similar approaches have been
used by Bariteau et al., 2010; Blomquist et al., 2014, Bell
et al., 2015). The response time is 0.35 s for the EC system
on JCR and 0.25 s for the EC system on Discovery (estimated
in the laboratory prior to cruise). These response times were
combined with the relative wind speed-dependent, theoreti-
cal shapes of the cospectra (Kaimal et al., 1972) to estimate
the percentage flux loss due to the inlet attenuation (Yang
et al., 2013). The mean attenuation percentage is less than
10 %, with a relative wind speed dependence (Fig. S3 in the
Supplement). The attenuation percentage value was applied
to the computed flux to compensate for the flux loss due
to the high-frequency signal attenuation. Finally, horizontal
CO2 fluxes and other statistics such as CO2 range and CO2
trend were computed for quality control purposes (Table S1,
Supplement).

The computed 20 min fluxes were filtered for non-ideal
ship manoeuvres or violations of the homogeneity/stationary
requirement of EC (see Supplement for the quality control
criteria).

2.3 Uncertainty analysis methods

2.3.1 Uncertainty components

Uncertainty contains two components: systematic error
(δFS) and random error (δFR). According to propagation of
uncertainty theory (JCGM, 2008), the total uncertainty in EC
CO2 fluxes (from random and systematic errors) can be ex-
pressed as

δF =

√
δF 2

R+ δF
2
S . (3)

Systematic errors (Sect. 2.3.2) will cause bias in the flux.
They thus should be eliminated/minimised with the appro-
priate system setup and, if needed, effective numerical cor-
rections. Random error results in imprecision (but not bias)
and can be reduced by averaging repeated measurements

(Sect. 2.3.3). Errors due to insufficient sampling and in-
strument noise are generally considered most important in
EC flux measurements (Lenschow and Kristensen, 1985;
Businger, 1986; Mauder et al., 2013; Rannik et al., 2016).

Sampling error is an inherent issue for EC flux measure-
ments and is typically the main source of the CO2 flux un-
certainty (Mauder et al., 2013). The sampling error is caused
by the difference between the ensemble average and the time
average. The calculation of EC flux (Eq. 2) requires the sepa-
ration between the mean and fluctuating components, which
can be represented fully for CO2 mixing ratio c as

c(x, t)= c(x, t)+ c′(x, t). (4)

The mean component c represents ensemble average over
time (t) and space (x) and does not contribute to the flux.
The time average of a stationary turbulent signal and space
average of a homogenous turbulent signal theoretically con-
verge on the ensemble average when the averaging time ap-
proaches infinity, i.e. T →∞ (Wyngaard, 2010). In prac-
tice, Reynolds averaging over a much shorter time inter-
val (10 min to an hour) is typically used for EC flux mea-
surements from a fixed point or from a slow-moving plat-
form such as a ship. This is because the atmospheric bound-
ary layer is only quasi-stationary for a few hours. Non-
stationarity (e.g. diurnal variability and synoptic conditions)
is an inherent property of the atmospheric boundary layer
(Wyngaard, 2010). EC flux observations thus inevitably con-
tain some random error due to insufficient sampling time, and
this error is greater at shorter averaging times.

Random error due to instrument noise comes mainly from
the white noise of the gas analyser, as the noise from the
sonic anemometer is relatively unimportant (Blomquist et al.,
2010; Fairall et al., 2000; Mauder et al., 2013). Blomquist
et al. (2014) show “pink” noise with a weak spectral slope for
their CRDS gas analyser (G1301-f), but the gas analysers on
JCR (G2311-f) and Discovery (LI-7200) demonstrate white
noise with a constant variance at high frequency (Fig. B2,
Appendix B).

2.3.2 Systematic error

Table 2 details the measures taken during instrument setup
and data processing that help eliminate most sources of sys-
tematic error in EC CO2 fluxes.

In addition to bias sources related to the instrument setup
(Table 2), insufficient sampling time (an inherent issue of EC
fluxes) may also generate a systematic error. We use a the-
oretical method to estimate this systematic error in EC CO2
flux (Lenschow et al., 1994):

|δFS| ≤ 2σwσca

√
τwτc

T
, (5)

where σw (ms−1) and σca (ppm) are the standard deviations
of the vertical wind velocity and the CO2 mixing ratio due to
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Table 2. Potential sources of bias in our EC air–sea CO2 flux measurements and the methods used to minimise them.

Potential source
of bias

Methods used to minimise the bias Flux
uncertainty

δFS,1
Water vapour
cross-sensitivity

Closed-path gas analyser with a dryer removes essentially all of the water vapour
fluctuation (Blomquist et al., 2014; Yang et al., 2016). The residual H2O signal is
measured by the gas analyser and used in the calculation of the dry CO2 mixing
ratio, which removes water cross-sensitivity.

Negligible

δFS,2
Ship motion

Flux uncertainty from an earlier version of the motion correction procedure (less
rigorous than the one used by ourselves) is estimated to be 10 %–20 % (Edson
et al., 1998). The more recently adopted decorrelation of vertical winds and CO2
against platform motion (Miller et al., 2010; Yang et al., 2013) reduces this uncer-
tainty. Flügge et al. (2016) compare EC momentum fluxes measured from a moving
platform (buoy) with fluxes measured from a nearby fixed tower. Flux estimates
from these two platforms agree well (relative flux bias due to the motion correction
≤ 6 %).

≤ 6 %

δFS,3
Airflow distortion

The EC flux system is deployed as far forward and as high as possible on the ship
(top of the foremast), which minimises the impacts of flow distortion. Subsequent
distortion correction using the CFD simulation (Moat et al., 2006; Moat and Yel-
land, 2015) along with a relative wind direction restriction further reduces the im-
pact of flow distortion on the fluxes. Measured EC friction velocities and friction ve-
locities from the COARE3.5 model (Edson et al., 2013) agree well (e.g. R2

= 0.95,
slope= 0.97) for data collected during cruise JR18006. Good comparison between
observed and COARE3.5 friction velocity estimates indicates that we have fully
accounted for flow distortion effects.

Negligible

δFS,4
Inlet effects (high-
frequency flux attenuation
and CO2 sampling delay)

High-frequency flux signal attenuation (in the inlet tube, particle filter, and dryer)
is evaluated by the CO2 signal response to a puff of N2 gas. Flux attenuation
is calculated from the “inlet puff” response and applied as a correction (< 10 %;
see Sect. 2.2). The uncertainty in the attenuation correction is about 1 % for un-
stable/neutral atmospheric conditions, which is generally the case over the ocean
(e.g. 93 % of the time for the Atlantic cruises, 80 % of the time for the Arctic
cruises). During stable conditions, the attenuation correction is larger (Landwehr
et al., 2018), and the uncertainty is also greater (∼ 20 %).
The lag time adjustment prior to the flux calculation aligns the CO2 and wind sig-
nals. Two methods are used to estimate the optimal lag time: puff injection and
maximum covariance. The two lag estimates are in good agreement (Sect. 2.2).
Random adjustment of ± 0.2 s (1σ of the puff test result) to the optimal lag time
impacts the CO2 flux by < 1 %.

< 2 % for vast
majority of the
cruises

δFS,5
Spatial separation between
the sonic anemometer and
the gas inlet

The CO2 inlet is ∼ 70 cm directly below the centre volume of the sonic anemome-
ter. This distance is small relative to the size of the dominant flux-carrying eddies
encountered by the EC measurement system height above sea level. The excellent
agreement between the lag time determined by the puff system and by the optimal
covariance method further confirms that the distance between the CO2 inlet and
anemometer is sufficiently small.

Negligible

δFS,6
Imperfect calibration of the
sensors

The potential flux bias resulting from instrument calibration (gas analyser,
anemometer and meteorological sensors required to calculate air density: air tem-
perature, relative humidity and pressure) is up to 4 % for the JCR setup. The
largest instrument calibration uncertainty derives from the wind sensor accuracy
(± 0.15 ms−1 at 4 ms−1 winds according to the Metek uSonic instrument specifi-
cation). This bias is even lower (< 2 %) for the Discovery setup because the Gill R3
sonic anemometer is more accurate.

≤ 4 %

Propagated bias Estimated from the individual bias estimates above (δFS,1, δFS,2, etc.) using δFS =√
n∑
1
δF 2

S,n

< 7.5 %
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atmospheric processes, respectively. T is the averaging time
interval (s), and τw and τc are integral timescales (s) for ver-
tical wind velocity and CO2 signal, respectively. The defi-
nition and estimation of the integral timescale are shown in
Appendix B. The sign of δFS could be positive or negative
(i.e. under- or overestimation) because of the poor statistics
in capturing low-frequency eddies within the flux averaging
period (Lenschow et al., 1993). The mean hourly relative
systematic error due to insufficient sampling time for four
cruises estimated by Eq. (5) is < 5 %. According to propaga-
tion of uncertainty theory (JCGM, 2008), the total systematic
error is less than 9 % (=

√
7.5%2+ 5%2).

2.3.3 Random error

Five approaches used to estimate the total random error (A–
C) and the random error component due to instrument noise
(C–E) in EC CO2 fluxes are discussed below. The random
error assessments are empirical (A and D) or theoretical (B,
C, and E).

A. An empirical approach to estimate total random er-
ror involves shifting the w data relative to the CO2
data (or vice versa) by a large, unrealistic time shift
and then computing the “null fluxes” from the time-
desynchronized CO2 and w time series (Rannik et al.,
2016). The shift removes any real correlation between
CO2 and w due to vertical exchange. The standard de-
viation of the resultant null fluxes represents the random
flux uncertainty (Wienhold et al., 1995). We applied
a series of time shifts of ∼ 20–60 · τw (i.e. using time
shifts ranging from −300 to −100 and 100 to 300 s;
Rannik et al., 2016). This empirical estimation of to-
tal random flux uncertainty will hereafter be referred to
as δFR,Wienhold.

B. Lenschow and Kristensen (1985) derived a rigorous
theoretical equation for total random error estimation,
which contains both the auto-covariance and cross-
covariance functions. The theoretical equation has been
numerically approximated by Finkelstein and Sims
(2001):

δFR,Finkelstein =

{
1
n

[
m∑

p=−m

rww(p)rcc(p)

+

m∑
p=−m

rwc(p)rcw(p)

]}1/2

, (6)

where n is the number of data points within an averag-
ing time interval, and p is the number of shifting points.
The maximum shifting point m can be chosen subjec-
tively (<n). We found that the random error for m be-
tween 1000 and 2000 data points was similar, so for this
study we usem= 1500 (150 s shift time). The first term

in the brackets represents the auto-covariance compo-
nent, and the second term is the cross-covariance com-
ponent. rww and rcc are the auto-covariance functions
for vertical wind velocity (w) and CO2 mixing ratio (c),
respectively. rwc and rcw are the cross-covariance func-
tions for w and c. Here rwc represents shifting w data
relative to CO2 data, while rcw represents shifting CO2
data relative to w data.

C. Blomquist et al. (2010) attributed the sources of CO2
variance σ 2

c to atmospheric processes (σ 2
ca

) and white
noise (σ 2

cn
). The sources of variance are considered to be

independent of each other, and the sonic anemometer is
assumed to be relatively noise-free. According to prop-
agation of uncertainty theory (JCGM, 2008), the total
random flux error can be defined as

δFR,Blomquist ≤
aσw
√
T

(
σ 2

ca
τwc+ σ

2
cn
τcn

)1/2
, (7)

where the constant a varies from
√

2 to 2, depending
on the relationship between the covariance of the two
variables (w and CO2) and the product of their auto-
correlations (Lenschow and Kristensen, 1985). Here,
τwc is equal to the shorter of τw and τc, which is typ-
ically τw (Blomquist et al., 2010), and τcn is the inte-
gral timescale of white noise in the CO2 signal. The
CO2 variance due to atmospheric processes (σ 2

ca
) in-

cludes two components: variance due to vertical flux
(i.e. air–sea CO2 flux), σ 2

cav
, and variance due to other

atmospheric processes, σ 2
cao

(Fairall et al., 2000). The
variance in CO2 due to vertical flux (σ 2

cav
) depends

on atmospheric stability. σ 2
cav

can be estimated with
Monin–Obukhov similarity theory (Blomquist et al.,
2010, 2014; Fairall et al., 2000):

σ 2
cav
=

[
3
w′c′

u∗
fc(z/L)

]2

, (8)

where u∗ is the friction velocity (ms−1), and the similar-
ity function (fc) depends on the stability parameter z/L,
where z is the observational height (m), and L is the
Obukhov length (m). The expression of fc can be found
in Blomquist et al. (2010).

Equation (7) can be used to assess the random error
due to instrument noise by setting σ 2

ca
= 0, referred to

hereafter as δFRN,Blomquist. We use the CO2 variance
spectra to directly estimate the white noise term σ 2

cn
τcn

in Eq. (7). The variance is fairly constant at high fre-
quency (1–5 Hz; Fig. B2, Appendix B), which is often
referred to as band-limited white noise. The relation-
ship between σ 2

cn
τcn and the band-limited noise spectral

value ϕcn is expressed in Blomquist et al. (2010) as

σ 2
cn
τcn =

ϕcn

4
. (9)
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D. Billesbach (2011) developed an empirical method to es-
timate the random error due to instrument noise alone
(referred to as 1FRN,Billesbach). This involves random
shuffling of the CO2 time series within an averaging in-
terval and then calculating the covariance ofw and CO2.
The correlation betweenw and CO2 is minimised by the
shuffling, and any remaining correlation between w and
CO2 is due to the unintentional correlations contributed
by instrument noise.

E. Mauder et al. (2013) describe another theoretical ap-
proach to estimate the random flux error due to instru-
ment noise:

δFRN,Mauder =
σwσcn
√
n
. (10)

White noise correlates with itself but is uncorrelated
with atmospheric turbulence. Thus, the white-noise-
induced CO2 variance (σcn ) only contributes to the total
variance. The value of σcn can be estimated from the
difference between the zero-shift auto-covariance value
(CO2 variance σ 2

c ) and the noise-free variance extrapo-
lated to a time shift of zero (Lenschow et al., 2000):

σ 2
cn
= σ 2

c − σ
2(t→ 0), (11)

where σ 2(t→ 0) represents the extrapolation of auto-
covariance to a zero shift, which is considered equal to
variance due to atmospheric processes (σ 2

ca
). Figure 3

shows the normalised auto-covariance function curves
of w and CO2 as measured by the Picarro G2311-f and
the LI-7200. There is a sharp decrease in the CO2 auto-
covariance when shifting from 0 s shift to 0.1 s shift for
both the Picarro G2311-f and LI-7200 gas analyser. The
same sharp decrease is not seen in the vertical wind ve-
locity (w) auto-covariance. The relative difference in the
change in normalised auto-covariance shows that white
noise makes a much larger relative contribution to the
CO2 variance than to the vertical wind velocity vari-
ance.

3 Results

Measurements from AMT28 and AMT29 set the scene for
our uncertainty analysis. These two Atlantic cruises transited
across the same tropical region (Fig. A2, Appendix A) in Oc-
tober 2018 and September 2019 with different eddy covari-
ance systems (Sect. 2.1). AMT28 and AMT29 show broadly
similar latitudinal patterns (Fig. 4a). An obvious question of
interest is whether the measured fluxes were the same for
the 2 years. To answer this question, the measurement uncer-
tainties must be quantified. The total random uncertainties in
CO2 flux (δFR,Finkelstein) are comparable for the two cruises,
even though the random error component due to instrument

Figure 3. Mean normalised auto-covariance functions of CO2 and
vertical wind velocity (w) by four different instruments. The ma-
genta line represents a fit to the noise-free auto-covariance function
of CO2 (measured by Picarro) extrapolated back to a zero time shift.
An example of the white noise and natural variability contributions
to the total CO2 (measured by Picarro) variance is indicated by two
blue arrows. The sharp decrease of the CO2 auto-covariance be-
tween the zero shift and the initial 0.1 s shift corresponds to the large
contribution of white noise from the gas analysers. The LI-7200 is
the noisier instrument. The noise contributions from the anemome-
ter are relatively small (< 10 %).

noise (δFRN,Mauder) is about 3 times higher during AMT29
using LI-7200 than during AMT28 using Picarro G2311-f
(Fig. 4b; Fig. D1, Appendix D). The similar total random un-
certainty in the AMT28 and AMT29 fluxes shows that both
gas analysers are equally suitable for air–sea EC CO2 flux
measurements. The variance budgets of atmospheric CO2
mixing ratio (used to estimate random flux uncertainty; see
Sect. 3.1) are shown in Fig. 4c. Total variance in CO2 mix-
ing ratio is dominated by instrument noise on both cruises.
CO2 mixing ratio variance (total and instrument noise) was
substantially higher during AMT29.

3.1 Random uncertainty

Theoretical derivation of flux uncertainty (δFRN,Blomquist,
Eq. 7) requires knowledge of the contributions to CO2 mix-
ing ratio variance. Total CO2 variance is made up of in-
strument noise (σ 2

cn
) and atmospheric processes (σ 2

ca
). At-

mospheric processes include vertical flux (σ 2
cav

) and other
atmospheric processes (σ 2

cao
). The variance budgets of CO2

mixing ratio for the four cruises are listed in Table 3. At-
mospheric processes contribute a larger CO2 variance in the
Arctic (where flux magnitudes are greater) compared to the
Atlantic. Vertical flux accounts for ∼ 10 % of the variance in
CO2 mixing ratio in the Arctic and ∼ 1 % of the CO2 vari-
ance in the Atlantic. Previous results demonstrate that hori-
zontal transport is a major source of σ 2

cao
for long-lived green-

house gases (Blomquist et al., 2012). Small changes in CO2
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Figure 4. (a) Air–sea CO2 fluxes (hourly and 6 h averages), (b) random uncertainty in flux (total and due to instrument noise only), and
(c) variance in CO2 mixing ratio (total and due to instrument noise only) for two Atlantic cruises.

Table 3. Variance in the CO2 mixing ratio estimated using Eqs. (8) and (11) for the Arctic (JR18006/7, Picarro G2311-f) and Atlantic cruises
(AMT28, Picarro G2311-f; AMT29, LI-7200). Total CO2 variance (σ 2

c ) consists of white noise (σ 2
cn ) and atmospheric processes (σ 2

ca ). The
latter can be further broken down to the CO2 variance due to vertical flux (σ 2

cav ) and due to other processes (σ 2
cao ).

CO2 variance (× 10−3 ppm2) JR18006 JR18007 AMT28 AMT29

Total, σ 2
c 9.9 8.6 3.6 13.9

Due to instrument white noise, σ 2
cn 5.8 5.4 2.0 12.6

Due to atmospheric processes, σ 2
ca 4.1 3.3 1.6 1.3

– Due to vertical flux, σ 2
cav 1.3 0.8 0.03 0.08

– Due to other atmospheric processes, σ 2
cao 2.8 2.5 1.6 1.2

mixing ratio transported horizontally can yield variance that
greatly exceeds the variance from vertical flux.

Three quasi-independent methods were used to estimate
random uncertainty in EC air–sea CO2 fluxes caused by
instrument noise (δFRN; Methods C–E, Sect. 2.3.3). Good
agreement was found between all three estimates (Fig. C2,
Appendix C) when

√
2 is used as the constant in Eq. (7) (a).

The 1FRN,Billesbach estimates have more scatter and are
slightly higher than the theoretical results, possibly because
the random shuffling of data fails to fully exclude the con-
tribution from atmospheric turbulence (Rannik et al., 2016).
For the remainder of this study, we use the δFRN,Mauder
method to estimate δFRN.

We used three methods to estimate the total random un-
certainty (δFR; Methods A–C, Sect. 2.3.3) in the hourly aver-
aged air–sea CO2 fluxes. There is good agreement among the
three estimates (r > 0.88; Fig. C1, Appendix C). Again, the
constant in Eq. (7) (a) is set to

√
2, as informed by the instru-

ment noise uncertainty analysis above. We use δFR,Finkelstein
(Eq. 6) to estimate the total random flux uncertainty here-
after. Our decision is based on δFR,Finkelstein not requiring
the integral timescale (unlike δFR,Blomquist) and showing less
scatter than δFR,Wienhold.

Figure 5 shows the different relative contributions to the
random flux uncertainty for the Arctic cruises (hourly aver-
age). Here the uncertainty is normalised by the flux magni-
tude and then averaged into flux magnitude bins. When the
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Figure 5. Relative random uncertainty in hourly CO2 flux and its
contribution from noise, vertical flux, and other processes during
two Arctic cruises. Relative random uncertainty data are binned into
3 mmolm−2 d−1 flux magnitude bins (error bars represent 1 stan-
dard deviation).

flux magnitude is sufficiently large (> 20 mmolm−2 d−1),
the total relative random uncertainty in flux asymptotes to
about 15 % and is driven by variance associated with both
vertical flux and other atmospheric processes. This estimate
is similar to uncertainties in air–sea fluxes of other well re-
solved (i.e. high signal-to-noise ratio) variables (Fairall et al.,
2000). At a lower flux magnitude, uncertainty due to atmo-
spheric processes other than vertical flux dominates the total
random uncertainty. Uncertainty due to the white noise from
the Picarro G2311-f gas analyser is small.

3.2 Summary of systematic and random uncertainties

The total uncertainty δF in the hourly average EC CO2 flux
(estimated using Eq. 3) ranges from 1.4 to 3.2 mmolm−2 d−1

in the mean for the four cruises (Table 4). Our EC flux sys-
tem setup was optimal, and subsequent corrections have min-
imised any bias to < 9 % (Sect. 2.3.2). Systematic error is
on average much lower than random error (Table 4). This
means the accuracy of the EC CO2 flux measurements is very
high, but the precision of hourly averaged EC CO2 air–sea
flux measurements is relatively low. In Sect. 4.1, we discuss
how the precision can be improved by averaging the observed
fluxes for longer.

The theoretical uncertainty estimates above can be com-
pared with a portion of the AMT28 cruise data (15–20◦ S,
∼ 25◦W; Fig. 4), when the ship encountered sea surface
CO2 fugacity close to equilibrium with the atmosphere (i.e.
1fCO2∼ 0; Fig. A2, Appendix A). The data from this re-
gion are useful for assessing the random and systematic flux
uncertainties. The standard deviation of the EC CO2 flux dur-
ing cruise AMT28 when 1fCO2∼ 0 is 1.6 mmolm−2 d−1,
which compares well with the theoretical random flux uncer-
tainty in this region (1.4 mmolm−2 d−1). The mean EC CO2

Figure 6. Comparison of relative random uncertainty in
hourly CO2 flux and relative standard deviation (RSTD;
standard deviation/|flux mean|) of the EC CO2 flux from two Arc-
tic cruises. These results are binned in 1 ms−1 wind speed bins.

flux from this region was 0.5 mmolm−2 d−1, which is indis-
tinguishable from zero considering the random uncertainty.
This further confirms the minimal bias in our flux observa-
tions.

Figure 6 shows a comparison between the relative un-
certainty and the relative standard deviation (RSTD) in the
hourly CO2 flux for the two Arctic cruises. Results have
been binned into 1 ms−1 wind speed bins. Wind speed
was converted to 10 m neutral wind speed (U10N) using the
COARE3.5 model (Edson et al., 2013). The relative random
error decreases with increasing wind speed. This is partly be-
cause the fluxes tend to be larger at higher wind speeds, and
so the signal-to-noise ratio in the flux is greater. In addition,
at higher wind speeds, a greater number of high-frequency
turbulent eddies are sampled by the EC system, providing
better statistics of turbulent eddies and lower sampling error.

The RSTD of the flux is greater in magnitude than the
estimated flux uncertainty because it also contains environ-
mental variability. The CO2 flux auto-covariance analysis
(Sect. 4.1) shows that random error in hourly flux explains
∼ 20 % of the flux variance on average for the two Arctic
cruises. This implies that the remaining variability in the EC
flux (∼ 80 %) is due to natural phenomena (e.g. changes in
1fCO2 or wind speed). Similarly, substantial variability is
typical in EC-derived CO2 gas transfer velocity at a given
wind speed (e.g. Edson et al., 2011; Butterworth and Miller,
2016).K660 is derived from (ECCO2 flux)/1fCO2, and thus
an understanding of EC flux uncertainty can help understand
and explain the variability in EC-derived gas transfer velocity
estimates (Sect. 4.2).

Atmos. Chem. Phys., 21, 8089–8110, 2021 https://doi.org/10.5194/acp-21-8089-2021



Y. Dong et al.: Uncertainties in eddy covariance air–sea CO2 flux measurements 8099

Table 4. Summary of hourly average EC CO2 fluxes and associated uncertainties in the mean for the four cruises (mmolm−2 d−1). Shown
are the mean CO2 flux magnitude (|F |, mmolm−2 d−1), upper limitation of the total uncertainty (δF ; Eq. 3), upper limitation of the absolute
systematic error (|δFS|; propagated from Table 2 and Eq. 5), and random error (δFR; Eq. 6). The random error components are white noise

(δFRN; Eq. 10), vertical flux (δFRV; Eqs. 7 and 8), and other atmospheric processes (δFRO =
√
δF 2

R− δF
2
RN− δF

2
RV). The total uncertainty

is also expressed as a percentage of the mean flux magnitude (δF/|F | · 100%).

Cruises JR18006 JR18007 AMT28 AMT29

|CO2 flux|, |F | 10.1 16.3 2.5 3.5
Total uncertainty, δF (δF/|F | · 100%) 2.3 (23 %) 3.2 (20 %) 1.4 (58 %) 1.7 (49 %)
Systematic error, |δFS| 0.8 1.2 0.3 0.3
Total random error, δFR 2.2 2.9 1.4 1.7
Random error due to white noise, δFRN 0.5 0.6 0.3 1.0
Random error due to vertical flux, δFRV 1.1 1.4 0.2 0.4
Random error due to other atmospheric processes, δFRO 1.5 2.4 1.4 1.5

4 Discussion

4.1 Impact of averaging timescale on flux uncertainty

The random error in flux decreases with increasing averaging
time interval T or the number of sampling points n (Eqs. 6,
7, and 10). This is because a longer averaging time interval
results in better statistics of the turbulent eddies. However,
averaging for too long is also not ideal since the atmosphere
is less likely to maintain stationarity. The typical averaging
time interval is thus typically between 10 min and 60 min for
air–sea flux measurements (20 min intervals were used in this
study). The time series of quality controlled 20 min flux inter-
vals can be further averaged over a longer timescale to reduce
the random uncertainty. Averaging the 20 min flux intervals
assumes that the flux interval data are essentially repeat mea-
surements within a chosen averaging timescale. If the 20 min
flux intervals are averaged, one can ask the following ques-
tion: what is the optimal averaging timescale for interpreting
air–sea EC CO2 fluxes?

We use an auto-covariance method to determine the opti-
mal averaging timescale. The observed variance in CO2 flux
consists of random uncertainty (random noise) as well as nat-
ural variability. The random noise component should only
contribute to the CO2 flux variance when the data are zero-
shifted. After the CO2 flux data are shifted, the noise will not
contribute to the auto-covariance function. Figure 7 shows
the auto-covariance function of the air–sea CO2 flux with dif-
ferent averaging timescales for Arctic cruise JR18007. For
the 20 min fluxes (Fig. 7a), the auto-covariance decreases
rapidly between the zero shift and the initial time shift, which
indicates that a large fraction of the 20 min flux variance is
due to random noise.

The random noise in the CO2 fluxes decreases with a
longer averaging timescale, with the greatest effect ob-
served from 20 min to 1 h (Fig. 7b). A fit to the noise-
free auto-covariance function extrapolated back to a zero
time shift gives us an estimate of the non-noise variabil-

ity in the natural CO2 flux. Subtracting the extrapolated
natural flux variability from the total variance in CO2 flux
provides an estimate of the random noise in the flux for
each averaging timescale (Fig. 7a). All four cruises con-
sistently demonstrate a non-linear reduction in the noise
contribution to the flux measurements when the averag-
ing timescale increases (Fig. 8). The random noise in flux
can be expressed relative to the natural variance in flux
representing the inverse of the signal-to-noise ratio (i.e.
random noise in flux/natural flux variability, hereafter re-
ferred to as noise : signal).

The noise : signal also facilitates comparison of all four
cruises (Fig. 8) and demonstrates the consistent effect that
increasing the averaging timescale has on noise : signal. Con-
sistent with Table 4, the Arctic cruises show much lower
noise : signal because the flux magnitudes are much larger.
Typical detection limits in analytical science are often de-
fined by a 1 : 3 noise : signal ratio. A 1 : 3 noise : signal
is achieved with a 1 h averaging timescale for the Arctic
cruises. The Atlantic cruises encountered much lower air–
sea CO2 fluxes, and an averaging timescale of at least 3 h is
required to achieve the same 1 : 3 noise : signal ratio.

The flux measurement uncertainty at a 6 h averaging
timescale for the AMT cruises is ∼ 0.6 mmolm−2 d−1. The
analysis presented above permits an answer to the question
posed at the beginning of the Results section. The mean dif-
ference between the 6 h averaged EC CO2 flux observations
on AMT29 and AMT28 (1.3 mmolm−2 d−1; Fig. 4a) is much
greater than the measurement uncertainty. This significant
difference was likely because of the interannual variability
in AMT CO2 flux due to changes in the natural environment
(e.g. 1fCO2, sea surface temperature, and physical drivers
of interfacial turbulence such as wind speed) during the two
cruises.

At a typical research ship speed of ∼ 10 knots, the AMT
cruises cover ∼ 110 km in 6 h, which is equivalent to ∼ 1◦

latitude. Averaging for longer than 6 h is likely to cause sub-
stantial loss of real information about the natural variations
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Figure 7. (a) Auto-covariance of the original 20 min fluxes (cruise JR18007) and a fit to the noise-free auto-covariance function extrapolated
back to a zero time shift. (b) CO2 flux auto-covariance functions with different averaging timescales. The black line represents the auto-
covariance of the original 20 min fluxes. The 20 min fluxes are further averaged at different timescales (1, 2, 3, and 6 h), and the corresponding
auto-covariance functions are shown with different colours (dark blue, orange, green, and light blue).

Figure 8. Effect of the averaging timescale on the noise :
signal (random noise in flux/natural flux variability) for EC air–
sea CO2 flux measurements during four cruises.

in air–sea CO2 flux and the drivers of flux variability. For ex-
ample, the mean flux between 0–20◦ S during cruise AMT28
is 0.9 mmolm−2 d−1. However, the 6 h average EC measure-
ments show that the flux varied between +5 mmolm−2 d−1

(∼ 2–6◦ S) and −5 mmolm−2 d−1 (∼ 11–13◦ S; Fig. 4a).

4.2 Effect of CO2 flux uncertainty on the gas transfer
velocity K

The uncertainties in the EC CO2 air–sea flux measurement
will influence the uncertainty that translates to EC-based es-
timates of the gas transfer velocity, K . For illustration, K
is computed for Arctic cruise JR18007, which had a high
flux signal : noise ratio of ∼ 5 (Fig. 8). Any data potentially
influenced by ice and sea ice melt were excluded using a

Figure 9. Gas transfer velocity (K660) measured on Arctic cruise
JR18007 (hourly average, signal : noise ∼ 5) vs. 10 m neutral
wind speed (U10N). Red squares represent 1 ms−1 bin aver-
ages, with error bars representing 1 standard deviation (SD).
The red curve represents a quadratic fit using the bin averages:
K660= 0.22U2

10N+ 2.46 (R2
= 0.76). The grey shaded area rep-

resents the standard deviation calculated for each wind speed bin
(K660± 1 SD). The cyan region represents the upper and lower
bounds in K660 uncertainty computed from the EC flux uncertainty
(K660± δK660; see text for detail).

sea surface salinity filter (data excluded when salinity < 32).
Equation (1) is rearranged and used with concurrent mea-
surements of CO2 flux (F ),1fCO2, and sea surface temper-
ature (SST) to obtainK adjusted for the effect of temperature
(K660).

The determination coefficient (R2) of the quadratic fit
between wind speed (U10N) and EC-derived K660 (Fig. 9)
demonstrates that wind speed explains 76 % of theK660 vari-
ance during Arctic cruise JR18007. How much of the remain-
ing 24 % can be attributed to uncertainties in EC CO2 fluxes?
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Variability in K660 within each 1 ms−1 wind speed bin
can be considered to have minimal wind speed influence. It
is thus useful to compare the variability within each wind
speed bin (K660± 1 SD) with the upper and lower uncer-
tainty bounds derived from the EC flux measurements. Un-
certainty in EC flux-derived K660 (δK660) is calculated from
the uncertainty in hourly EC flux (δF ) by rearranging Eq. (1)
(bulk flux equation) and replacing F with δF . The resultant
δK660 is then averaged in wind speed bins. The shaded cyan
band in Fig. 9 (K660± δK660) is consistently narrower than
the grey shaded band (K660± 1 SD). On average, EC flux-
derived uncertainty in K660 can only account for a quarter
of the K660 variance within each wind speed bin, and the
remaining variance is most likely due to the non-wind speed
factors that influence gas exchange (e.g. breaking waves, sur-
factants).

The analysis above can be extended to assess how EC flux-
derived uncertainty affects our ability to parameterise K660
(e.g. as a function of wind speed). To do so, a set of synthetic
K660 data is generated (sameU10N as theK660 measurements
in Fig. 9). The synthetic K660 data are initialised using a
quadratic wind speed dependence that matches JR18007 (i.e.
K660= 0.22U2

10N+ 2.46). Random Gaussian noise is then
added to the syntheticK660 data, with relative noise level cor-
responding to the relative flux uncertainty values taken from
JR18007 (mean of 20 %; Table 4). The relative uncertainty
in K660 due to EC flux uncertainty (δK660/K660) shows a
wind speed dependence (Fig. S4a in the Supplement), and the
artificially generated Gaussian noise incorporates this wind
speed dependence (Fig. S4b, Supplement). The R2 of the
quadratic fit to the synthetic data as a function ofU10N is 0.90
(the rest of the variance is due to uncertainty in K660). Since
wind speed explains 76 % of variance in the observed K660,
it can be inferred that non-wind speed factors can account
for 14 % (i.e. (100–76) %–(100–90) %) of the total variance
inK660 from this Arctic cruise. If the syntheticK660 data are
assigned a relative flux uncertainty of 50 % (reflective of a
region with low fluxes, e.g. AMT28/29), the R2 of the wind
speed dependence in the synthetic data decreases to 0.60.

The relative uncertainty in EC flux-derived K660
(δK660/K660) is large when |1fCO2| is small (Fig. 10).
Previous EC studies have filtered EC flux data to remove
fluxes when the |1fCO2| falls below a specified thresh-
old (e.g. 20 µatm, Blomquist et al. (2017); 40 µatm, Miller
et al. (2010), Landwehr et al. (2014), Butterworth and
Miller (2016), Prytherch et al. (2017); 50 µatm, Landwehr
et al. (2018)). Analysis of the data presented here suggests
that a |1fCO2| threshold of at least 20 µatm is reason-
able for hourly K660 measurements, leading to δK660 of
∼ 10 cmh−1 (δK660/K660∼ 1/3) or less on average. At very
large |1fCO2| of over 100 µatm, δK660 is reduced to only
a few centimetres per hour (cmh−1) (δK660/K660∼ 1/5). At
longer flux averaging timescales, it may be possible to relax
the minimal |1fCO2| threshold.

Figure 10. Relative uncertainty in EC-estimated hourly K660
(δK660/K660) vs. the magnitude of the air–sea CO2 fugacity differ-
ence (|1fCO2|) during Arctic cruise JR18007 and Atlantic cruises
AMT28 and AMT29 (no1fCO2 data were collected on JR18006).
The data points are colour-coded by wind speed. Blue points are
medians of δK660/K660 in 5 µatm bins. Here we use the param-
eterised K660 (= 0.22U2

10N+ 2.46) to normalise the uncertainty
in K660. The dashed line represents the 3 : 1 signal : noise ratio
(δK660/K660 = 1/3).

5 Conclusions

This study uses data from four cruises with a range in air–sea
CO2 flux magnitude to comprehensively assess the sources
of uncertainty in EC air–sea CO2 flux measurements. Data
from two ships and two different state-of-the-art CO2 analy-
sers (Picarro G2311-f and LI-7200, both fitted with a dryer)
are analysed using multiple methods (Sect. 2.3). Random er-
ror accounts for the majority of the flux uncertainty, while the
systematic error (bias) is small (Table 4). Random flux uncer-
tainty is primarily caused by variance in CO2 mixing ratio
due to atmospheric processes. The random error due to in-
strument noise for the Picarro G2311-f is 3-fold smaller than
for LI-7200 (Table 4 and Fig. D1, Appendix D). However,
the contribution of the instrument noise to the total random
uncertainty is much smaller than the contribution of atmo-
spheric processes such that both gas analysers are well suited
for air–sea CO2 flux measurements.

The mean uncertainty in hourly EC flux is estimated to
be 1.4–3.2 mmolm−2 d−1, which equates to the relative un-
certainty of ∼ 20 % in high CO2 flux regions and ∼ 50 % in
low CO2 flux regions. Lengthening the averaging timescale
can improve the signal : noise ratio in EC CO2 flux through
the reduction of random uncertainty. Auto-covariance anal-
ysis of CO2 flux is used to quantify the optimal averaging
timescale (Figs. 7 and 8, Sect. 4.1). The optimal averaging
timescale varies between 1 h for regions of large CO2 flux
(Arctic in our analysis) and at least 3 h for regions of low
CO2 flux (tropical/subtropical Atlantic in our analysis).
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The measurement uncertainty in EC CO2 flux contributes
directly to scatter in the derived gas transfer velocity, K660.
Flux uncertainties determined in this paper are applied to
a synthetic K660 dataset. This enables a partitioning of the
variance in measured K660 that is due to EC CO2 flux un-
certainty, wind speed, and other processes (10 %, 76 %, 14 %
for Arctic cruise JR18007). At a given averaging timescale,
a |1fCO2| threshold helps to reduce the scatter in K660. A
minimum |1fCO2| filter of 20 µatm is needed for interpret-
ing hourly K660 data, with the signal : noise ratio in K660
improving further at higher |1fCO2|.

Atmos. Chem. Phys., 21, 8089–8110, 2021 https://doi.org/10.5194/acp-21-8089-2021



Y. Dong et al.: Uncertainties in eddy covariance air–sea CO2 flux measurements 8103

Appendix A: Cruise tracks

Figure A1. Cruise tracks of JR18006 (magenta) and JR18007 (green). The bottom colour bar indicates the CO2 fugacity difference (1fCO2)
of August 2019 (Bakker et al., 2016; Landschützer et al., 2020), while the right colour bar shows the Arctic sea ice concentrations of 1 August
2019 measured by Advanced Microwave Scanning Radiometer – Earth Observing System Sensor (AMSR-E; Spreen et al., 2008).

Figure A2. Cruise tracks of AMT28 (magenta) and AMT29 (green). The ocean is coloured with the1fCO2 for October 2018 (Bakker et al.,
2016; Landschützer et al., 2020).
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Appendix B: Integral timescale and variance spectra of
CO2 and vertical wind velocity

Integral timescale is used in the flux uncertainty calculation
(Eqs. 5 and 7). The definition of integral timescale τx of vari-
able x is

τx =
1
σ 2
x

∞∫
0

rxx(t)dt, (B1)

where σ 2
x is the variance of x, and rxx is the auto-covariance

function of x. t is the shifting time of auto-covariance (which
is different from the lag time between w and CO2 in the EC
flux calculation). We can use Eq. (B1) to estimate the inte-
gral timescale of w and CO2 directly. However, integration
up to infinity is not practical. Instead we can numerically es-
timate the timescale by determining the time corresponding
to the auto-covariance coefficient function (rxx/σ 2

x ) value de-
caying to 1/e (1/e decaying method) or by integrating the
auto-covariance function up to the first zero crossing of the
function (zero crossing method) (Rannik et al., 2009).

One can also use similarity theory to estimate the integral
timescale theoretically (Blomquist et al., 2010):

τw = 2.8
z

ur
fτ (z/L). (B2)

Here, ur is the relative wind speed. The similarity function
fτ (z/L) is described by the stability parameter z/L, where
z is the observation height (m), and L is the Obukhov length
(m) (Blomquist et al., 2010).

Yet another method to estimate the integral timescale is
from the peak frequency (fmax) in the w variance spectrum
(Kaimal and Finnigan, 1994):

τw =
1

2πfmax
. (B3)

The integral timescales ofw estimated by these four meth-
ods for cruise JR18007 are shown in Fig. B1. The inte-
gral timescale estimated by the zero crossing method agrees
well with the peak frequency estimates using Eq. (B3). The
1/e decaying method tends to underestimate the integral
timescale, which is generally observed for turbulent sig-
nals (Rannik et al., 2009), whereas the similarity method
(Eq. B2) considerably overestimates the integral timescale.
Based on the recent analysis (as yet unpublished) of the en-
tire NOAA PSL flux database, the Eq. (B2) formulation is
now thought to be an overestimate (review comment for this
paper from Blomquist, 2021). In this study we use the in-
tegral timescale of w from the zero crossing method to es-
timate the theoretical flux uncertainty (Eqs. 5 and 7). The
theoretical systematic error estimates (Eq. 8) also require the
integral timescale of CO2. The integral timescale of CO2 is
difficult to evaluate from the above four methods due to in-
strument noise. Instead, we estimate it by directly integrating

Figure B1. Comparison of integral timescales of w estimated
by four different methods. Estimated integral timescales from the
zero crossing method (integrating the auto-covariance function up
to first zero crossing the function) agree well with the estima-
tion of peak frequency method (Eq. B3). However, the similarity
method (Eq. B2) overestimates the integral timescale, whereas the
1/e decaying method (determining the time needed for the auto-
covariance coefficient function value to decay to 1/e) tends to un-
derestimate the integral timescale.

Figure B2. Mean variance spectra for CO2 and w for one Arctic
cruise JR18007. The near-constant CO2 variance at high frequency
(1–5 Hz) indicates the band-limited noise in the CO2 signal. In con-
trast, the w spectrum does not show a similar band-limited noise
at < 10 Hz.

the auto-covariance function (Eq. B1) to a shift time of 200 s
(we found no significant difference of the integral timescale
when integrating the CO2 auto-covariance function for shift
times ranging from 150 to 250 s).

Atmos. Chem. Phys., 21, 8089–8110, 2021 https://doi.org/10.5194/acp-21-8089-2021
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Appendix C: Comparison of the uncertainty estimates
by different methods

Figure C1. Comparison of total random uncertainties in hourly flux estimated by three different methods for the Arctic cruises. The em-
pirical estimates FR,Wienhold agree well with one of the theoretical estimates 1FR,Finkelstein (r = 0.93). The other theoretical estimate
1FR,Blomquist is slightly higher than the random uncertainties 1FR,Finkelstein (slope= 1.13) if the constant in Eq. (8) is set equal to

√
2.

Figure C2. Comparison of random error in hourly flux due to instrument white noise, estimated by three different methods for the Arctic
cruises. The three uncertainty estimations agree well. The correlation coefficient (r) between δFRN,Mauder and δFRN,Blomquist is 1 if the
constant in Eq. (7) (a) is set to

√
2.
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Appendix D: Performance of two gas analysers

Figure D1 shows a comparison between the performance of
the Picarro 2311-f and the LI-7200 gas analysers. We esti-
mated that the noise of the LI-7200 is on average 3 times
higher than that of the Picarro 2311-f (Table 3). Indeed, ran-
dom error in the CO2 flux due to the white noise is much
higher for the LI-7200 than for the Picarro 2311-f, but the
total flux uncertainty of the EC system with the LI-7200
on AMT29 is only slightly higher than that of the EC sys-
tem with the Picarro 2311-f on AMT28 (Table 4). Again,
this is because for both EC systems, sampling error dom-
inates the total random uncertainty, while the contribution
of instrument noise (< 30 %) to the total uncertainty is rela-
tively small (Billesbach, 2011; Langford et al., 2015; Mauder
et al., 2013; Rannik et al., 2016). Another often used CRDS
gas analyser in EC measurements is the Los Gatos Research
(LGR) Fast Greenhouse Gas Analyser (FGGA) (Prytherch
et al., 2017). Yang et al. (2016) showed that LGR FGGA is
ca. 10 times noisier than the Picarro G2311-f, and as a re-
sult, the total CO2 flux uncertainty measured by the LGR
is 4 times higher than that by the Picarro. From the perspec-
tive of measurement noise, Picarro and LI-7200 gas analysers
are better suited for air–sea CO2 flux measurements than the
LGR FGGA.

Figure D1. Comparison of the relative total random uncertainty and the relative random error component due to white noise for different gas
analysers. A Picarro G2311-f gas analyser was used on AMT28 and a LI-7200 infrared gas analyser on AMT29.
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