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Abstract In oxygen minimum zones (OMZs), the attenuation rates of particulate organic carbon (POC)
fluxes of large particles are known to be reduced, thus increasing the efficiency with which the biological
carbon pump (BCP) transfers carbon to the abyss. The BCP efficiency is expected to further increase if OMZs
expand. However, little is known about how the POC fluxes of small particles—a significant component of
the BCP—are attenuated inside OMZs. In this study, data collected by two BGC‐Argo floats deployed in
the hypoxic OMZ of the eastern tropical North Atlantic were used to estimate net instantaneous fluxes of
POC via small particle during 3 years. This information was analyzed together with meteorological data and
published POC fluxes of large particles and allowed us to conclude that (1) major pulses of surface‐derived
small particles toward the OMZ interior coincided with seasonal changes in wind stress and precipitation;
(2) a permanent layer of small particles, presumably linked to microbial communities, was found in the
upper section of the OMZ which might play a key role attenuating POC fluxes; and (3) fluxes of large
particles were attenuated less efficiently inside this poorly oxygenated region than above it, while
attenuation of small‐particle fluxes were equivalent or significantly higher inside the OMZ. These results
highlight that more information about the processes controlling the fluxes of small and large particles in
hypoxic OMZs is needed to better understand the impact of hypoxic OMZs on the BCP efficiency.

1. Introduction

The biological carbon pump (BCP) is a set of mechanisms that removes atmospheric carbon dioxide by
exporting particulate organic carbon (POC) from the upper ocean toward its interior (Volk & Hoffert,
1985). As it sinks to the abyss, most POC is remineralized by bacteria back to CO2 and reexchanged with
the atmosphere on time scales that depend on the depth at which remineralization takes place (Kwon
et al., 2009). Thus, understanding what controls POC fluxes and their remineralization is crucial to mechan-
istically predict how the BCP controls atmospheric CO2 concentration and in turn mitigates the Earth's
climate (Falkowski et al., 1998; Parekh et al., 2006; Sarmiento & Gruber, 2006).

Ocean regions with a key role in POC remineralization are oxygenminimum zones (OMZs). OMZs are water
masses with low oxygen levels located at intermediate depths, which represent ~5% of the oceans volume
(e.g., 200–1000 m, O2 < 60 μmol kg−1, Deutsch et al., 2011; Paulmier & Ruiz‐Pino, 2009). These regions
appear to reduce POC remineralization rates allowing POC to reach deeper waters relative to oxygenated
areas (O2 > 120 μmol kg−1, Cavan et al., 2017, Devol & Hartnett, 2001; Engel et al., 2017; Martin et al.,
1987; Roullier et al., 2014; Van Mooy et al., 2002). Thus, the hypothesis that the potential expansion of
OMZs could increase the efficiency of the oceanic BCP is strengthening (e.g., Cavan et al., 2017; Deutsch
et al., 2014; Engel et al., 2017; Le Moigne et al., 2017; Oschlies et al., 2019; Schmidtko et al., 2017; Stramma
et al., 2008). However, this hypothesis is based on measurements of the attenuation rates of POC fluxes
mostly due to large sinking particles because these are the predominant fraction of particles collected by con-
ventional sediment traps (e.g., >100 μm; Arístegui et al., 2009; Buesseler et al., 2007; Devol & Hartnett, 2001;
Engel et al., 2017; Gardner et al., 1985; Martin et al., 1987; Trull et al., 2008; Van Mooy et al., 2002).

Small particles with sizes <100 μm can also transport significant amounts of POC to the abyss. Although
these particles can be formed both in the sunlit and mesopelagic regions by photo‐ and chemosynthesis
(Close et al., 2013; Herndl et al., 2005; Raven, 2009; Reinthaler et al., 2006; Roullier et al., 2014; Thunell
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et al., 2000; Wright et al., 2012), physical and biological fragmentation of large sinking particles is thought to
be one of the main sources of small particles in the mesopelagic region. Ultimately, fragmentation contri-
butes to small‐particle POC fluxes toward the abyss (e.g., >200 m depth, Boyd et al., 2019; Burd &
Jackson, 2009; Dilling & Alldredge, 2000; Giering et al., 2014; Jumars et al., 1989; Lampitt et al., 1990;
Mayor et al., 2014; Stemmann et al., 2004).

In the North Atlantic, fragmentation‐derived small‐particle fluxes contribute between 40% and 85% of the
total POC fluxes in the first 650 m depth, and these fluxes can show a strong seasonality linked to changes
in the mixed layer depth (MLD) (Dall'Olmo & Mork, 2014; Durkin et al., 2015; Giering et al., 2016). These
results demonstrate that the export of these tiny particles is a significant component of the BCP that varies
over time. Little is known however about POC fluxes via small particles and their attenuation rates in OMZs.

POC fluxes measured by conventional sediment traps are mostly due to large sinking particles because small
particles are not efficiently captured by these tools (Arístegui et al., 2009; Buesseler et al., 2007; Gardner
et al., 1985; Trull et al., 2008). Although methods exist to collect small particles (e.g., Marine Snow
Catcher, Durkin et al., 2015; Giering et al., 2016; Riley et al., 2012), these are still labor intensive and time
consuming and provide data with limited temporal, vertical, and spatial resolution. Therefore, complemen-
tary techniques are needed to assess what drives the temporal variations and attenuation rates of POC fluxes
by small particles in OMZs.

Net instantaneous fluxes of POC by small particles can be estimated from quasi‐continuous measurements
of particle backscattering (bbp, a proxy of POC; Stramski et al., 1999, 2004) collected by autonomous profiling
floats (i.e., “BGC‐Argo,” Dall'Olmo &Mork, 2014). Even though a typical range of 0.2–20 μm is assumed for
these small particles (Dall'Olmo & Mork, 2014), recent findings have demonstrated that the small particles
detected by bbp should range approximately between ~1 and 10 μm at least in the sunlit oligotrophic ocean
(Organelli et al., 2018). Thus, the dynamics of these small particles can be investigated using data from BGC‐
Argo floats to fill knowledge gaps about the BCP (e.g., Bishop & Wood, 2009; Dall'Olmo et al., 2016; Estapa
et al., 2017, 2019; Lacour et al., 2017; Mignot et al., 2018). However, so far BGC‐Argo observations have not
been used to study particle dynamics inside OMZs.

One important OMZ is located in the eastern tropical North Atlantic (ETNA). The ETNA OMZ is a hypoxic
region (e.g., O2 < 60–120 μmol kg−1) that has been expanding significantly over the last decades (Stramma
et al., 2008). Hypoxic regions are important because they occupy an oceanic volume ~100‐fold higher than
anoxic areas (Engel et al., 2017; Paulmier & Ruiz‐Pino, 2009; Stramma et al., 2010).

The aim of this study was to investigate particle export fluxes and their attenuation rates in the hypoxic OMZ
of the ETNA. We used data collected from two BGC‐Argo floats deployed in the ETNA OMZ to estimate ver-
tically resolved net instantaneous fluxes of POC by small particles during 3 years. This information, together
with complementary meteorological data retrieved from remote sensing and published POC fluxes by large
particles, allowed us to demonstrate that (1) major pulses of small particles derived from the fragmentation
of large aggregates were related to seasonal changes in wind stress and precipitation; (2) a permanent layer
rich in small particles, presumably linked to bacteria, was present between the upper and intermediate
layers of the OMZ and might have a key role attenuating the fluxes of small‐particle POC; (3) in the poorly
oxygenated waters studied, the attenuation rates of small‐particle POC fluxes were equivalent or signifi-
cantly higher relative to those in the well‐oxygenated regions above the OMZ, whereas large particles fluxes
were attenuated less efficiently inside the OMZ than above it.

1.1. Site Description

In the ETNA, the seasonal meridional migration of the intertropical convergence zone (ITCZ, Figure 1)
drives wind stress and precipitations (Nobre & Shukla, 1996). This forcing contributes to controlling primary
production and the export of particles from the surface to the abyss (Pastor et al., 2013; Schlosser et al., 2014;
Signorini et al., 1999).

1.2. Methods
1.2.1. External Forcing
Daily area‐averaged wind stress (τ, N m−2) was estimated from the Blended Mean Wind Field global data
product (http://marine.copernicus.eu/) at all locations of the BGC‐Argo profiles (e.g., location: latitude

10.1029/2019GB006305Global Biogeochemical Cycles

RASSE AND DALL'OLMO 2

http://marine.copernicus.eu/


±0.5° and longitude ±0.5°) for a backward period of 5 days. This backward period started from the day of the
profile and ended 5 days before it. These wind products were generated by the European Centre for Medium‐
Range Weather Forecasts by using scatterometers Advanced scatterometer (ASAT) and Oceansat‐2
scatterometer (OSCAT) retrievals with a horizontal resolution of 0.25 × 0.25 degrees.

Similarly, cumulative daily area‐averaged precipitation rates (mm d−1) were also extracted at the profile
locations and for the 5 days before each profile. These data were retrieved from the TRMMmultisatellite pre-
cipitation analysis with a temporal and spatial resolution of 3 hours (3B42RT) and 0.25 × 0.25 degrees,
respectively (https://giovanni.gsfc.nasa.gov/giovanni/).
1.2.2. Bio‐optical and Physicochemical Parameters
To assess how the ITCZ migration drives particle dynamics in this region, we used data collected with high
temporal and vertical resolution by two Biogeochemical‐Argo (BGC‐Argo) floats. These floats are uniquely
identified by World Meteorological Organization (WMO) numbers 6901174 and 6901175 and profiled every
5 days in the first 1000 m depth of the ETNA OMZ since November 2014 until January 2018 (n = 235–245
upward profiles for each BGC‐Argo float, Figure 1). The two floats remained within a relative small area that
ranged between 310×390 and 250×690 km2, respectively, and were separated by a meridional distance of
approximately 600 km (Figure 1). This separation allowed us to assess how the seasonal location of the ITCZ
(e.g., Figure 1) impacted surface stratification and related production and export of particles in two regions of
the ETNA OMZ.

BGC‐Argo floats were equipped with a CTD, Aanderaa oxygen optode, and WETLabs sensors to mea-
sure upward profiles of temperature (T), conductivity, depth, dissolved oxygen (O2), chlorophyll fluores-
cence (chl), and total optical backscattering (particles + pure seawater) at 700 nm. Raw data of total
backscattering and fluorescence were converted into particle backscattering (bbp) and chl following stan-
dard protocols (Schmechtig et al., 2014, 2015). In addition, bbp and chl spikes were removed by applying

Figure 1. (a) Location of BGC‐Argo floats 6901174 (colored upper circles) and 6901175 (colored bottom circles) in the
ETNA oxygen minimum zone. White contours are the annual climatology of dissolved oxygen concentration at 400 m
depth provided by theWorld Ocean Data Center (https://www.nodc.noaa.gov/OC5/indprod.html). (b), (c), (d), and (e) are
monthly precipitations for April, June, August, and October of 2016, respectively (data source: https://giovanni.gsfc.nasa.
gov/giovanni/). These bottom figures highlight the monthly location of the intertropical convergence zone (ITCZ,
longitudinal band with high precipitation) with respect to the BGC‐Argo floats (white circles).
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a median filter with a window size of three data points (e.g., Briggs et al., 2011; Dall'Olmo &
Mork, 2014).
1.2.3. Minimizing Uncertainties in bbp Estimates
Biases in raw bbp due to instrumental drift were first removed (see supporting information). Furthermore, an
additional potential problem was identified in the bbp data from one of the floats. For the first 14 months of
operation, the bbpmeters of both floats were programmed to collect measurements with a vertical resolution
of 10 dbars below 600 meters depths (close to isopycnal 27.2 kg m−3). Subsequently, the bbpmeter resolution
was increased to 1 dbar (supporting information). For float 6901175, this change in the vertical resolution of
bbp measurements did not affect the mean bbp values determined in the water masses below 600 meters
depth (supporting information). In contrast, for float 6901174, during the last 4 months (August 2015 and
January 2016) of the sampling period with low vertical resolution, themean bbpwere ~20% lower in the same
deepwater masses than after the change in resolution (supporting information). The reason for this change is
unclear but could be similar to the problem described for these sensors by Wojtasiewicz et al. (2018). These
authors hypothesized that this decrease in bbp likely could have resulted from (1) a longer time response of
the sensor to achieve optimal performance and/or (2) variations in the light source intensity due to changes
in the water temperature (Sullivan et al., 2013; Wojtasiewicz, Trull, et al., 2018). Thus, the bbp data collected
during this period were not used to calculate the stocks of POC. The latter data were only exploited to
describe the small‐particle dynamics above 600 m depth (0.2–20 μm, e.g., sections 2.2 and 2.3 and
Figures 4–6) because above this depth, there were no changes in the vertical resolution of bbpmeasurements.
1.2.4. Delimiting MLD, Productive Region, and OMZ
Potential density (σɵ) was derived from T and S (salinity) and the MLD was computed using a σɵ threshold
difference of 0.03 kg m−3 from a depth of 1 meter (de Boyer Montégut et al., 2004). To derive a proxy for stra-
tification, we calculated the difference between σɵ at 100 m and 10 m depth (σɵ, e.g., Lozier et al., 2011). This
proxy allowed us to synthesize in a single metrics the effects that wind stress and precipitation had on surface
stratification to investigate the related production of surface particles (e.g., Figures 2 and 3). The bottom of
the productive region (zp) was estimated as the depth at which chl decreases below 0.05 mg m−3 (Figures 2
and 3). We used chl to define the productive layer where living phytoplankton are present because our tech-
nique to compute export requires that no production is taking place below a given layer of the water column.
We found that zp was always deeper than the MLD with average values (±standard deviation, WMO num-
ber) of 139m (±12, 6901174) and 130m (±13, 6901175); zp approximately followed the 26.6 kgm−3 isopycnal
(Figures 2 and 3).

Dissolved oxygen (O2) concentrations were quality controlled following published procedures (supporting
information, Takeshita et al., 2013). No well‐defined method to delimit hypoxic OMZs exists because of
the wide range of O2 concentrations encompassed by them (e.g., <60–120 μM, Stramma et al., 2008).
Here, to define the top, center, and bottom of the OMZ, isopycnals were used because they allowed us to con-
sistently delimit, in both sampled regions, the water mass characterized by hypoxic conditions (oxygen con-
centrations <60–90 μM). To this end, the isopycnal corresponding to the local minimum of dissolved oxygen
concentration was used as the reference isopycnal for the center of the OMZ core. For the whole time series,
we found that the minimum O2 concentration (although different in magnitude) occurred approximately
along the same central isopycnal (σɵ = 27.05 kg m−3) in the two regions sampled by the two floats.

After having identified the isopycnal 27.05 kg m−3 as the one corresponding to the minimum oxygen con-
centration along the vertical profile, we selected two additional isopycnals above and below the central iso-
pycnal to define the water mass that contained the OMZ core. These two additional isopycnal weremanually
selected and differed by ±0.15 kgm−3 from the central isopycnal. Although subjective, this choice allowed us
to consistently define the water mass that contained the hypoxic region (O2 < 60–90 μM). Thus, the top
(OMZtop), center (OMZcenter), and bottom (OMZbottom) of the OMZ were defined as the isopycnals 26.9,
27.05, and 27.2 kg m−3, respectively (Figures 2, 3, and section 2.1). Although subjective, our choice allows
us to define the OMZ core consistently with the subdivision of the water column (by isopycnals) that we
adopted to compute POC fluxes (section 1.2.5).
1.2.5. POC Stocks and Export
No published relationships between bbp and POC were available for the mesopelagic ETNA OMZ; thus bbp
was converted into POC concentrations (POC, mg m−3) by using a published bio‐optical POC‐bbp
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relationship for the surface Atlantic (log10(POC) = 0.870*log10(bbp) + 4.28; Rasse et al., 2017). Predicted POC
concentrations (8–26 mg m−3) were similar to those previously measured in the mesopelagic region (≥150–
900 m) of the ETNA OMZ (18–60 mg m−3, Martiny et al., 2014).

Water column layers were then delimited using isopycnals separated by a potential density (σɵ) threshold of
0.05 kg m−3 (e.g., between isopycnals 26.6 and 26.65 kg m−3). The thickness of each layer was calculated as
the mean distance separating the two isopycnals during the time series.

Stocks of POC (mg m−2) in progressively deeper layers of the water column were estimated by multiplying
themean thickness of the layers (m) by their corresponding average concentration of POC (mgm−3) for each
profile. Specifically, the stocks of POC were computed for the layers delimited from selected isopycnals (σɵi)
to the deepest isopycnal sampled by the float (27.5 kg m−3, σmax). We indicate these POC stocks with the
notation iPOC27:5

σθi ,where σɵi= 26.6 kg m−3 + n, n= 0, 0.05, 0.1,… , 0.8 kg m−3; and 27.5 kg m−3 is the deepest
isopycnal sampled (e.g., Figures 4 and 5). In addition, to track the temporal variations in surface production
of small particles, surface POC stocks were calculated between 1 m and zp.

Net instantaneous fluxes of POC just below a given isopycnal (σɵi) were computed as the time rate of change
of iPOC27:5

σθi (Eσθi ¼ ∂iPOC27:5
σθi =∂t) after applying a pseudo‐Gaussian smoothing filter to iPOC27:5

σθi (e.g., orange

and red lines in Figures 7 and 8). Here the main assumptions are a negligible export of particles below σmax

and spatial homogeneity of the particle field (Dall'Olmo &Mork, 2014). Thus, positiveEσθi values correspond
to the net rate at which small particles accumulated below a given isopycnal. Uncertainties and details of the
method applied to predict POC fluxes are discussed in Dall'Olmo and Mork (2014).

Figure 2. (a) Chlorophyll‐a concentration and (b) log10(bbp) in the first 200 m depth for BGC‐Argo float 6901174. Orange
lines in (a) and (b) are the location of zp which on average followed the 26.6 kg m−3 isopycnal. (c) and (d) present
dissolved oxygen concentration in the first 200 m depth and between 200 and 1000 m depth, respectively. Red, gray,
and blue lines in (d) indicate the location of OMZtop (σɵ = 26.9 kg m−3), OMZcenter (σɵ = 27.05 kg m−3), and OMZbottom
(σɵ = 27.2 kg m−3), correspondingly. Black lines in (a), (b), and (c) are the MLD.
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Transfer efficiencies (Teff, %) of POC fluxes below zp and OMZtop were calculated as the ratio between Eσɵi:
Eref multiplied by 100 (Buesseler & Boyd, 2009). Eref indicates the POC fluxes just beneath zp or OMZtop,
while Eσɵi indicates fluxes at progressively deeper isopycnals below zp or OMZtop.

To compare Teff values in poorly and well‐oxygenated water layers that differed in thickness, a new metric
denominated “depth‐specific attenuation rate” was developed (ΔT, % m−1). This new metric allows one to
compare the attenuation of POC fluxes between water layers, independently of the thickness of these layers.

More specifically, ΔT was calculated as: ΔT = (Teff‐R−Teff‐σ)/d*100. Here Teff‐R and Teff‐σ are the transfer effi-
ciencies at the reference and progressively deeper isopycnals, respectively (e.g., Teff‐σ= Eσɵi:Eref); d is the dis-
tance between the reference and deeper isopycnals.

For water layers above the OMZ (ΔTabove), the isopycnal following the depth of the productive region was
used as reference and Teff‐σ was calculated between isopycnals >26.6 and ≤ 26.9 kg m−3 (e.g., Figures 9,
10). Similarly, inside the OMZ layers (ΔTinside), the isopycnal at the top of the OMZ was used as reference
and Teff‐σ was computed between isopycnals >26.9 and ≤ 27.2 kg m−3 (e.g., Figures 9, 10).

ΔT values inside and above the OMZs were compared and discussed for each float separately,
because O2 concentrations differed by 30% between the two sampled regions (e.g.,
section 1.2.4, and Figures 11, 12). Our main purpose was to assess how the attenuation rates of POC
fluxes varied in poorly and well‐oxygenated regions relative to the in situ O2 levels that characterized
each sampled region.

Finally, ΔT values were also calculated by using published absolute POC fluxes measured by drifting sedi-
ment traps and mostly due to large particles in the region sampled by float 6901175 between March and
April 2014 (Engel et al., 2017, Figures 9, 10). Thus,ΔT served as normalizedmetric to independently quantify
and compare the remineralized proportion of small and large POC particles in the waters above and inside

Figure 3. As Figure 2 but for the region sampled by BGC‐Argo float 6901175.
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the OMZ. However, when comparing ΔT values derived from net and absolute fluxes, it should be kept in
mind that these fluxes will differ between them. The reasons of these differences are discussed in section 3.3.

2. Results
2.1. Description of the OMZ and Oxygen Concentrations

The upper, intermediate, and lower water column layers of the OMZ were located between the isopycnals
26.9–27.0, 27.0–27.1, and 27.1–27.2 kg m−3, respectively (Figures 2 and 3). Inside the OMZ, dissolved oxygen
concentrations were on average (±standard deviation) 72 μM (±7) and 41 μM (±8) in the regions sampled by
floats 6901174 and 6901175, respectively (Figures 2 and 3). Above the OMZ top, O2 concentrations were 133
μM (±54) and 117 μM (±50) in the regions sampled by floats 6901174 and 6901175, respectively
(Figures 2 and 3).

Figure 4. Physical properties and unbiased particle backscattering (bbp) measured by BGC‐Argo float 6901174, as well as
daily meteorological parameters measured from remote sensing. (a) Mean surface salinity at 10 m depth (green line with
white circles) and daily precipitation rates (black bars, data source: https://giovanni.gsfc.nasa.gov/giovanni/). (b) Mean
surface temperature at 10 m depth (red line with white circles) and wind stress (gray bars, data source: http://marine.
copernicus.eu/). (c) Potential density (σɵ) in the first 150 m. The black line refers to the mixed layer depth (MLD) and the
blue line is the difference between potential density at 100 m (σ100) and 10 m (σ10) depth. (d) Particle dynamics
inferred from bbp measured from isopycnal 26.3 kg m−3 to the deepest isopycnal (σmax, near σɵ = 27.5 kg m−3) and
expressed in logarithmic scale. The locations of productive region (zp, orange), top (OMZtop, red), center (OMZcenter, gray),
and bottom (OMZbottom, blue) of the OMZ, and maximum sampled isopycnal (σmax, black) are indicated in the right y
axis. Dashed white and white arrows point to the beginning of the winter‐spring and summer‐autumn pulses of small
particles beneath zp, respectively. Horizontal white double arrows at the bottom of (d) indicate the periods of no positive
net pulses of small particles beneath zp (e.g., Figures 7, 8).
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2.2. Particle Dynamics and Surface POC Stocks Inferred from bbp

In the ETNA OMZ, maxima and minima of surface stratification were respectively triggered by (1) high pre-
cipitation and weak wind stress (June–November) and (2) strong wind stress and no significant precipitation
(December–April). These changes in stratification coincided with temporal changes in the dynamics of small
particles (0.2–20 μm; Figures 4 and 5). For instance, surface POC stocks reached maximum values when the
wind‐rain driven surface stratification began between June and September (e.g., Figures 6–8). Weaker
increases in surface POC stocks were also observed between the late winter and spring in some of the years,
likely due to vertical mixing of nutrients from underlying waters (January–May, period of lower stratifica-
tion, e.g., Figures 6–8). During this period, surface POC stocks tended to increase only between February
and May of 2015 and 2016 in the region sampled by float 6901175 (Figure 8).

A permanent layer relatively rich in small particles was observed in both regions between the upper and
intermediate layers of the OMZ (i.e., between isopycnals 26.9–27.1 kg m−3), whereas fewer particles were
found below theOMZbottom (σɵ= 27.2 kg m−3, Figures 4 and 5). In this permanent layer, mean POC concen-
trations tended to increase mostly when surface POC stocks accumulated (e.g., Figure 6).

2.3. Surface‐Mesopelagic Stocks and Net Instantaneous Fluxes of POC

Surface and mesopelagic POC stocks tended to increase between June–September and January–May
(Figures 7, 8). During these periods, large particles could have been exported beneath zp. Ultimately, the
fragmentation of these large particles likely generated pulses of small particles beneath zp and throughout
the mesopelagic (Figures 7, 8). These pulses of small particles beneath zp are hereafter referred to as
summer‐autumn and winter‐spring pulses, respectively.

Figure 5. As Figure 4 but for the region sampled by BGC‐Argo float 6901175.
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When these pulses of small particles occurred, net instantaneous POC fluxes beneath zp (Ezp) ranged
between 0.02–12 and 0.1–31 mg C m−2 d−1 for floats 6901175 and 6901174, respectively (Figures 7 and 8).
Nearly simultaneously, maxima of net instantaneous fluxes of POC were also observed within the OMZ
(Figures 7 and 8). On the contrary, in the layers below the OMZbottom (σɵ > 27.3 kg m−3), fluxes tended to
be low (e.g., E27.3 = 0.7 ± 0.7 mg C m−2 d−1 for float 6901175, Figure 8).

Flux attenuation rates inside the OMZ were significantly higher than those above the OMZ for 56% of the
profiles assessed for float 6901174 (p < 0.05, paired t test, number of profiles assessed: 33, Figure 11) and
70% of the profiles assessed for float 6901175 (p < 0.05, paired t test, number of profiles assessed: 27,
Figure 12).

There were the periods during which small‐particle stocks decreased and net instantaneous POC fluxes
beneath zp were negatives (i.e., particles were lost below a given isopycnal). These negatives fluxes ranged
between −22.6 and −0.18 mg C m−2 d−1 for float 69011744 and between −27.3 and −0.03 mg C m−2 d−1

for float 69011745 (Figures 7 and 8). In addition, there were also specific periods when POC stocks beneath
zp did not change significantly with time (e.g., September–November 2016 for float 6901175, Figure 8).

3. Discussion
3.1. Key Drivers of Net Instantaneous Fluxes of Small Particles

Several forcing mechanisms may contribute to producing and transporting biogenic particles from the sunlit
surface toward the ocean interior (e.g., strong summer‐export, mixed‐layer, eddy‐subduction, and local‐/
large‐scale subduction pumps, Boyd et al., 2019; Dall'Olmo et al., 2016; Karl et al., 2012; Omand et al.,

Figure 6. Smoothed surface POC stocks calculated from 1 m to zp (~130–139 m depth) for floats (a) 6901174 and (c)
6901175. Red lines in (a) and (c) indicate examples of the periods when surface stocks of POC accumulated and
generated significant pulses of small particles beneath zp. (b, d) Temporal changes in mean POC concentrations just
between the bottom of the productive region and the top of the OMZ (zp‐OMZtop, 26.60–26.65 kg m

−3, yellow bars) and at
the upper region of the OMZ (OMZupper, 26.95–27.0 kg m−3, red bars) for the regions sampled by BGC‐Argo floats (b)
6901174 and (d) 6901175. Blue lines in (b) and (d) are the difference between potential density at 100 m (σ100) and 10
m (σ10) depth. This was used as a proxy to unify the temporal effects that external forcings had in surface stratification and
related production of surface particles.
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2015; Pabortsava et al., 2017). Physical and biological fragmentation of large particles can then generate
small particles (Dilling & Alldredge, 2000; Giering et al., 2014; Jumars et al., 1989; Lampitt et al., 1990;
Mayor et al., 2014; Stemmann et al., 2004) that can accumulate in the water column, if their removal rates
are lower than their production rates.

Here, we hypothesize that two forcing mechanisms might have partially contributed to generate pulses of
small particles from zp to the OMZ: (1) strong summer export events that coincided with higher stratification
periods triggered by elevated precipitations and low wind stress (summer‐autumn pulses, Figures 7, 8) and
(2) local subduction pump linked to wind‐driven vertical mixing of nutrients from underlying waters (win-
ter‐spring pulses, e.g., Ekman pumping, Boyd et al., 2019; McClain & Firestone, 1993; Pastor et al., 2013; and
Figures 7, 8).

Strong summer export events that coincided with stronger stratification appeared to be the most important
mechanism related to the net accumulation of small particles inside the productive layer and their export
beneath zp (summer‐autumn pulses, Figures 7, 8). This export of POC beneath zp ranged between 0.02
and 31 mg C m−2 d−1. These values are of same order of magnitude of the POC fluxes by small particles
reported for the subtropical North Atlantic (0.07–14.9 mg C m−2 d−1; Durkin et al., 2015) but are smaller

Figure 7. (a) The blue line indicates the difference between potential density at 100 m (σ100) and 10 m (σ10) depth. This was used as a proxy to unify the temporal
effects that external forcings had in surface stratification and related production of surface particles. The red line with white circles is the mean surface temperature
at 10m. Gray bars are the smoothed surface stocks of POC calculated from 1m to zp (139 ± 12m). (b)Mesopelagic stocks (iPOC27:5

σθi ) and (c) net instantaneous fluxes (
Eσθi) of POC for selected layers delimited between zp (σɵi= 26.6 kgm−3) and progressively deeper isopynals (σɵi= 26.65, 26.7, 26.75,… ,27.45 kgm−3) to σmax (σɵi=
27.5 kg m−3) for BGC‐Argo float 6901174. Orange, red, black, and blue lines in (b) are the smoothed stocks of POC in the productive region (zp), top (OMZtop),
center (OMZcenter), and bottom (OMZbottom) of the OMZ, respectively. White circles and colored squares in (c) are the profiles (n = 27) used to calculate the depth‐
specific transfer efficiencies (T, % m−1) described in Figures 9–11. Red, yellow, and gray squares are the profiles randomly selected for three temporal events of net
instantaneous fluxes of small particles beneath zp (these temporal events were (1) the summer‐autumn pulse of 2016, (2) the winter‐spring pulse of 2017, and (3) the
summer‐autumn pulse of 2017). The latter profiles were used to prepare Figure 11 and those in the supporting information. Black double arrows at the bottom of (c)
indicate the periods when there were no positive net pulses of small particles beneath zp.

10.1029/2019GB006305Global Biogeochemical Cycles

RASSE AND DALL'OLMO 10



than POC fluxes measured in the ETNA by drifting sediment traps and mostly due to large particles (49–61
mg C m−2 d−1 at 150 m depth, Arístegui et al., 2009; Buesseler et al., 2007; Engel et al., 2017; Gardner et al.,
1985; Trull et al., 2008).

Summer‐autumn pulses contributed on average around 65% (±16%) to the net annual fluxes of small parti-
cles beneath zp (230 ± 54 mg C m−2 year−1). These pulses of small particles were likely triggered by a com-
plex synergy of meteorological, physical, and biogeochemical mechanisms. For instance, in this region,
Saharan dust and related iron are efficiently scavenged and deposited on the surface ocean by wet deposition
(Kieber et al., 2003, 2005; Schlosser et al., 2014; Shi et al., 2012). As a result, the surface ocean becomes
enriched in dissolved iron (DFe) and Trichodesmium abundance tends to increase by 1–2 orders of magni-
tude (Schlosser et al., 2014; Snow et al., 2015). Ultimately, Trichodesmium blooms collapse and might gen-
erate strong episodic exports of large sinking particles possibly reinforced by ballasting effect (Iversen &
Robert, 2015; Pabortsava et al., 2017; van der Jagt et al., 2018).

The above hypothesis was partially supported by the progressive accumulation of surface small particles
after precipitation events (and inferred related DFe deposition) and subsequent stratification began during
the summer in most of the years (e.g., between June and September, Figures 7, 8). Accumulation of small
particles likely followed physical and biological fragmentation of large sinking particles generated after phy-
toplankton blooms collapsed (e.g., Trichodesmium). Ultimately, fragmentation might have increased small‐
particle POC in the mesopelagic region during summer and autumn (Figures 7, 8).

Net annual POC fluxes beneath zp (Ezp) due to winter‐spring pulses were on average ~2 times lower than
those generated by summer‐autumn pulses. In addition, the former Ezp values showed a high temporal
variability (Figures 7, 8). We hypothesize that this temporal variability in the Ezp values was at least in part
due to changes in the amount of nutrients injected from underlying waters to zp (e.g., due to variations in
wind‐driven vertical mixing of nutrients, McClain & Firestone, 1993; Pastor et al., 2013).

Figure 8. As Figure 7 but for the region sampled by BGC‐Argo float 6901175.
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Negative net instantaneous fluxes of POC were observed after the end of the winter‐spring and summer‐
autumn pulses beneath zp (Ezp, Figures 7, 8). The observed temporal variability in these negative fluxes
was likely driven by the differences between the rates at which surface small particle was produced and
remineralized. For example, the most negative rates of Ezp were found between September–December of
2015 and April–May of 2016 for float 69011745 (Figure 8). This probably indicated that the remineralization
rates of small particles beneath zp were more significant than their surface production rates during this per-
iod (e.g., between September 2015 and February of 2016, Figure 8). For the same float, the decrease of POC
stocks was less steep between September and December of 2016 (Ezp ranged between −3.0 and −0.7 mg C m
−2 d−1, Figure 8). We hypothesize that these differences between the removal and production rates of small
particles were low because episodic events of production of surface POC occurred during this period (e.g.,
October and November of 2016, Figure 8).

In summary, two main mechanisms could have contributed to surface production of small particles and
related carbon transfer from zp toward the OMZ interior: (1) a strong summer export that coincided with
higher stratification periods triggered by low wind stress and elevated precipitations (plus inferred related

Figure 9. Transfer efficiencies (Teff, %) of net instantaneous POC fluxes (Eσɵ) by using the reference depths (a, b) of the
productive region (zp) and (c) top of the OMZ (OMZtop). In (a) we included Teff values for all water column layers
beneath zp while in (b) only those between zp and top of the OMZ (OMZtop). (c) Teff values of all water column layers
beneathOMZtop for BGC‐Argo float 6901174. Orange and blue horizontal lines (dashed, dotted, and solid) indicate the top
and bottom of the OMZ for selected profiles; whereas horizontal and dotted black lines in (b) and (c) are the locations of
the top and bottom of the OMZ defined by Engel et al., 2017, respectively. Green, yellow, and gray circles refer to Teff
values of the profiles selected for the summer‐autumn pulse of 2016 indicated in Figure 7 (temporal event number 1). Blue
and black squares are Teff values calculated from absolute POC fluxes measured by drifting sediment traps in the
region sampled by BGC‐Argo floats 6901175 between March and April 2014 (Engel et al., 2017, https://doi.pangaea.de/
10.1594/PANGAEA.874268). F100 and Ezp describe POC fluxes at the reference depths defined by Engel et al., 2017
(100 m) and in this study (~130 m), respectively. Depth‐specific transfer efficiencies (T, % m−1) were calculated in well‐
and poorly oxygenated waters layers located between (1) zp and OMZtop (Tabove) and (2) OMZtop and bottom of the
OMZ (Tinside), respectively. Mean T values are described as colored numbers that match with the symbols colors of the
profiles selected (circles) and those derived from absolute POC fluxes (squares).
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DFe deposition, Trichodesmium blooms, and their collapse) and (2) the local subduction pump linked to
wind‐driven vertical mixing of nutrients from underlying waters. However, as we will discuss in next
sections, these mechanisms might not be as efficient in exporting small‐particle POC (0.2–20 μm) to the
ocean interior as previously suggested for large particles in the same region (e.g., Engel et al., 2017).

3.2. Dynamics of the Permanent Layer of Small Particles Inside the OMZ

Anoxic OMZs (O2 < 5 μM) are characterized by a permanent layer of suspended particles likely related to
anaerobic microbial communities (e.g., Günter et al., 2008; Karl & Knauer, 1991; Ulloa et al., 2012;
Whitmire et al., 2009;Wojtasiewicz et al., 2018). Here, to the best of our knowledge, we report for the first time
that this feature might not be unique to anoxic OMZs because a permanent layer relatively rich in small par-
ticles was found between the upper and intermediate layers of the hypoxic OMZ of the ETNA (Figures 4, 5).

Within the OMZ, the concentrations and stocks of POC reached their maxima after the winter‐spring and
summer‐autumn pulses occurred (Figures 6–8). However, the permanent OMZ layer of small particles per-
sisted for the whole time series in both regions (Figures 4, 5). This persistence, even outside of periods with
clear particle fluxes from the surface, suggests small particles might be autonomously produced in the upper
layers of the OMZ (Figures 2 and 3). This production is likely linked to the activity of free‐living aerobic‐
microbial communities (e.g., chemosynthesis by Archaea, Engel et al., 2017; Herndl et al., 2005; Löscher
et al., 2012; Raven, 2009; Reinthaler et al., 2006; Wright et al., 2012).

In support of this hypothesis, there is evidence of an enhancement in the activity of aerobic‐anaerobic het-
erotrophic bacteria associated with large sinking particles in the upper layers of the OMZ. Engel et al. (2017)
reported an increment in (1) the ratio between particle hydrolyzable amino acids (PHAA, a chemical marker
of aerobic‐anaerobic heterotrophic bacterial growth efficiency) and POC in large sinking particles in the cen-
ter of the OMZ sampled by float 6901175 between March and April 2014 (Engel et al., 2017, e.g., ~400 m,
Figure 3) and (2) the contribution of γ‐amino butyric acid (a proxy of aerobic‐anaerobic heterotrophic bac-
terial decomposition activity; Lee & Cronin, 1982) to the PHAA in sinking large particles in the top of the

Figure 10. As Figure 9 but for BGC‐Argo float 6901175.
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OMZ in the same region and sampled period (Engel et al., 2017, e.g., ~300 m, Figure 3). These two pieces of
evidence are consistent with large particles intercepting a large number of free‐living aerobic‐heterotrophic
bacteria in the same part of the water columnwhere we observed the permanent layer of small particles (e.g.,
Archea, Löscher et al., 2012). However, we cannot rule out that at low oxygen levels (<90 μM), anaerobic‐
heterotrophic bacteria colonization of the large particles interior could have been induced by the expected
expansion of their anoxic core. Ultimately, this could also contribute to increasing the concentration of
both chemical markers (PHAA and γ‐amino butyric acid, Bianchi et al., 2018; Klawonn et al., 2015).

During the periods without pulses of small particles, we registered negative values of net instantaneous
fluxes of POC in just the center of the OMZ (Figures 7, 8). These results suggest that (1) within the per-
manent layer of particles presumably linked to aerobic‐heterotrophic bacteria, net consumption of
exported small particles was significant during these periods and (2) this layer was not a net source of
small particles to deeper layers (>500 m) of the ETNA. On the contrary, as discussed in the next section,
this layer might have acted as a barrier for small particles derived from the fragmentation of large sinking
particles.

3.3. Depth‐Specific Attenuation Above and Inside the OMZ

The hypothesis that the potential expansion of anoxic and hypoxic OMZs will increase the efficiency with
which POC is transported to the ocean's interior appears to be strengthening (e.g., Cavan et al., 2017;
Engel et al., 2017; Le Moigne et al., 2017). However, inside the ETNA OMZ, the attenuation rates of net
POC fluxes by small particles were significantly higher than those above the OMZ for 62% of the profiles
(p < 0.05, paired t test, Figures 11, 12). For the remaining 38% of the profiles, the attenuation rates of the

Figure 11. Frequency distributions of depth‐specific transfer efficiencies (T, % m−1) calculated above (a, c, red bars
with diagonal lines) and inside (b, d, red bars) the OMZ for selected profiles for float 6901174 (see also Figure 7c).
Profiles with significant differences between T values inside and above the OMZ are described in the left panel (a and b, n
profiles = 14, p < 0.05, paired t test). Otherwise in the right panel (c and d, n profiles = 13, p > 0.05, paired t test).
Bars summarize T values with (a and b) and without (c and d) significant differences for the profiles of the three temporal
events selected (see also Figure 7). Solid, dotted, and dashed black lines only include T values for the profiles of the
temporal events 1, 2, and 3, with p < 0.05 (a, b), and p > 0.05 (c, d), respectively (see also Figure 7). “n Tinside” and
“n Tabove” are the total number of T values calculated above and inside the OMZ (red bars). Blue vertical lines indicate the
medians of the T values reported for (a) 0.39 % m−1, (b) 0.54 % m−1, (c) 0.49 % m−1, and (d) 0.48 % m−1.
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fluxes were not significantly different above and inside the hypoxic OMZ (p > 0.05, paired t test, Figures 11,
12). Thus, our results suggest that the above hypothesis might need to be revised for small‐particle fluxes in
hypoxic OMZs like the ETNA OMZ.

In addition, inside the ETNA OMZ, flux attenuation tended to decrease with depth (Figures 9, 10). This
might indicate that inside this layer (1) small particles derived from the fragmentation of large sinking par-
ticles becamemore recalcitrant with depth and/or (2) flux attenuation was low below the permanent layer of
small particles, likely because most of the labile POC is consumed in this layer.

When we compared our estimates to flux attenuations computed from published data (Engel et al., 2017), we
found differences that are worth discussing. Specifically, the mean ΔT values estimated above the OMZwere
quantitatively similar to those estimated from absolute fluxes of POC measured by drifting sediment traps in
the same region (p > 0.05, t test), although these measurements were collected during a different period of
the year (March–April 2014; Engel et al., 2017, and Figures 9, 10, 13, and supporting information). In con-
trast, inside the OMZ, our mean ΔT was significantly higher (p < 0.05, t test) than that derived for absolute
fluxes of POC in the study of Engel et al. (2017) (Figures 9, 10, Figure 13). To understand these differences,
we need to remember that our ΔT values were derived from net instantaneous fluxes of small particles
instead of absolute fluxes of large sinking particles.

The net instantaneous POC fluxes beneath zp reported in our study (0.02–31 mg C m−2 d−1) were lower
than the published absolute fluxes at similar depths (49–76 mg C m−2 d−1). We propose three main rea-
sons to explain these differences: (1) our net fluxes of POC are only measurable when the production of
small particles is larger than their loss and thus are a lower bound for the absolute fluxes (POC fluxes at
the steady state cannot be quantified). (2) Our flux estimates only include the contribution of particles
smaller than at most 20 μm (Organelli et al., 2018). Finally, (3) to estimate the rate of change of POC
stocks, data were smoothed, which decreased even more the net instantaneous fluxes of POC via small
particles. These differences must be kept in mind when comparing ΔT values derived from net and
absolute fluxes.

Figure 12. As Figure 11 but for BGC‐Argo float 6901175.
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Despite these differences, our results highlighted that attenuation rates of small particles in poorly oxyge-
nated regions of the OMZ can be equivalent (p > 0.05) or significantly higher (p < 0.05) than those in
well‐oxygenated regions (Figures 11, 12). On the other hand, our analysis of the data from Engel et al.
(2017) demonstrated that absolute POC fluxes of large particles were less attenuated inside the OMZ (p <
0.05, t test, Figure 13).

We thus expect that inside the OMZ, the contribution of small particles to the total POC fluxes (small + large
particles) would be reduced relative to the shallower well‐oxygenated regions (e.g., ≤280 m depth). We
hypothesize that this is because the permanent layer of small particles, partially linked to heterotrophic bac-
teria, consumes surface‐derived small‐particle POC more efficiently than large particles. In addition, it can-
not be ruled out that large sinking particles fragmented less in this region.

With the current data, we cannot test the above hypothesis, but if it was proven true, it would have implica-
tions for the efficiency of the BCP. This is because the contribution of small particles to the overall POC
fluxes is significant in oxygenated regions of the mesopelagic Atlantic at subtropical (41 ± 20%, 11–64 μm,
Durkin et al., 2015) and high latitudes (86 ± 23 %, <100 μm, Giering et al., 2016). However, as indicated
above, this contribution would be reduced within the hypoxic OMZs. We therefore recommend that more
information about POC fluxes by small and large particles and the processes that drive their
distribution throughout the water column of the hypoxic OMZs is needed (e.g., remineralization,
aggregation/fragmentation rates of large particles). Ultimately, this additional information will allow us to
understand how the potential expansion of the hypoxic OMZs will affect the efficiency of the oceans in
sequestering atmospheric CO2.

Finally, a new metric, the depth‐specific attenuation (ΔT) rate, was presented based on an extension of the
method proposed by Buesseler and Boyd (2009). This metric can provide estimates of POC‐flux attenuation
rates that are independent of the thickness of the layer over which the fluxes are determined. Thus, it can
allow one to compare attenuation rates in different layers of the water column. We exploited this newmetric
to compare flux attenuation rates above and within the ETNA OMZ.

4. Conclusions

We conclude that (1) the main factor that promoted net instantaneous POC fluxes via small particles
toward the OMZ was the strong summer pulse of small particles that coincided with stronger stratifica-
tion. This stronger stratification was triggered by temporal changes in precipitation (plus inferred related
DFe deposition, Trichodesmium blooms, and their collapse) and wind stress; (2) similarly to anoxic
OMZs, a permanent layer rich in small particles of presumably free‐living anaerobic‐heterotrophic bac-
teria was found in the upper part of the hypoxic ETNA OMZ; (3) this permanent layer did not appearto
have a measurable net input of POC toward deeper water masses; and (4) inside the hypoxic region of
the ETNA, the attenuation rates of net instantaneous small‐particle fluxes were equivalent (p > 0.05) or
significantly higher (p < 0.05) than those in well‐oxygenated regions. These results differ from those

Figure 13. Box plots of depth‐specific transfer efficiencies (T, % m−1) above (left panel) and inside (right panel) the OMZ
for selected profiles of floats 6901174 (red boxes; see also Figure 7c) and 6901175 (blue boxes; see also Figure 8c),
respectively. Black boxes are T values calculated from absolute POC fluxes measured by drifting sediment traps in the
region sampled by floats 6901175 between March and April 2014 (Engel et al., 2017. Upper and lower limits of the
boxes are the maximum and minimum values, respectively. Boxes describe the interquartile range (IQR), while internal
horizontal lines are the medians. The circles are the outliers (3 × IQR).
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obtained from absolute POC fluxes measured by drifting sediment traps and mostly due to large parti-
cles. These differences highlight the need to better understand the processes controlling the stocks and
fluxes of small and large particles in hypoxic OMZs. Progress in this direction will help to better under-
stand the role that hypoxic OMZs have in attenuating POC fluxes. Finally, our results confirm that
BGC‐Argo floats are powerful tools to fill knowledge gaps related to particle dynamics and their role
in the oceanic BCP.

Data Availability Statement

Data from Biogeochemical‐Argo floats are freely available at ftp.ifremer.fr/ifremer/argo. These data were
collected and made freely available by the International Argo Program and the national programs that
contribute to it (http://www.argo.ucsd.edu, The Argo Program is part of the Global Ocean Observing
System. Data of wind stress and daily area‐averaged precipitation rates applied in this study are also freely
available at the websites of the Copernicus Marine Environment Monitoring Service (http://marine.coperni-
cus.eu/services‐portfolio/access‐to‐products/) and Giovanni‐NASA (https://giovanni.gsfc.nasa.gov/gio-
vanni/), respectively.
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