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Summary

 UK and Ireland classification

EUNIS 2008 A3.123
Laminaria saccharina, Chorda filum and dense red seaweeds
on shallow unstable infralittoral boulders and cobbles

JNCC 2015 IR.HIR.KSed.SlatChoR
Saccharina latissima, Chorda filum and dense red seaweeds
on shallow unstable infralittoral boulders or cobbles

JNCC 2004 IR.HIR.KSed.LsacChoR
Laminaria saccharina, Chorda filum and dense red seaweeds
on shallow unstable infralittoral boulders or cobbles

1997 Biotope IR.MIR.SedK.LsacChoR
Laminaria saccharina, Chorda filum and dense red seaweeds
on shallow unstable infralittoral boulders and cobbles

 Description

Unstable boulders and cobbles in very shallow water may be seasonally disturbed which prevents
a stable Laminaria hyperborea forest from developing. Seasonal movement of the substratum
results in a community of the opportunistic kelp Saccharina latissima, Chorda filum and Desmarestia

https://www.marlin.ac.uk/species/detail/1309
https://www.marlin.ac.uk/species/detail/1366
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spp. with encrusting algae and sediment-tolerant seaweeds. The shallowest areas of the Sarns in
Cardigan Bay are typical examples of this biotope. (Information taken from the Marine Biotope
Classification for Britain and Ireland, Version 97.06: Connor et al., 1997a, b).

 Depth range

0-5 m

 Additional information

-

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.google.co.uk/search?q=iSaccharina+latissima/i,+iChorda+filum/i+and+dense+red+seaweeds+on+shallow+unstable+infralittoral+boulders+or+cobbles
http://scholar.google.co.uk/scholar?q=iSaccharina+latissima/i,+iChorda+filum/i+and+dense+red+seaweeds+on+shallow+unstable+infralittoral+boulders+or+cobbles
http://www.google.co.uk/search?q=IR.HIR.KSed.LsacChoR
https://mhc.jncc.gov.uk/search/?q=IR.HIR.KSed.LsacChoR
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Habitat review

 Ecology

Ecological and functional relationships

The species present in this biotope thrive particularly in conditions of disturbance. They are mainly
annual species with rapid growth or are perennial species that may die back in winter and persist
as crusts or basal portions that survive abrasion during winter storms. Grazing species such as sea
urchins do not survive well in conditions of abrasion and so seaweeds can thrive.

Seasonal and longer term change

It is expected that there will be considerable reduction in the abundance of foliose seaweeds
especially following the summer. The reduction is partly because of grazing, partly seasonal
disintegration of fronds and partly abrasion. Annual seaweeds start to colonize and perennial
seaweeds to regrow in about April and can be expected to be fully grown by May.

Habitat structure and complexity

This is a complex habitat with semi-stable hard substratum supporting epibiota through to
sediments supporting infauna. The fronds of seaweeds also provide significant surfaces especially
for epibiota and for gastropods. The holdfasts of Saccharina latissima and, where present, of
Saccorhiza polyschides provide a habitat for cryptic animal species.

Productivity

This biotope would appear to be productive of organic matter from seaweeds especially.

Recruitment processes

The dominant and characteristic species are recruited from planktonic larvae and spores. Other
species such as fish and crustaceans are mainly transitory once settled.

Time for community to reach maturity

Providing that sources of larvae, spores and mobile animals are nearby, the biotope would develop
rapidly on new substrata so that, in appearance based on visually dominant species, it would be
likely to be established in a year. However, recruitment of a full range of species, especially
molluscs and some algae would take longer so that a dynamic stability would probably be reached
only after about three years.

Additional information

No information was available on the infauna associated with this biotope although it is expected
that species will be tolerant of displacement.

 Preferences & Distribution

https://www.marlin.ac.uk/species/detail/1375
https://www.marlin.ac.uk/species/detail/1370
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Habitat preferences

Depth Range 0-5 m

Water clarity preferences

Limiting Nutrients No information found

Salinity preferences Full (30-40 psu)

Physiographic preferences Open coast

Biological zone preferences Upper infralittoral

Substratum/habitat preferences
Large to very large boulders, Small boulders, Cobbles, Pebbles,
Gravel / shingle

Tidal strength preferences Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.)

Wave exposure preferences Moderately exposed

Other preferences

Additional Information

See Sanderson et al. (2001) for detailed descriptions of the biotope

 Species composition

Species found especially in this biotope

Rare or scarce species associated with this biotope

-

Additional information

The biotope may be conspicuously characterized by dense red algae (often bleached by sunlight) in
spring and summer. These algae are ephemeral and especially include Cystoclonium purpureum and
Brongniartella byssoides as well as the brown alga Desmarestia aculeata.

https://www.marlin.ac.uk/glossarydefinition/waterclarity
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

IR.HIR.KSed.SlatChoR is within the sediment affected or disturbed kelp and seaweed communities
(IR.HIR.KSed) habitat complex. Shallow boulders and cobbles are seasonally mobilised and the
opportunistic brown seaweeds; Saccharina latissima (formerly Laminaria saccharina) and Chorda
filum proliferate. The seasonal mobility of the substrata dislodges the resident community and
inhibits the establishment of Laminaria hyperborea biotopes. As stability increases Laminaria
hyperborea can become more abundant (Connor et al., 2004).

Due to the disturbed nature of IR.HIR.KSed biotopes the understory community can be locally
variable and defined by scour tolerant or ephemeral seaweeds, such as; Brown filamentous
seaweeds (Ectocarpales), Chondrus crispus, Corallina officinalis, Dilsea carnosa, encrusting coralline
algae and Phyllophoras pseudoceranoides. Faunal diversity and abundance are also generally low
and typically limited to; encrusting bryozoans, Spirobranchus triqueter and other scour tolerant
fauna (Connor et al., 2004).

In undertaking this assessment of sensitivity, an account is taken of knowledge of the biology of all
characterizing species/taxa in the biotope. However, 'indicative species' are particularly important
in undertaking the assessment because they have been subject to detailed research. For this
sensitivity assessment the opportunistic brown seaweeds; Saccharina latissima & Chorda filum are
the primary foci of research. Examples of other important species groups are mentioned where
appropriate.

 Resilience and recovery rates of habitat

Saccharina latissima (formerly Laminaria saccharina) and Chorda filum are opportunistic seaweeds
which have relatively fast growth rates when compared to other perennial species, and can
dominate in areas subject to recurrent disturbance. Saccharina lattisima is a perennial kelp which
can reach maturity in 15-20 months ((Sjøtun, 1993) and has a life expectancy of 2-4 years (Parke,
1948). Saccharina lattisma is widely distributed in the north Atlantic from Svalbard to Portugal
(Birket et al., 1998; Conor et al., 2004; Bekby & Moy 2011; Moy & Christie 2012). Chorda filum has a
widely distributed across the northern hemisphere (Algae Base, 2015). In the North Atlantic
specifically, Chorda filum is recorded from Svalbard (Fredriksen et al., 2014) to Northern Portugal
(Araújo et al, 2009).  Chorda filum is an annual seaweed, completing it’s life cycle in a single season
(Novaczek et al., 1986).

Saccharina lattisma and Chorda filum have heteromorphic life strategies (Bikett et al., 1988). Mature
sporophytes broadcast spawn zoospores from reproductive structures known as sori (South &
Burrows, 1967; Birket et al., 1998). Zoospores settle onto rock and develop into gametophytes,
which following fertilization germinate into juvenile sporophytes. Laminariale zoospores are
expected to have a large dispersal range, however, zoospore density and the rate of successful
fertilization decreases exponentially with distance from the parental source (Fredriksen et al.,
1995). Hence, recruitment can be influenced by the proximity of mature kelp beds producing
viable zoospores (Kain, 1979; Fredriksen et al., 1995). Saccharina lattisma recruits appear in late
winter early spring beyond which is a period of rapid growth, during which sporophytes can reach a
total length of 3m (Werner & Kraan, 2004), in late summer and autumn growth rates slow and
spores are released from autumn to winter (Parke, 1948; Lüning, 1979; Birket et al., 1998). The
overall length of the sporophyte may not change during the growing season due to marginal
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erosion but the growth of the blade has been measured at 1.1 cm/day, with a total length addition
of ≥2.25m per year (Birket et al., 1998). Chorda filum recruits appear from February (South &
Burrows, 1967), beyond which is a period of rapid growth during which sporophytes can reach a
length of ≤6m (South & Burrows, 1967). In culture Chorda fillum can reach reproductive maturity
and produce zoospores within 186 days (ca 6 months) of settlement, however, the time taken to
reach maturity may be locally variable (South & Burrows, 1967). In nature sporophytes growth
slows/stops from October and sporophytes may begin to die off (South & Burrows, 1967;
Novaczek et al., 1986).

Saccharina lattisma can be quite ephemeral in nature and appear early in algal succession. For
example, Leinaas & Christie (1996) removed Strongylocentrotus droebachiensis from “Urchin
Barrens” and observed a succession effect. Initially, the substratm was colonized by filamentous
algae, after a couple of weeks these were out-competed and the habitat dominated by Saccharina
latissima, however, this was subsequently out-competed by Laminaria hyperborea. In the Isle of
Man, Kain (1975) cleared sublittoral blocks of Laminaria hyperborea at different times of the year
for several years. The first colonizers and succession community differed between blocks and at
what time of year the blocks were cleared. Saccharina lattisma was an early colonizer, however
within 2 years of clearance the blocks were dominated by Laminaria hyperborea.

In 2002, a 50.7-83% decline of Saccharina latissima was discovered in the Skaggerak region, South
Norway (Moy et al., 2006; Moy & Christie, 2012). Survey results indicated a sustained shift from
Saccharina latissima communities to those of ephemeral filamentous algal communities. The reason
for the community shift was unknown, low water movement in wave and tidally sheltered areas
combined with the impacts of dense human populations, e.g. increased land run-off, was suggested
to be responsible for the dominance of ephemeral turf macro-algae. Multiple stressors such as
eutrophication, increasing regional temperature, increased siltation and overfishing may also be
acting synergistically to cause the observed habitat shift.

Resilience assessment. Saccharina latissima and Chorda filum are opportunistic species with rapid
colonization and growth rates (South & Burrows, 1967; Birket et al., 1998). Chorda filum is an
annual seaweed, completing it’s life cycle within a single season. Saccharina latissima has been
shown to be an early colonizer within algal succession, appearing within 2 weeks of clearance.
Resilience has therefore been assessed as ‘High’ for all levels of resistance.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

None High Medium
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

The temperature isotherm of 19-20 °C has been reported as limiting Saccharina latissima
geographic distribution (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990)
however the optimal temperature range for sporophyte growth is 10-15 °C (Bolton & Lüning,
1982). Bolton & Lüning (1982) experimentally observed that sporophyte growth was inhibited by
50-70% at 20 °C and following 7 days at 23 °C all specimens completely disintegrated. In the field
Saccharina latissima has shown significant regional variation in its acclimation to temperature
changes, for example Gerard & Dubois (1988) observed sporophytes of Saccharina latissima which
were regularly exposed to ≥20 °C could tolerate these temperatures, whereas sporophytes from
other populations which rarely experience ≥17 °C showed 100% mortality after 3 weeks of

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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exposure to 20 °C. Therefore the response of Saccharina latissima to a change in temperatures is
likely to be locally variable.

In experiments, Lüning (1980) observed that Chorda filum could not reproduce at 15-20 °C but
found that sporophytes could tolerate ≤26 °C.

IR.HIR.KSed.Slat.ChoR is distributed throughout the UK (Connor et al., 2004). Northern to
southern Sea Surface Temperature (SST) ranges from 8-16 °C in summer and 6-13 °C in winter in
the UK (Beszczynska-Möller & Dye, 2013). The effect of this pressure is likely to be regionally
variable.

Sensitivity assessment. Ecotypes of Saccharina lattisma have been shown to have different
temperature optimums (Dubois, 1988). Both a 2 & 5 °C increase in temperature when combined
with high UK summer temperatures in the south of the UK could cause large scale mortality of
Saccharina lattisma and inhibit Chorda filum reproduction. Resistance has been assessed as ‘None’,
Resilience as ‘High’. Sensitivity has been assessed as ‘Medium’.

Temperature decrease
(local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Saccharina lattissima and Chorda filum are widespread throughout the arctic. Saccharina lattissima
has a lower temperature threshold for sporophyte growth at 0 °C (Lüning, 1990). Chorda filum
sporophytes can also tolerate 0 °C, Novaczek et al., (1986) observed that 99% of newly settled
zoospores died at 0 °C but sporophytes transferred from 5 °C to 0 °C remained healthy and
continued to grow for a period of 2 months. Novaczek et al., (1986) therefore demonstrated that
sporophytes could tolerate exposure to low (≥0°C) temperatures, but that exposure could have
negative effects on larval survival and recruitment processes. Subtidal red algae can survive at
-2°C (Lüning, 1990; Kain & Norton, 1990). The distribution and temperature tolerances of these
species suggests they likely be unaffected by temperature decreases assessed within this pressure.

Sensitivity assessment. Resistance has been assessed as ‘High’, resilience as ‘High’”. Sensitivity has
been assessed as ‘Not Sensitive’.

 

Salinity increase (local) Medium High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and 5 day
exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34
psu. Saccharina latissima showed high photosynthetic ability at >80% of the control levels between
25-55 psu. However, Birkett et al. (1998) suggested that kelps are stenohaline and therefore long-
term increases in salinity may be detrimental.

Chorda filum can be found in rock pools (South & Burrows, 1967). High air temperatures cause
surface evaporation of water from rock pools, so that salinity steadily increases. The extent of
temperature and salinity change is affected by the frequency and time of day at which tidal
inundation occurs. If high tide occurs in early morning and evening the diurnal temperature follows
that of the air, whilst high water at midday suddenly returns the temperature to that of the sea
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(Pyefinch, 1943). It should be noted however that local populations may be acclimated to the
prevailing salinity regime and may therefore exhibit different tolerances to other populations
subject to different salinity conditions and therefore caution should be used when inferring
tolerances. However, it is likely that Chorda filum is tolerant of short-term salinity increases.

Sensitivity assessment. The evidence suggests that Saccharina latissima and Chorda filum can
tolerate short-term exposure to hypersaline conditions (≥40‰-MNCR full salinity). An increase in
salinity to ≥40‰ long-term may however be above the optima for characterizing species and
cause a decline in growth, and possibly loss of red algae and a reduction in species diversity.
Resistance has been assessed as ‘Medium’, resilience as ‘High’. The sensitivity of this biotope to an
increase in salinity has been assessed as ‘Low’.

Salinity decrease (local) Medium High Low
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and 5 day
exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34
psu . Saccharina latissima showed high photosynthetic ability at >80% of the control levels between
25-55 psu. Hyposaline treatment of 10-20 psu led to a gradual decline of photosynthetic ability.
After 2 days at 5 psu Saccharina latissima showed a significant decline in photosynthetic ability at
approx. 30% of control. After 5 days at 5 psu Saccharina latissima specimens became bleached and
showed signs of severe damage. The affect of long-term salinity changes (>5 days) or salinity >60
PSU on Saccharina latissima’ photosynthetic ability was not tested. The experiment was conducted
on Saccharina latissima from the Arctic, and the authors suggest that at extremely low water
temperatures (1-5°C) macroalgae acclimation to rapid salinity changes could be slower than at
temperate latitudes. It is therefore possible that resident Saccharina latissima of the UK maybe be
able to acclimate to salinity changes more effectively and quicker.

Chorda filum is tolerant of low salinities (Hayren, I940; Norton & South, 1969), and has been
recorded at Björnholm, Finland where salinity has been recorded as low as 5.15%o (Hayren, I940).
Norton & South (1969) observed (experimentally) that Chorda filum could develop sporophytes at
≥5%o, however at low salinities the time taken to develop into sporophytes was slower than at full
salinities (5%o=65 days, 35%o=16 days) and below 9% sporophytes did not grow above 2mm in
length.

Sensitivity assessment. A decrease in one MNCR salinity scale from “Full Salinity” (30-40psu) to
“Reduced Salinity” (18-30 psu) may inhibit Saccharina lattissima photosynthesis and hence growth.
Chorda filum is highly tolerant of low salinity and is unlikely to be affected. Resistance has been
assessed as ‘Medium’ resilience as ‘High’. Sensitivity of this biotope to a decrease in salinity has
been assessed as ‘Low’.

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Peteiro & Freire (2013) measured Saccharina latissima growth from 2 sites, the 1st had maximal
water velocities of 0.3 m/sec and the 2nd 0.1 m/sec. At site 1 Saccharina latissima had significantly
larger biomass than at site 2 (16 kg/m to 12 kg/m respectively). Peteiro & Freire (2013) suggested
that faster water velocities were beneficial to Saccharina latissima growth. However, Gerard &
Mann (1979) measured Saccharina latissima productivity at greater water velocities and found
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Saccharina latissima productivity is reduced in moderately strong tidal streams (≤1 m/sec) when
compared to weak tidal streams (<0.5 m/sec).

Chorda filum sporophytes often grow on unstable objects, such as pebbles and shell. Owing to the
typically unstable substratum which Chorda filum grows on, whole populations can be moved
during storms and deposited in more sheltered locations where development will continue (South
& Burrows, 1967). The survival of Chorda filum sporophytes following transport of their attached
substrata indicates the species is relatively tolerant to changes in water flow or wave action.

Sensitivity assessment. IR.HIR.KSed.SlatChoR is recorded from moderately strong (0.5-1.5m/sec)-
weak tidal streams (<0.5m/sec).A change of 0.1m/s to 0.2m/s is not likely to dramatically affect
biotope structure. Resistance has been assessed as ‘High’, resilience as ‘High’. Sensitivity has been
assessed as ‘Not Sensitive’.

Emergence regime
changes

Medium High Low
Q: Medium A: High C: High Q: High A: Low C: High Q: Medium A: Low C: High

IR.HIR.KSed.SlatChoR is recorded from 0-10m Below Chart Datum (BCD) (Connor et al., 2004).
Both Saccharina latissima and Chorda filum can grow in the sub-littoral fringe (South & Burrows,
1967) and as such would likely be exposed during some low tides.

An increase in emergence will result in an increased risk of desiccation and mortality of Saccharina
latissima and Chorda filum. Removal of canopy forming seaweeds has also been shown to increase
desiccation and mortality of the understory macro-algae (Hawkins & Harkin, 1985). Providing that
suitable substrata are present, the biotope is likely to re-establish further down the shore within a
similar emergence regime to that which existed previously.

Sensitivity assessment. Resistance has been assessed as ‘Medium’. Resilience as ‘High’. The
sensitivity of this biotope to a change in emergence is considered as ‘Low’.

 

Wave exposure changes
(local)

High High Not sensitive
Q: Medium A: High C: High Q: High A: High C: High Q: Medium A: High C: High

IR.HIR.KSed.SlatChoR is recorded from extreme wave exposed-sheltered sites (Connor et al.,
2004). Birket et al., (1998) suggested that Saccharina latissima is rarely present in areas of wave
exposure, where it is out-competed by Laminaria hyperborea. However, the seasonal unstable
nature of the substrata within IR.HIR.KSed.SlatChoR is likely to inhibit growth of Laminaria
hyperborea and allow Saccharina latissima to opportunistically colonize rock particles. Chorda filum
sporophytes often grow on unstable objects, such as pebbles and shell. Owing to typically unstable
substrate which Chorda filum grows on, whole populations can be moved during storms and
deposited in more sheltered locations where development will continue (South & Burrows, 1967).
The survival of Chorda filum sporophytes following transport of their attached substrata indicates
the species is relatively tolerant to changes in water flow or wave action.

Sensitivity assessment. A large scale increase in local wave height may increase local sediment
mobility, potentially increase dislodgment or relocation of sporophytes (South & Burrows, 1967;
Birket et al., 1998). However, an increase in nearshore significant wave height of 3-5% is not likely
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to have a significant effect on biotope structure. Resistance has been assessed as ’High’, Resilience
as ‘High’. Sensitivity has been assessed as ‘Not Sensitive’ at the benchmark level.

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available

Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: Organic Hg
> inorganic Hg > Cu > Ag > Zn > Cd > Pb. Cole et al,. (1999) reported that Hg was very toxic to
macrophytes. Similarly, Hopkin & Kain (1978) demonstrated sub-lethal effects of heavy metals on
kelp gametophytes and sporophytes, including reduced growth and respiration. Sheppard et al.
(1980) noted that increasing levels of heavy metal contamination along the west coast of Britain
reduced species number and richness in holdfast fauna, except for suspension feeders which
became increasingly dominant. Gastropods may be relatively tolerant of heavy metal pollution
(Bryan, 1984). Although macroalgae species may not be killed, except by high levels of
contamination, reduced growth rates may impair the ability of the biotope to recover from other
environmental disturbances. Thompson & Burrows (1984) observed the growth of Saccharina
latissima sporophyte growth was significantly inhibited at 50 µg Cu /l, 1000 µg Zn/l and 50 µg Hg/l.
Zoospores were found to be more intolerant and significant reductions in survival rates were
observed at 25 µg Cu/l, 1000 µg Zn/l and 5 µg/l.

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

The mucilaginous slime layer coating of laminariales may protect them from smothering by oil.
Hydrocarbons in solution reduce photosynthesis and may be algicidal. However, Holt et al. (1995)
reported that oil spills in the USA and from the Torrey Canyon had little effect on kelps. Similarly,
surveys of subtidal communities at a number sites between 1-22.5m below chart datum showed
no noticeable impacts of the Sea Empress oil spill and clean up (Rostron & Bunker, 1997) or during
the experimental release of untreated oil in Baffin Island, Canada (Cross et al., 1987). Laboratory
studies of the effects of oil and dispersants on several red algae species (Grandy 1984) concluded
that they were all sensitive to oil/ dispersant mixtures, with little differences between adults,
sporelings, diploid or haploid life stages.

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available

O'Brian & Dixon (1976) suggested that red algae were the most sensitive group of macrophytes to
oil and dispersant contamination (see Smith, 1968). Saccharina latissima has also been found to be
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sensitive to antifouling compounds. Johansson (2009) exposed samples of Saccharina latissima to
several antifouing compounds, observing chlorothalonil, DCOIT, dichlofluanid and tolylfluanid
inhibited photosynthesis. Exposure to Chlorothalonil and tolylfluanid, was also found to continue
inhibiting oxygen evolution after exposure had finished, and may cause irreversible damage.

Smith (1968) observed that epiphytic and benthic red algae were intolerant of dispersant or oil
contamination during the Torrey Canyon oil spill; only the epiphytes Crytopleura ramosa and
Spermothamnion repens and some tufts of Jania rubens survived together with Osmundea pinnatifida,
Gigartina pistillata and Phyllophora crispa from the sublittoral fringe.

Radionuclide
contamination

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: Medium A: High C: High Q: High A: High C: High Q: High A: High C: High

Reduced oxygen concentrations can inhibit both photosynthesis and respiration in macroalgae
(Kinne, 1977). Despite this, macroalgae are thought to buffer the environmental conditions of low
oxygen, thereby acting as a refuge for organisms in oxygen depleted regions especially if the
oxygen depletion is short-term (Frieder et al., 2012). A rapid recovery from a state of low oxygen is
expected if the environmental conditions are transient. If levels do drop below 4 mg/l negative
effects on these organisms can be expected with adverse effects occurring below 2mg/l (Cole et al.,
1999).

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit photosynthesis and respiration
but not cause a loss of the macroalgae population directly. Resistance has been assessed as ‘High’,
Resilience as ‘High’. Sensitivity has been assessed as ‘Not sensitive’ at the benchmark level.

Nutrient enrichment Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates
when in close proximity to a sewage outlet in St Andrews, UK when compared to other sites along
the east coast of Scotland. At St Andrews, nitrate levels were 20.22µM, which represents an
approx 25% increase when compared to other comparable sites (approx 15.87 µM). Handå et al.
(2013) also reported Saccharina latissima sporophytes grew approx 1% faster per day when in close
proximity to Salmon farms, where elevated ammonium can be readily absorbed.  Read et al. (1983)
reported after the installation of a new sewage treatment  works which reduced the suspended
solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima became abundant
where previously it had been absent. Bokn et al. (2003) conducted a nutrient loading experiment
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on intertidal fucoids. Within 3 years of the experiment no significant effect was observed in the
communities, however, 4-5 years into the experiment a shift occurred from perennials to
ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the results could
indicate that long-term (>4 years) nutrient loading can result in community shift to ephemeral
algae species. Disparities between the findings of the aforementioned studies are likely to be
related to the level of organic enrichment, however, could also be time dependant.

Johnston & Roberts (2009) conducted a meta-analysis, which reviewed 216 papers to assess how a
variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats
(including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from
all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also
highlighted that macroalgal communities are relatively tolerant to contamination, but that
contaminated communities can have low diversity assemblages which are dominated by
opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

At the time of writing little direct evidence for the effects of nutrient enrichment on Chorda filum
could be found. Bonsdorff et al., (2002) noted that chronic eutrophication in coastal areas can
cause an increased abundance and dominance of filamentous algae, resulting in a decline of other
resident algal communities. For example in Puck Bay, Poland Chorda filum, Fucus vesiculosus and
Furcellaria

Lumbricalis have been absent sine the 1970’s and the filamentous species Ectocarpus spp. and
Pilayella spp. now dominates the area (Ciszewski et al., 1992).

Sensitivity assessment. Although short-term exposure (<4 years) to nutrient enrichment may not
affect seaweeds directly, indirect effects such as turbidity may significantly affect photosynthesis
and result in reduced growth and reproduction and increased competition from fast growing but
ephemeral species. However, this biotope is considered to be 'Not sensitive' at the pressure
benchmark, that assumes compliance with good status as defined by the WFD.

Organic enrichment Medium High Low
Q: Medium A: High C: High Q: High A: Medium C: High Q: Medium A: Medium C: High

Read et al. (1983) reported after the installation of a new sewage treatment  works which reduced
the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima
became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient
loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect
was observed in the communities, however, 4-5 years into the experiment a shift occurred from
perennials to ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the
results could indicate that long-term (>4 years) nutrient loading can result in community shift to
ephemeral algae species. Disparities between the findings of the aforementioned studies are likely
to be related to the level of organic enrichment, however, could also be time dependent.

Johnston & Roberts (2009) conducted a meta-analysis, which reviewed 216 papers to assess how a
variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats
(including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from
all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also
highlighted that macroalgal communities are relatively tolerant to contamination, but that
contaminated communities can have low diversity assemblages which are dominated by
opportunistic and fast growing species (Johnston & Roberts, 2009). Organic enrichment may also
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result in phytoplankton blooms that increase turbidity and, therefore, may negatively impact
photosynthesis.

Sensitivity assessment. Although short-term exposure (<4 years) to organic enrichment may not
affect seaweeds directly, indirect effects such as turbidity may significantly affect photosynthesis.
Resistance has been assessed as ‘Medium’, resilience as ‘High’. Sensitivity has been assessed as
’Low’.

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

If rock substrata were replaced with sedimentary substrata this would represent a fundamental
change in habitat type, which Saccharina latissima and Chorda filum would not be able to tolerate.
The biotope would be lost.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very Low’
or ‘None’. The sensitivity of this biotope to change from sedimentary or soft rock substrata to hard
rock or artificial substrata or vice-versa is assessed as ‘High’.

Physical change (to
another sediment type)

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant on hard rock substrata

Habitat structure
changes - removal of
substratum (extraction)

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant on hard rock substrata

Abrasion/disturbance of
the surface of the
substratum or seabed

None High Medium

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Abrasion of the substratum e.g. from bottom or pot fishing gear, cable laying etc. may cause
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localised mobility of the substrata and mortality of the resident community. The effect would be
situation dependent, however, if bottom fishing gear were towed over a site it may mobilise a high
proportion of the rock substrata and cause high mortality in the resident community.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘High’. Sensitivity
has been assessed as ‘Medium’.

 

Penetration or
disturbance of the
substratum subsurface

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant, please refer to pressure “Abrasion/disturbance of the substrata on the surface of the
seabed”.

Changes in suspended
solids (water clarity)

None Medium Medium
Q: High A: High C: High Q: High A: Medium C: High Q: High A: High C: High

Suspended Particle Matter (SPM) concentration has a positive linear relationship with subsurface
light attenuation (Kd) (Devlin et al., 2008). Light availability and water turbidity are principal
factors in determining depth range at which macro-algae can be found (Birkett et al., 1998b). Light
penetration influences the maximum depth at which Laminarians can grow and it has been
reported that Laminarians grow at depths at which the light levels are reduced to 1 percent of
incident light at the surface. Maximal depth distribution of laminarians, therefore, varies from 100
m in the Mediterranean to only 6-7 m in the silt-laden German Bight. In Atlantic European waters,
the depth limit is typically 35 m. In very turbid waters the depth at which kelp is found may be
reduced, or in some cases excluded completely (e.g. Severn Estuary), because of the alteration in
light attenuation by suspended sediment (Lüning, 1990; Birkett et al. 1998b). Laminarians show a
decrease of 50% photosynthetic activity when turbidity increases by 0.1/m (light attenuation
coefficient =0.1-0.2/m; Staehr & Wernberg, 2009).

Sensitivity Assessment. An increase in water clarity from clear to intermediate (10-100mg/l)
represent a change in light attenuation of ca 0.67-6.7 Kd/m, and is likely to result in a greater than
50% reduction in photosynthesis of Laminaria spp. Therefore, the dominant kelp species will
probably suffer a severe decline and resistance to this pressure is assessed as ‘None’.  Resilience is
probably to this pressure is defined as ‘Medium’ at the benchmark. Hence, this biotope is regarded
as having a sensitivity of ‘Medium ‘to this pressure.

Smothering and siltation
rate changes (light)

High High Not sensitive
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: NR C: NR

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage Saccharina
latissima and Chorda filum sporophytes but may provide a physical barrier to zoospore settlement
and, therefore, could negatively impact on recruitment processes (Moy & Christie, 2012).
Laboratory studies showed that kelp and gametophytes can survive in darkness for between 6-16
months at 8°C and would probably survive smothering by a discrete event and once returned to
normal conditions gametophytes resumed growth or maturation within 1 month (Dieck, 1993).
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IR.HIR.KSed.SlatChoR is recorded from extreme wave exposed-sheltered sites (Connor et al.,
2004). In wave exposed biotopes deposited sediment is unlikely to remain for more than a few
tidal cycles (due to water flow or wave action). In sheltered biotopes deposited sediment could
remain however are unlikely to remain for longer than a year.

Sensitivity assessment. Resistance has been assessed as ‘High’, resilience as ‘High’. Sensitivity has
been assessed as ‘Not Sensitive’.

 

Smothering and siltation
rate changes (heavy)

Medium High Low
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: Low C: Low

Smothering by sediment e.g. 30 cm material during a discrete event, is unlikely to damage mature
Saccharina latissima and Chorda filum sporophytes but may provide a physical barrier to zoospore
settlement and, therefore, could negatively impact on recruitment processes (Moy & Christie,
2012). The volume of sediment may also inundate juvenile sporophytes. Given the microscopic size
of the gametophyte, 30cm of sediment could be expected to significantly inhibit growth.
Laboratory studies showed that kelp and gametophytes can survive in darkness for between 6-16
months at 8°C and would probably survive smothering by a discrete event and once returned to
normal conditions gametophytes resumed growth or maturation within 1 month (Dieck, 1993).

IR.HIR.KSed.SlatChoR is recorded from extreme wave exposed-sheltered sites (Connor et al.,
2004). In wave exposed biotopes deposited sediment is unlikely to remain for more than a few
tidal cycles (due to water flow or wave action). In sheltered biotopes deposited sediment could
remain, however, is unlikely to remain for longer than a year.

Sensitivity assessment. Resistance has been assessed as ‘Medium’, resilience as ‘High’. Sensitivity
has been assessed as ‘Low’.

 

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not assessed.

Electromagnetic changes Not relevant (NR) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant
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Introduction of light or
shading

Low Medium Medium
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: Low C: Low

There is no evidence to suggest that anthropogenic light sources would affect Saccharina latissima
or Chorda filum. Shading of the biotope (e.g. by the construction of a pontoon, pier etc) could
adversely affect the biotope in areas where the water clarity is also low, and tip the balance to
shade tolerant species, resulting in the loss of the biotope directly within the shaded area, or a
reduction in seaweed abundance.

Sensitivity assessment. Resistance is probably 'Low', with a 'Medium' resilience and a sensitivity
of 'Medium', albeit with 'low' confidence due to the lack of direct evidence.

Barrier to species
movement

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant. This pressure is considered applicable to mobile species, e.g. fish and marine
mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal
of spores, but spore dispersal is not considered under the pressure definition and benchmark.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant.

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) No evidence (NEv)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

There is little evidence for translocation of Saccharina latissima or Chorda filum over significant
geographic distances. Nor is there any evidence regarding the genetic modification or effects of
translocation of native kelp populations.

Introduction or spread of
invasive non-indigenous
species

Low Very Low High

Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Undaria pinnatifida has received a large amount of research attention as a major Invasive Non-
Indigenous Species (INIS) which could out-compete native UK kelp habitats (see Farrell & Fletcher,
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2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was
first recorded in the UK, Hamble Estuary, in June 1994 (Fletcher & Manfredi, 1995) and has since
spread to a number of British ports. Undaria pinnatifida is an annual species, sporophytes appear in
Autumn and grow rapidly throughout winter and spring during which they can reach a length of
1.65m (Birkett et al., 1998b). Farrell & Fletcher (2006) suggested that native short lived species
that occupy similar ecological niches to Undaria pinnatifida, such as Saccharina latissima or Chorda
filum, are likely to be worst affected and out-competed by Undaria pinnatifida. Where present, an
abundance of Undaria pinnatifida  corresponded to a decline in Saccharina lattisima (Farrel &
Fletcher, 2006) and Laminaria hyperborea (Hieser et al., 2014).

In New Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete
U.pinnatifida and re-dominate the substratum. However, Thompson & Schiel (2012) suggested the
fucoid recovery was partially due to an annual Undaria pinnatifida die back, which as noted by
Heiser et al., (2014) does not occur in Plymouth sound, UK. Undaria pinnatifida was successfully
eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat treatment of
70°C (Wotton et al., 2004) however numerous other eradication attempts have failed, and as noted
by Fletcher & Farrell, (1999) once established Undaria pinadifida resists most attempts of long-
term removal. The biotope is unlikely to fully recover until Undaria pinnatifida is fully removed from
the habitat, which as stated above is unlikely to occur.

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘Very Low’.
The sensitivity of this biotope to the introduction of microbial pathogens is assessed as ‘High’.

Introduction of microbial
pathogens

Low High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Laminariales may be infected by the microscopic brown alga Streblonema aecidioides. Infected algae
show symptoms of Streblonema disease, i.e. alterations of the blade and stipe ranging from dark
spots to heavy deformations and completely crippled thalli Infection can reduce growth rates of
host algae (Peters & Scaffelke, 1996). The marine fungi Eurychasma spp can also infect early life
stages of Laminariales and Desmarestia viridis, however, the effects of infection are unknown
(Müller et al., 1999).

Sensitivity assessment. Resistance to the pressure is considered ‘Low’, and resilience ‘High’. The
sensitivity of this biotope to the introduction of microbial pathogens is assessed as ‘Low’.

Removal of target
species

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

There has been recent commercial interest in Saccharina lattisima as a consumable called “sea
vegetables” (Birket et al., 1998). However, Saccharina lattissima sporophytes are typically matured
on ropes (Handå et al 2013) and not directly extracted from the seabed, as with Laminaria
hyperborea (Christie et al., 1998). No evidence has been found for commercial extraction of Chorda
filum.  This pressure has therefore been assessed as not relevant.

Removal of non-target
species

None High Medium
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low
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Low level disturbances (e.g. solitary anchors and scallop dredges) are unlikely to cause harm to the
biotope as a whole, due to the impact’s small footprint.  Thus, evidence to assess the resistance of
IR.HIR.KSed.SlatChoR to non-targeted removal is limited. It is assumed that incidental non-
targeted catch will mobilise sediment and cause high mortality within the affected area.

Sensitivity assessment. Resistance has been assessed as ‘None’, resilience as ‘High’, and sensitivity
assessed as ‘Medium’.
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