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Abstract: Different techniques exist for determining chlorophyll-a concentration as a proxy
of phytoplankton abundance. In this study, a novel method based on the spectral particulate
beam-attenuation coefficient (cp) was developed to estimate chlorophyll-a concentrations in
oceanic waters. A multi-layer perceptron deep neural network was trained to exploit the spectral
features present in cp around the chlorophyll-a absorption peak in the red spectral region. Results
show that the model was successful at accurately retrieving chlorophyll-a concentrations using cp
in three red spectral bands, irrespective of time or location and over a wide range of chlorophyll-a
concentrations.
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1. Introduction

The chlorophyll-a pigment is common to all microscopic algae and its concentration (Chl-a) in
natural waters is commonly used as a proxy for phytoplankton abundance. Different techniques
have been developed over the years to quantify Chl-a.

Chl-a can be measured in the laboratory on discrete water samples that are collected in the
field. The phytoplankton cells from these samples are concentrated on filters, their pigments
extracted using a solvent, and Chl-a quantified using techniques such as in-vitro fluorometry,
spectrophotomery or high-performance liquid chromatography (HPLC) [1]. Of these laboratory
methods, HPLC is currently considered as the gold standard for determining Chl-a (as well as
other accessory pigments) on discrete samples and can reach a maximum accuracy of ∼10% and
a reproducibility of ∼20% [2]. Despite its excellent performance, HPLC has some drawbacks
(e.g., high costs both for collecting and analysing samples as well as increased uncertainty from
handling samples in laboratories as compared to in-situ automatic methods), which limit the
achievable accuracy and the number of samples that can be generated.

To overcome these limitations, field techniques have been developed to estimate Chl-a in vivo
(i.e., on living phytoplankton cells) using sensors. The most commonly employed sensor to
estimate Chl-a in situ is the fluorometer that exploits the red fluorescence emitted by chlorophyll-a
when cells are illuminated with blue light (e.g., [3]). Fluorescence is approximately proportional
to Chl-a and in-situ fluorometers are compact, low-power, and relatively sensitive sensors, which
makes them ideal to be installed on autonomous platforms such as gliders and Biogeochemical-
Argo floats [4]. Nevertheless, the proportionality between fluorescence and Chl-a varies with
phytoplankton species (up to 7 times [5]) and physiological status (up to 6 times [6]), rendering
in-vivo fluorescence-based estimates of Chl-a rather inaccurate.
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Fig. 1. Average normalised (at 660 nm) spectra of particulate beam-attenuation coefficient
for different ranges of chlorophyll-a concentration (indicated in the legend by different line
types in mg/m3). λ1, λ2 and λ3 represent the ranges of wavelengths used to train the model.

More recently a new in-vivo technique, based on measuring the particulate absorption peak of
chlorophyll-a in the red spectral region (around 676 nm), has been developed using an absorption
and attenuation meter (WETLabs ACS or AC9, [7,8]) and demonstrated to estimate Chl-a
with high accuracy regardless of the phytoplankton species and physiological status [9–14].
Thus, estimates of Chl-a based on particulate absorption can overcome the problems of in-vivo
fluorometers, but still suffer from their own limitations. For example, in-situ measurements
of particulate absorption can only be conducted inside a closed path (e.g., [7]), which in turn
requires a pump to draw sample water in it, thus adding complexity to the measurement system
and preventing its installation on autonomous platforms.
Another optical property of the particles suspended in natural waters is the particulate

beam attenuation coefficient (cp), which is the sum of the particulate absorption and scattering
coefficients, the latter contributing the majority of cp in open-ocean waters [15]. cp has the
advantage of being considerably easier to measure than absorption, as for example it does not
require a closed path (e.g., [15]) and has also be installed on autonomous platforms.

Interestingly, peaks in the particulate absorption coefficient correspond to a spectral signature
in cp (Fig. 1) (e.g., [16]). This spectral feature in cp is caused by the so called “anomalous
dispersion" [17]. Briefly, the optical properties of particles (including phytoplankton cells) are
controlled by their complex refractive index, n = m + im′. The real part m of the refractive index
affects the scattering coefficient and thus cp, and typically displays a monotonic decrease as a
function of wavelength also known as normal dispersion [18]. Conversely, the complex part of
the refractive index, m′, determines its absorption coefficient and can display characteristic local
maxima and minima [18]. In the vicinity of a peak of m′, m displays an anomalous dispersion,
whereby m decreases (increases) at wavelengths shorter (longer) than the peak in m′ [17]. As a
consequence of this anomalous dispersion of m, the beam-attenuation coefficient also displays
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spectral features in correspondence of the red absorption peak of Chl-a [19,20], but the shape of
the cp spectral features depends on the size parameter and therefore is, in general, different from
that of m [17,19].
Thus measurements of cp in the spectral region around 676 nm contain information that is

directly related to Chl-a. However, this information is obscured by other variable factors including
the concentration, composition and size distribution of all the other particles suspended in the
water that generate a cp signal. As a consequence, only very recently has the estimation of Chl-a
from cp been attempted [21].

Here, we hypothesised that, with a dataset large enough to be representative of a wide range of
Chl-a values and optical conditions, a machine-learning algorithm could be trained to estimate
Chl-a from cp spectra. Luckily, tens of thousands of particulate absorption and attenuation
measurements have been collected in the surface ocean in underway mode [22] in many ocean
regions [9,10,12–14,23,24]. Importantly, all these data are freely available to the scientific
community in the NASA SeaBASS public database (seabass.gsfc.nasa.gov, [25]).
The main objective of this study was to answer the following question. Can we accurately

estimate Chl-a from cp measurements using few bands in the red spectral region and over a wide
range of Chl-a values? Below we will show that indeed deep-learning neural networks can be
trained to accurately estimate Chl-a from cp measurements at three bands in the red spectral
region. These results open the way to new applications of cp measurements in natural waters,
including the potential to develop new instrumentation to estimate Chl-a in situ.

2. Methods

2.1. Data description

To train the deep neural network a large dataset of particulate beam attenuation coefficients
(cp) and absorption-based chlorophyll-a (chl-ACS) estimates was used. cp and particulate
absorption data collected during numerous expeditions and processed as previously described
[9,11] were extracted from the NASA SeaBASS archive (Table 1, [25]). Due to miss-
ing chl-HPLC or missing cp data, only the following legs of the Tara Oceans expedition
were used: AbuDhabi-Masqat, Alger-Barcelone, Ba-Ushuaia, Beyruth-Alexandrie, Ct-Rio,
Easterisland-Guayaquil, Honolulu-SanDiego, Madagascar-Mayotte, Male-StBrandon, Masqat-
Mumbay, Mauritius-Reunion, Mayotte-CT,Moorea-Honolulu, Mumbay-Male, Panama-Savannah,
Reunion-Madagascar, Rikitea-Papeete, Rio-Ba, Sandiego-Panama, Savannah-NewYork, Sharm-
Jeddah, Tanger-Alger and Valparaiso-EasterIsland.

The line-height method applied to the chlorophyll-a absorption peak in the red spectral region
was used to obtain a nominal estimate of Chl-a from the ACS data (chl-ACS):

chl-ACSn = [ap(676) − 39/65ap(650) − 26/65ap(714)]/0.014, (1)

where 0.014 m2 mg Chl-a is a nominal estimate of the chlorophyll-a specific absorption coefficient
at 676 nm [8].
These chl-ACSn estimates were validated and de-biased by comparing them to concurrent

discrete high-performance liquid chromatography estimates of total chlorophyll-a (chl-HPLC;
estimated from the sum of monovinyl chl-a, divinyl chl-a and chlorophyllide a). Specifically,
estimates of chl-ACSn were interpolated in time onto coincident chl-HPLC samples taken near
the surface (≤5 m). Treating each expedition separately, we debiased the chl-ACSn estimates by
first computing the relative residuals between each chl-ACS and chl-HPLC measurement:

rel_res = chl-ACSn/chl-HPLC − 1 (2)

and then used their median, δ, to remove the bias from the initial estimates of chl-ACS as follows:

chl-ACS = chl-ACSn(1 − δ). (3)
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Table 1. Information on the datasets used to train and validate the neural network, as well as
summary statistics of the chl-ACS datasets before debiasing:“N. HPLC” and “N. ACS” are the

number of Chl-a values in the HPLC and ACS datasets, respectively; “Range” is the range of Chl-a
in the ACS dataset; δ and σ are the median and the robust standard deviation of the relative

residuals between chl-ACS and chl-HPLC, respectively, before we subtracted the bias from each
relationship (Eq. (3)). a and b are estimates of the parameters fitted to the equation chl-HPLC = aLb ,
where L = 0.014 × chl-ACSn (see Eq. (1)). Numbers in brackets after a and b are their 95% confidence

intervals.

Expedition N. HPLC N. ACS Range (mg/m3) δ σ a b

Tara Oceans 105 186342 0.01 – 7.19 0.14 0.69 180 (350) 1.19 (0.34)

Tara Polar 86 60173 0.04 – 8.88 -0.045 0.40 50 (56) 0.92 (0.21)

NAAMES1 39 13568 0.19 – 4.27 0.00 0.18 89 (175) 1.05 (0.39)

NAAMES2 37 17836 0.14 – 9.28 -0.16 0.18 84 (61) 1.00 (0.17)

NAAMES3 41 15952 0.07 – 2.29 -0.01 0.14 35 (53) 0.88 (0.28)

NAAMES4 42 14743 0.21 – 4.26 -0.10 0.14 49 (59) 0.90 (0.26)

NAB08 20 839 0.43 – 4.64 -0.06 0.10 22 (24) 0.71 (0.26)

TAO2012 104 1222 0.04 – 0.42 0.052 0.12 92 (69) 1.05 (0.12)

AMT19 16 814 0.03 – 0.72 -0.14 0.073 77 (27) 1.00 (0.05)

AMT22 215 32015 0.00 – 1.31 0.042 0.14 64 (16) 1.00 (0.04)

AMT26 81 34518 0.01 – 2.25 0.022 0.073 68 (38) 0.97 (0.09)

Tot. train 35787 0.00 – 9.28

Tot. valid 128007 0.00 – 9.23

This de-biasing was performed because HPLC is currently considered as the “gold standard”
for estimating Chl-a. Therefore, any bias found in the chl-ACSn estimates (when compared to
chl-HPLC) was attributed to imperfections in the absorption line-height method.

Once de-biased, the chl-ACS and corresponding cp weremedian filtered (in the time dimension),
with a window size of 30 minutes, to remove any high-frequency noise in the data. The median
filtered data which were less than 3 times the robust standard deviation of the filtered data were
kept, which removed 13% of the initial data points across all the cruises. Finally, negative
chl-ACS values were removed.

To make our results comparable to previous studies [26,27], we also fitted for each expedition
the power law chl-HPLC = aLb, where L = 0.014 × chl-ACSn. The resulting exponents were
hardly ever significantly different from 1 (Table 1), indicating that the relationships between
chl-HPLC and L were linear. These results are in disagreement with previous findings reporting
a non-linear relationship between chl-HPLC and particulate absorption in the red spectral region
[26] and suggest that the ACS red-absorption data used in this study were not affected by the
"package effect".

2.2. Data division

The cp and chl-ACS datasets described in section 2.1 were divided into three separate datasets:
training, validation and independent validation. All the datasets in Table 1, excluding Tara
Oceans, were divided into the training and validation datasets. The training dataset was used to
train the model. The validation dataset was used to validate the model once it had been trained,
however, as the data in the validation dataset came from the same expeditions as the training
dataset, it was not considered truly independent. To independently validate our model, the Tara
Oceans dataset was used, which consisted of data from an expedition in areas which were not
included in the training dataset. The spatial and temporal distribution of the datasets can be seen
in Figs. 2 and 3.
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Fig. 2. Map of the spatial and temporal distribution of the training and validation datasets.
Reported seasons are respective of each hemisphere.

The training and validation datasets were divided by applying a stratified sampling: the initial
dataset, excluding the Tara Oceans expedition, was divided into 500 log-scaled bins of chl-ACS
between 0.004 mg/m3 and 9.28 mg/m3. Then, based on the observed maximum number of
samples available in the bin with the fewest samples, samples were randomly extracted from
each bin to generate the training dataset. Note that the bins at the extremes of the Chl-a range
had fewer than 100 points, because fewer measurements were available. Finally, to ensure that
each bin was represented in the validation dataset, when the number of samples within a bin was
less than 60, a single randomly selected sample was moved from the training dataset into the
validation dataset.

2.3. Deep neural network

2.3.1. Data augmentation

Data augmentation is a key step needed to maximise the performance of deep neural networks
and it aims at increasing the amount and diversity of the input data. Data augmentation can
involve extracting additional features from the input data (e.g., gradients) or data normalisation.

Initially, neural networks were fitted to the data produced in sections 2.1 and 2.2. However, we
found that data augmentation could improve the performance of the models.

The initial data were in the form of cp spectra (from 620 to 710 nm, interpolated every 2 nm)
and the corresponding chl-ACS values. To minimise the training time, we extracted one cp value
from three wavelength ranges defined as λ1 (664 - 670 nm), λ2 (682 - 688 nm) and λ3 (704 - 710
nm) (shown in Fig. 1). These ranges were selected through experimentation, but also keeping in
mind the main characteristics of spectral cp around the red absorption peak (Fig. 1). The width
of the spectral ranges was limited by computational costs. A spectral width of 6 nm (4 different
values for each specific range) was found to be suitably representative of the spectral features,
while not requiring too many additional computational resources. The experimentation consisted
of training models using several ranges around the spectral features and observing their bias
and precision, until the wavelength ranges above were reached. Thus the initial training data set
contained in each row the three cp values selected from the three wider λ1, λ2 and λ3 ranges as
well as their corresponding chl-ACS value.

This initial training dataset was then augmented as follows. The absolute value of cp varies
due to different factors besides Chl-a [15], while the imprint of chlorophyll-a absorption on cp
results in specific spectral features (Fig. 1). Therefore the gradients and ratios between the three
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Fig. 3. Map of the spatial and temporal distribution of the independent validation dataset.
Seasons are respective of hemisphere.

selected cp values were also computed and used as inputs. Gradients were calculated as follows:

∇ =
cp(λi) − cp(λj)

λi − λj
(4)

Using these gradients and ratios, a new input vector was formed for the neural network. The
input vector consisted of 12 features: three cp values, and the three gradients and three ratios
between the cp values, as well as the three wavelengths at which the cp values were measured.
To ensure equal weighting of all features when training the model: all 12 features were

normalised using Z-score normalisation:

Z-score =
xi − µ

σ
, (5)

where xi is the ith value of a given feature x, µ is the mean value of x and σ is its standard
deviation.
Finally, we repeated the above procedure for all possible combinations of λ1, λ2 and λ3 in

the wavelength ranges mentioned above. Thus we were able to train the network on multiple
wavelength combinations and assess which wavelength triplet resulted in the most accurate
estimates of Chl-a (lowest bias and precision of the relative residuals).

2.3.2. Network architecture

The deep neural network architecture used was a Multi Layer Perceptron (MLP) which was
shown to produce strong regression results and was previously successfully applied to chlorophyll
retrievals [28–30]. A MLP is composed of an input layer, hidden layers and an output layer. The
MLP used in this study was designed with two hidden layers each consisting of 2048 nodes
(this number of nodes was reached through experimentation, Fig. 4). To reach this architecture,
we tested, using the bias and precision of the relative residuals as optimising metrics, other
architectures including an encoder or random forest regressor as well as different numbers of
neurons (from 32 to over 2048 per layer).

In a neural network, the activation function of a node defines the output from the node, based
on the input. Activation functions allow non-linear relations in the neural network, permitting the
translation of complex data into output values. Without these functions neural networks would
only be capable of linear mapping from inputs to outputs. The activation function employed in
this study was the rectified linear activation function max(0, x), where x is the input to the neuron
[31].
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Fig. 4. Multi-Layer Perceptron architecture used in this study.

To improve the performance and resilience of the model to outliers, an ensemble of the nine best
performing MLPs was employed to generate predictions. Each of these MLP models individually
predicted Chl-a values (chl-CP), but here we report the median of the nine models. An additional
important advantage of using this ensemble prediction is that it allowed us to provide estimates
of the prediction uncertainty. This uncertainty was computed as the robust standard deviation
of the nine predicted chl-CP values divided by the square root of nine, in order to provide a
"robust" equivalent to the standard error of the mean. While each of the ensemble models has the
same architecture (Fig. 4), their results vary due to the random sampling of the training dataset
(section 2.2), as well as because the initial weights of each MLP were randomly assigned (see
next section).

2.3.3. Network tuning

Each MLP was trained by means of the optimiser function called RMSprop [32], which was
selected due to its speed of convergence [32]. The weights in a model are the coefficients
that parameterise the functions linking inputs, nodes and output. Initially these weights are
randomised, then RMSprop applies iterative changes to the weights to attempt to minimise the
value of the loss function, in this case the Huber loss function [33]:

Lα(y, f (x)) =

{
1
2 (y − f (x))2 for|y − f (x)| ≤ α
α |y − f (x)| − 1

2α
2 otherwise,

(6)

where y is the true or observed value (chl-ACS), f (x) is the predicted value (chl-CP) and α a
tuning parameter. The Huber-loss function attempts to achieve a balance between the Mean
Absolute Error (MAE) and Mean Squared Error (MSE) loss functions. The MAE is more robust
to outliers, whereas the MSE produces more accurate models [34]. In the Huber loss function, α
determines which part of the loss function is used based on the error, defined as |y − f (x)| (see
Eq. (6)). An α value of 1.5 was selected for this model, which meant that if the error in the
model was less than 1.5 mg/m3 then the MAE loss function was applied, and else the MSE was
employed. This α was selected through experimentation and found as the best balance between
robustness against outliers, that were especially important at lower chl-ACS concentrations, and
accuracy.
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The model was tuned with the training dataset for 200 epochs, where one epoch is defined as
one forward and backward training iteration of the network. Early stopping with a “patience” of
70 was used, which stopped the tuning if an improvement on the current best loss function was
not reached for 70 consecutive epochs.

3. Results

3.1. Data results

Figure 5 shows that there was a strong correlation between debiased chl-ACS and chl-HPLC.
The samples were also well distributed across a wide range of chlorophyll-a values. This result
confirmed that chl-ACS was suitable to be used as accurate Chl-a values when training and
validating the deep neural network model.

Fig. 5. (A) Scatter plot between debiased chl-ACS vs. chl-HPLC and (B) the corresponding
relative residuals computed as chl-ACS/chl-HPLC−1. δ represents the median (i.e., the
bias of the relationship) and σ the robust standard deviation (i.e., the precision) of the
relative residuals. Compiled using data from all the cruises in Table 1 with orange points
representing the Tara Oceans expedition.

The distributions of chl-ACS for the three datasets (training, validation and independent
validation) resulting from the stratified sampling are presented in Fig. 6. The training dataset
was uniformly distributed between about 0.03 and 3 mg/m3 with fewer data outside these limits.
The validation dataset contained a large number of samples with chlorophyll-a values less than 2



Research Article Vol. 28, No. 16 / 3 August 2020 / Optics Express 24222

mg/m3. The independent-validation dataset contained relatively few samples above 1 mg/m3, but
a significant number of them below 0.03 mg/m3.

Fig. 6. Distributions of the training, validation and independent-validation datasets.

Fig. 7. Bi-dimensional histograms of (A) the relationship between predicted chl-CP and
measured chl-ACS and (B) the corresponding relative residuals, computed as chl-ACS/chl-
HPLC−1, for the validation dataset. δ represents the bias of the relationship (the median of
the relative residuals) and σ shows its precision (the robust standard deviation). Horizontal
dashed lines mark the ±50% residuals.
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The training and validation data were mostly collected from spring to autumn in the Atlantic
and Arctic (Fig. 2), although few samples in these datasets were collected in the equatorial Pacific
and during winter. The independent validation data were collected in all seasons and in oceanic
regions, such as the Indian ocean and the Red Sea, for which no training data were available
(Fig. 3).

3.2. Validation dataset results

The neural-network was successful at predicting Chl-a across a wide range of conditions. A
strong relationship was found between chl-ACS in the validation dataset and the 9 neural-networks
selected for the ensemble. Figure 7 shows the predicted chl-CP using λ1 = 670 nm, λ2 = 688
nm, λ3 = 710 nm for one of the models selected for the ensemble. The prediction bias (-3%) and
precision (23%) remained relatively consistent across the whole range of chl-ACS. The results
of only one model rather than the ensemble are presented here as each of the 9 models in the
ensemble had a different training-validation split as described in section 2.2. The results of the

Fig. 8. (A) and (B) As for Fig. 7, but for the independent validation and using the median
value from the 9 models forming the ensemble. (C) Relative prediction uncertainty estimated
from the variability within the ensemble.
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remaining 8 models which formed the ensemble closely resembled the results in Fig. 7, with a
median bias of -7% and median precision of 23% across the 9 models.

3.3. Independent-validation dataset results

Ensemble predictions (using cp at λ1 = 670 nm, λ2 = 688 nm, λ3 = 710 nm) also compared
favourably to observations for the independent-validation dataset (with +2% bias and a precision
of about 22%). This result suggests that the ensemble can predict Chl-a regardless of the season
or region in which cp is sampled (Fig. 8). However, the accuracy of the model appeared to
degrade at lower chl-ACS concentrations (<0.05 mg/m3). On the other hand, the model was still
able to accurately predict chl-CP at chlorophyll-a concentrations >3 mg/m3.

The relative prediction uncertainty, computed from the precision of the ensemble models, was
<20% from the highest chl-ACS concentration down to about 0.05 mg m−3 (Fig. 8(C)), indicating
that at these concentrations model predictions could be trusted. However, at chlorophyll levels
below 0.05 mg m−3 the uncertainty approached 100%, suggesting lower accuracy for these
predictions, consistent with the validation data (Fig. 8(B)).

Figure 9 presents the relative bias and relative precision obtained for the independent-validation
dataset when training the ensemble with different λ1 and λ2 combinations, while keeping λ3
fixed at 710 nm. Even in the narrow ranges of wavelengths we selected, there were specific pairs
of λ1 and λ2 that resulted in significantly more accurate predictions. Specifically combinations of
longer λ1 and λ2 appeared to produce less biased results. On the other hand, Fig. 9(B) shows that,
regardless of λ1 and λ2, the relative precision of the models remained consistently around 0.22.

Fig. 9. Relative bias (in absolute value, A) and relative precision (B) of the relative residuals
computed for the independent-validation dataset for multiple λ1 and λ2 combinations, while
keeping λ3 fixed at 710 nm.

4. Discussion

4.1. Use of a neural network

Devising a mechanistic model to predict chlorophyll-a concentration (Chl-a) from three spectral
channels of the particulate beam attenuation (cp) is challenging because, besides the absorption
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by chlorophyll-a, multiple other factors simultaneously affect cp. We attempted this task with
a deep neural network and were successfully able to predict chl-CP with a minimal bias. We
believe the success of this method is due to the ability of the network to disentangle from the cp
spectra the information about the absorption by Chl-a. This ability most likely arises from the
flexibility of the neural network and the very large training dataset that we assembled.
The model ensemble was based on randomising the initial weights of each model and on

random sampling of the training dataset. This ensemble prediction allowed us to estimate the
uncertainty of our predictions as well as to maximise the information contained in the training
data, without biasing the model towards specific concentrations of chl-ACS (section 2.2).

4.2. Regional and seasonal distribution of independent-validation dataset

The results from the independent-validation dataset in Fig. 8 show that the network also performed
well in geographic regions it had not been exposed to during training (Fig. 3). Therefore, the
network was successfully trained to avoid regional or seasonal biases. Nonetheless, the results
presented for the independent-validation dataset (Fig. 8) were somewhat noisier, (i.e., with a
larger bias at lower Chl − a concentrations) than those for the validation dataset (Fig. 7). We
hypothesise that an important reason for this discrepancy may be that the independent-validation
dataset was collected during the Tara Oceans expedition. During this expedition, the HPLC
samples were collected by personnel who had received minimal training in water sampling
and filtration and sometimes samples were shipped in sub-optimal conditions to the laboratory
that conducted the HPLC analyses (E. Boss, personal communication, 2020). In addition, 2
liters of water were sampled for HPLC analyses [27], but this water volume is probably too
low to accurately determine Chl-a in oligotrophic waters. Furthermore, Tara Polar crossed
many land sources which could have resulted in very different cp spectra from increased mineral
concentrations. This line of reasoning could help in explaining the larger noise in Fig. 8 and
the poorer statistics for Tara Oceans and Tara Polar in Table 1. Importantly, we do not mean
to discredit the monumental efforts spent collecting and sharing the precious data on the Tara
expeditions: we are simply trying to provide a plausible explanation for the larger noises observed
for these datasets.

4.3. Performance of model at lower chl-ACS concentrations

The model bias increased at lower chl-ACS concentrations (Figs. 7 and 8). The bias in Fig. 7
is interesting, because the network should have been more robust when validated against data
from datasets that it was trained on. This bias could be due to the intrinsic noise of the ACS
absorption measurements and to the lack of features in the spectral cp at very low chl-ACS
concentrations (Fig. 1). As the chl-ACS concentration decreases the cp curve becomes smoother
and loses the features that the neural network relies on to predict chl-CP. In addition, in clear
waters the chl-ACS estimates approach their background noise, which is determined by the
precision of the ap data [11]. The relatively higher bias in Fig. 8 at very low concentration
of Chl-a is due to samples from the South Pacific subtropical gyre that presents the clearest
waters on the planet and specific phytoplankton assemblages. This extremely low Chl-a values
and ocean region were missing from the training database. This drawback could potentially be
improved upon by re-training the models using additional independent measurements collected
in these ultra-oligotrophic waters. The increase in prediction uncertainty at the same low Chl-a
(Fig. 8(C)) is also most likely a result of the phenomena described above. As a result of these
factors, the variability among model predictions increased at the lower chlorophyll concentrations
causing the increase in uncertainty. This demonstrates that associating an uncertainty with every
chl-CP prediction is important to decide the extent to which the predicted value can be trusted.
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4.4. Performance of model compared to absorption

A further test was performed to compare the performance of the attenuation-based chl-CP
estimates against the absorption-based chl-ACS. For this test the chl-ACS was not de-biased.
The chl-CP and chl-ACS were independently validated against HPLC measurements taken from
the Tara Oceans expedition. chl-ACS achieved a bias of +14% and precision of 69%, whereas
chl-CP achieved a bias of +1% and precision of 68%. Despite this difference in biases, due to
the relatively large variability of the Tara Oceans dataset (Table 1 and Fig. 5(B)), we can only
conclude that the two methods did not differ considerably, likely because the chl-CP method was
trained using the chl-ACS data.

5. Conclusion

A deep neural network was successfully trained to accurately predict Chl-a using spectral
particulate beam-attenuation coefficients. Additional training data could be used to improve the
accuracy of the model, especially at the extremes of the Chl-a range. Our study opens a new way
to exploit measurements of the particulate beam-attenuation coefficient.
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