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Summary

 UK and Ireland classification

EUNIS 2008 A1.153
Fucus serratus with sponges, ascidians and red seaweeds on
tide-swept lower eulittoral mixed substrata

JNCC 2015 LR.HLR.FT.FserTX
Fucus serratus with sponges, ascidians and red seaweeds on
tide-swept lower eulittoral mixed substrata

JNCC 2004 LR.HLR.FT.FserTX
Fucus serratus with sponges, ascidians and red seaweeds on
tide-swept lower eulittoral mixed substrata

1997 Biotope LR.SLR.FX.FserX.T
Fucus serratus with sponges, ascidians and red seaweeds on
tide-swept lower eulittoral mixed substrata

 Description

Sheltered lower shore boulders, cobbles and pebbles on muddy sediments that are subject to
enhanced tidal water movement may be characterized by a rich community of sponges
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(Halichondria panicea and Hymeniacidon perleve), hydroids (Dynamena pumila), bryozoans (Anguinella
palmata and Walkeria uva), ascidians (Ascidiella aspersa, Ascidiella scabra, Styela clava and Botryllus
schlosseri) and red seaweed (Halurus flosculosus, Ceramium sp., Gracilaria verrucosa and Chondrus
crispus). The brown algae Dictyota dichotoma, Fucus serratus and Ectocarpus sp. may be found on any
more stable substrata. Patches of sand or mud are often characterized by the sand mason worm
Lanice conchilega, the peacock worm Sabella pavonina and the anemone Sagartia troglodytes.
Aggregations of the mussel Mytilus edulis and, in southern and eastern England, the slipper limpet
Crepidula fornicata may also be found attached to cobbles and pebbles. Sites in Scottish sealochs
may support maerl Lithothamnion corallioides and bivalves Venerupis senegalensis (see also
IMX.VsenMtru). (Information taken from the Marine Biotope Classification for Britain and Ireland,
Version 97.06: Connor et al., 1997a, b).

 Depth range

Lower shore

 Additional information

-

 Listed By

- none -

 Further information sources

Search on:

   JNCC

https://www.marlin.ac.uk/species/detail/2119
https://www.marlin.ac.uk/species/detail/1566
https://www.marlin.ac.uk/species/detail/1823
https://www.marlin.ac.uk/species/detail/1883
https://www.marlin.ac.uk/species/detail/1340
https://www.marlin.ac.uk/species/detail/1340
https://www.marlin.ac.uk/species/detail/1444
https://www.marlin.ac.uk/species/detail/1444
https://www.marlin.ac.uk/species/detail/1326
https://www.marlin.ac.uk/species/detail/1642
https://www.marlin.ac.uk/species/detail/1717
https://www.marlin.ac.uk/species/detail/1421
https://www.marlin.ac.uk/species/detail/1554
https://www.marlin.ac.uk/species/detail/1284
http://www.google.co.uk/search?q=iFucus+serratus/i+with+sponges,+ascidians+and+red+seaweeds+on+tide-swept+lower+eulittoral+mixed+substrata
http://scholar.google.co.uk/scholar?q=iFucus+serratus/i+with+sponges,+ascidians+and+red+seaweeds+on+tide-swept+lower+eulittoral+mixed+substrata
http://www.google.co.uk/search?q=LR.HLR.FT.FserTX
https://mhc.jncc.gov.uk/search/?q=LR.HLR.FT.FserTX
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Habitat review

 Ecology

Ecological and functional relationships

Due to the moderately strong currents associated with this biotope, suspension feeders
are the dominant trophic group, indicating the importance of a planktonic input to the
benthic community. Suspension feeders frequently associated with this biotope represent
four phyla: the sponges Halichondria panicea and Hymeniacidon perleve, ascidians such as
Ascidiella aspersa, molluscs including the slipper limpet Crepidula fornicata and common
mussel Mytilus edulis and crustaceans such as barnacle Elminius modestus.
The sand mason Lanice conchilega (a polychaete worm) is primarily a deposit feeder,
feeding preferentially on detritus. However, when Lanice conchilega occurs in high
densities, competition at the sediment surface forces it to suspension feed (Buhr &
Winter, 1977).
The common periwinkle Littorina littorea is a herbivore and commonly feeds on fine brown,
green and red algae. The chiton Lepidochitona cinerea also grazes on algae and micro
organisms.
The common shore crab Carcinus maenas is the largest mobile predator frequently
associated with this biotope and is likely to move between the boulders and pebbles
feeding primarily on small molluscs, especially Littorina sp. and Mytilus edulis, annelids and
other crustacea. It is a true omnivore and will also consume algal material.
Autotrophs in the biotope are varied and include representatives from the brown, green
and red algal groups such as Fucus serratus, Bryopsis plumosa and Chondrus crispus
respectively. The algae themselves may provide substratum for epiphytes including
hydroids, sponges and ascidians. In addition, clumps of algae are likely to provide refuge
for smaller crabs and periwinkles which may otherwise be washed away by the strong
water flow.
Due to the eulittoral position of this biotope, the associated fauna are likely to experience
some predation from birds, when exposed at low tide and shallow water fish at high tides.

Seasonal and longer term change

The plants in this biotope are likely to experience some seasonal change in abundance, the general
pattern being a lower percentage cover over the winter months. However, this biotope is limited
to habitats that are sheltered to extremely sheltered from wave exposure and, therefore,
increases in wave exposure during winter and the occurrence of winter storms are unlikely to
affect it to the same extent that more exposed habitats would be affected. In some habitats, the
surface cover of Fucus serratus may reach 95% in the summer months. Ephemeral green algae
especially, increase in abundance over the summer months.

Any increase in wave exposure and storm frequency over the winter months is likely to result in
the resuspension and subsequent redeposition of the mixed sediment substratum. If the forces
were strong enough, the pebbles and boulders may also be moved around. Redistribution of the
larger pebbles and boulders may be to the detriment of the epilithic fauna. For example, if colonies
of sponges and ascidians on the rock landed face down into the sediment, their feeding would be
interrupted and that part of the colony would die. In the Bay of Fundy, Canada, the abundance of
the hydroid Dynamena pumila declined dramatically over the winter months as a result of ice scour
(Henry, 2002) which is likely to have a similar effect to the scour of the mixed sediment in this

https://www.marlin.ac.uk/species/detail/1566
https://www.marlin.ac.uk/species/detail/1554
https://www.marlin.ac.uk/species/detail/1421
https://www.marlin.ac.uk/species/detail/1642
https://www.marlin.ac.uk/species/detail/1328
https://www.marlin.ac.uk/species/detail/1497
https://www.marlin.ac.uk/species/detail/1326
https://www.marlin.ac.uk/species/detail/140
https://www.marlin.ac.uk/species/detail/1444
https://www.marlin.ac.uk/species/detail/1326
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biotope. Similarly, if plants were trapped under the boulders they may also die unless subsequent
movement of the boulders released them. Periodic storms may remove older and weaker plants
and reduce the overall biomass of the plants.

Habitat structure and complexity

The substratum within this biotope is mixed and structurally complex, offering a wide variety of
potential habitats including boulders, cobbles, pebbles and muddy sediments. This means that
there will be a mix of both infauna, epifauna and epilithic species. In addition, Fucus serratus and red
seaweeds offer a substratum for colonization by epiflora including bryozoans and sponges. 91 taxa
of associated fauna were found on 65 specimens of Fucus serratus in Strangford Lough, Northern
Ireland (Boaden et al., 1975). Clumps of seaweed also offer refuge for Carcinus maenas and the
grazer Littorina littorea. Small patches of the mussel Mytilus edulis may provide refuge for a diverse
range of small invertebrates including polychaetes and Littorina sp.. The empty shells of the
molluscs also provide some heterogeneity to the substratum.

Productivity

Very little is known about the productivity of this biotope, or indeed of intertidal mixed sediment
communities in general. However, the small patches of macroalgae associated with this biotope
can exude dissolved organic carbon, which is taken-up readily by bacteria and may even be taken-
up directly by some larger invertebrates. Dissolved organic carbon, algal fragments and microbial
film organisms are continually removed by the sea. This may enter the food chain of local subtidal
ecosystems, or be exported further offshore. Many of the species associated with this biotope
make a contribution to the food of many marine species through the production of planktonic
larvae and propagules, which contribute to pelagic food chains. There is likely to be less
productivity than on fucoid dominated rocky shore such as MLR.MytFves and MLR.BF.

Recruitment processes

For the majority of important characterizing species and other important species within this
biotope, reproduction and recruitment is an annual process. For some of the species, such as the
common mussel Mytilus edulis, common shore crab Carcinus maenas and common periwinkle
Littorina littorea, various stages in the reproductive process, including gametogenesis, the timing of
spawning and/or recruitment, are variable depending on, for example, environmental factors and
geographic location. Recruitment in the major groups present is summarized below.

Reproduction in Fucus serratus commences in late spring and continues until November,
with a peak in August and October. Eggs and sperm are produced separately and fertilized
externally to form a planktonic zygote. Recruitment is therefore possible from sources
outside the biotope.
Chondrus crispus has an extended reproductive period (e.g. Pybus, 1977; Fernandez &
Menendez, 1991; Scrosati et al., 1994) and produces large numbers of spores (Fernandez
& Menendez, 1991). Although growth of sporelings is not rapid in comparison to other
macroalgae, maturity is probably reached approximately 2 years after initiation of the
basal disc (Pybus, 1977). The spores of red algae are non-motile (Norton, 1992) and
therefore entirely reliant on the hydrographic regime for dispersal. Hence, it is expected
that Chondrus crispus would normally only recruit from local populations and that
recovery of remote populations would be much more protracted.
There is some debate as to the nature of reproduction in the breadcrumb sponge
Halichondria panicea but it is likely that it has a short, annual season of reproduction (see

https://www.marlin.ac.uk/species/detail/1326
https://www.marlin.ac.uk/species/detail/1497
https://www.marlin.ac.uk/species/detail/1328
https://www.marlin.ac.uk/species/detail/1421
https://www.marlin.ac.uk/species/detail/1421
https://www.marlin.ac.uk/species/detail/1497
https://www.marlin.ac.uk/species/detail/1328
https://www.marlin.ac.uk/species/detail/1326
https://www.marlin.ac.uk/species/detail/1444
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MarLIN review).
The larvae of the sea squirt Ascidiella aspersa have a short free-swimming planktonic stage.
However, time taken from fertilization until settlement and metamorphosis is only about
24 hours at 20 °C (Niermann-Kerkenberg & Hofmann, 1989) and, therefore, widespread
dispersal seems unlikely.
Mytilus edulis has a protracted spawning in many places and fecundity is affected by many
factors (see MarLIN review). The planktonic life of larvae may exceed two months and,
hence, there is a good chance of wide dispersal and recruitment from external sources.
Due to the highly gregarious nature of Mytilus edulis settlement, persistent mussel beds
can be maintained by relatively low levels of recruitment.
The larvae of the sand mason Lanice conchilega can spend up to sixty days in the plankton
therefore providing good potential for dispersal and recruitment from external sources.
The duration of the breeding season in the common shore crab Carcinus maenas depends
on the geographic location of the population. Females on the south coast of Britain can
bear eggs all year round and fecundity is high (see MarLIN review).
Fecundity in the common periwinkle Littorina littorea can reach 100,000 eggs in large
females. The reproductive season is annual and episodic with a pelagic phase of up to six
weeks. Littorina littorea can also breed all year, although the length and timing of the
season depend on climate.
Dispersal of the hydroid Dynamena pumila is restricted to the planula stage which usually
settles and starts to metamorphose within 60 hours of release (Orlov, 1996). Orlov (1996)
that long-distance dispersal was further restricted by the dense bushes of neighbouring
algae which serve to trap the larvae in the area.

Time for community to reach maturity

No information was found concerning the development of this biotope. However, the important
characterizing species all reach sexual maturity within three years and have annual reproductive
episodes suggesting that the time taken for the community to develop is likely to be less than five
years. However, if adverse environmental conditions prevail, time taken to reach maturity could
take significantly longer.

Additional information

-

 Preferences & Distribution

Habitat preferences

Depth Range Lower shore

Water clarity preferences

Limiting Nutrients Data deficient

Salinity preferences Full (30-40 psu), Variable (18-40 psu)

Physiographic preferences Enclosed coast / Embayment, Strait / sound

Biological zone preferences Lower eulittoral

Substratum/habitat preferences
Large to very large boulders, Small boulders, Cobbles, Muddy
sand, Muddy gravel

https://www.marlin.ac.uk/species/detail/1642
https://www.marlin.ac.uk/glossarydefinition/waterclarity
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Tidal strength preferences Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.)

Wave exposure preferences Extremely sheltered, Sheltered, Very sheltered

Other preferences Moderately strong tidal streams

Additional Information

SLR.FserX.T occurs in sheltered to extremely sheltered habitats. Connor et al. (1997b) consider
this biotope to be uncommon in Britain.

 Species composition

Species found especially in this biotope

Rare or scarce species associated with this biotope

-

Additional information

The MNCR recorded 423 species in 22 records of this biotope although not all of the species
occurred in all records of the biotope (JNCC, 1999).
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

This biotope is characterized by the macroalgae Fucus serratus and a rich assemblage of filter-
feeding fauna encouraged by moderately strong to very strong tidal currents. The filter feeding
communities include the sponges Halichondria panacea, Grantia compressa and Hymeniacidon perleve
as well as the sea squirts Ascidiella scabra and Dendrodoa grossularia. Underneath the Fucus
serratus canopy is a diverse flora of foliose red seaweeds including Chondrus crispus and Lomentaria
articulata. Other species such as the limpet Patella vulgata and the tube building worm
Spirobranchus triqueter are also present.

Fucus serratus is the key structuring species as the macoalgae form a canopy within this biotope
that provides protection from desiccation for the various underlying foliose red seaweeds in
addition to providing a substratum for a diverse range of epifauna. Characterizing elements of this
biotope are sponges, ascidians and red seaweeds in particular Halichondria panacea Ascidiella scabra
and Chondus chrispus.  The sensitivity assessments consider the characterizing species that define
this biotope; Fucus serratus, sponges and ascidians. Loss/degradation of the Fucus serratus
population would thus result in direct loss/degradation of the associated community and
significantly alter the character of the biotope. Therefore, the assessments typically emphasise the
sensitivity of Fucus serratus.

 Resilience and recovery rates of habitat

The loss of Fucus serratus canopy will have both short and long-term consequences for associated
benthic communities, resulting in the loss of biogenic habitat, reduction in diversity, simplification
of vertical structure and reduction or loss of ecosystem functioning such as primary productivity
(Lilley & Schiel, 2006). The removal of macroalgae canopy exposes understory species to sunlight
and aerial conditions during low tides resulting in bleaching and eventual die backs. Through time,
some functional groups, such as low-lying turfing algae, recover and reach greater abundance
compared to prior disturbance conditions (Bulleri et al., 2002; Bertocci et al., 2010). These
turf algae can then prevent canopy recovery by inhibiting recruitment. Schiel & Foster (2006)
observed long-term demographic lags in recovery after important losses of fucoids. Recovery of
lost or severely reduced species can be slow, with species replacement common. Indeed loss of
fucoids can cause systems shifts to a state dominated by low-lying turf or filamentous ephemeral
algae (Airoldi et al., 2008; Mangialajo et al., 2008; Perkol-Finkel & Airoldi, 2010). Turf algae,
especially corallines, are often highly resilient and positively associated with perturbed areas. The
changes in dominant species and community structure take some time to develop and, although
some effects occur rapidly, many are manifested over a period of several years (Schiel & Lilley,
2011). Hawkins & Southward (1992) found that, after the Torrey Canyon oil spill, it took between
10 and 15 years for the Fucus sp. to return to 'normal' levels of spatial and variation in cover on
moderately exposed shores. Therefore, for factors that totally destroy the biotope, recovery is
likely to be low.

Fucus serratus is dioecious, perennial and reproduces sexually. Reproduction commences in late
spring/early summer and continues through summer and autumn, peaking in August - October.
Eggs and sperm are released into the water and fertilization occurs in the water column. The
zygote then develops into a minute plant that can then settle onto the substratum. Arrontes
(1993) determined that the dispersal of Fucus serratus gametes and fertilized eggs was restricted to
within 1–2 m from the parent. Average annual expansion rates for Fucus serratus have been
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estimated at 0.3 to 0.6 km per year (Coyer et al., 2006; Brawley et al., 2009). Dispersal is highly
limited as the negatively buoyant eggs are fertilized almost immediately after release and dispersal
by rafting reproductive individuals is unlikely (Coyer et al., 2006). Fucus serratus does not float, and
thus mature detached individuals cannot transport reproductive material to distant sites as might
be the case for other brown algae. However Fucus serratus is found on all British and Irish coasts so
there are few mechanisms isolating populations. While poor dispersal is true for medium or large
spatial scales (hundreds of metres to kilometres), recruitment at short distances from parental
patches is very efficient, as most propagules settle in the vicinity of parent plants (Arrontes, 2002).

Chondrus crispus has an extended reproductive period (e.g. Pybus, 1977; Fernandez & Menendez,
1991; Scrosati et al., 1994) and produces large numbers of spores (Fernandez & Menendez, 1991).
Recovery of a population of Chondrus crispus following a perturbation is likely to be largely
dependent on whether holdfasts remain, from which new thalli can regenerate (Holt et al., 1995).
In addition, the spores of red algae are non-motile (Norton, 1992) and therefore entirely reliant on
the hydrographic regime for dispersal. Hence, similar to Fucus serratus, Chondrus crispus would
normally only recruit from local populations slowing down the recovery of remote populations.
Minchinton et al. (1997) documented the recovery of Chondrus crispus after a rocky shore in Nova
Scotia, Canada, was totally denuded by an ice scouring event. Initial recolonization was dominated
by diatoms and ephemeral macroalgae, followed by fucoids and then perennial red seaweeds.
After 2 years, Chondrus crispus had re-established approximately 50% cover on the lower shore
and after 5 years it was the dominant macroalga at this height, with approximately 100% cover.
Minchinton et al. (1997) concluded that although Chondrus crispus was a poor colonizer, it was the
best competitor.      

The larvae of the sea squirt Ascidiella aspersa have a short free-swimming planktonic stage.
Fertilization to settlement and metamorphosis is estimated to only take about 24 hours at 20°C
(Niermann-Kerkenberg & Hofmann, 1989). The congener Ascidiella scabra has a high fecundity and
settles readily, probably for an extended period from spring to autumn. Svane (1988) describes it
as 'an annual ascidian' and demonstrated recruitment onto artificial and scraped natural substrata.
It is also likely that Ascidiella scabra larvae are attracted by existing populations and settle near to
adults (Svane et al., 1987). Fast growth means that a dense cover could be established within about
2 months. However, if mortality occurs at a time when larvae are not being produced, other
species may settle and dominate in the freed spaces.

The settlement of new colonies of the breadcrumb sponge Halichondria panicea is likely to occur
within one year with growth rate ranging from −0.1 to 0.4 cm2/day. Knowlton & Highsmith (2005)
found a rapid response to tissue damage from nudibranch grazing with the sponge recovering
within 4 weeks from grazing impacts.

Resilience assessment. Fucus serratus is the main structural species as its removal will lead cause
the decline of associated species and eventually to a change towards a different biotope. If the
entire population of Fucus serratus is lost other species may come to dominate. Where resistance is
‘None’, then resilience is ‘Low’ based on the low long-distance dispersal range of Fucus serratus. Re-
establishment of the seaweed may depend on the ability to out-compete other species and this
may be dependent on suitable environmental conditions. Upon arrival, the success of the new
population is explained by: (1) rapid establishment of monospecific patches in the immediate
vicinity of the founding plants, (2) high colonization rates of disturbed areas, (3) the ability to
recruit to undisturbed canopies, (4) the ability to outgrow resident canopy species (particularly
Fucus vesiculosus) and (5) the increase in size and number of dispersal centres (Arrontes, 2002).
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If some of the population remains it is unlikely that other species will come to dominate due to
efficient recruitment of Fucus serratus over short distance. Removal of some of the adult canopy
will allow the understorey germling to grow faster. Recovery will probably have occurred after a
year. Therefore when resistance is ‘Medium’, recovery will be very fast resulting in a ‘High’
resilience score due to very efficient colonization of areas adjacent to Fucus serratus patches. If
resistance is assessed as ‘High’, resilience is automatically ‘High’ as there are not impacts to
recover from.

Strong tidal currents, characteristic of this biotope, encourage communities of sponges and
ascidians. Changes to the hydrological regime are therefore likely to directly influence the
presence of these species. Once removed, these species are however likely to rapidly recolonize
due to planktonic larvae thereby facilitating recruitment. Most species associated with this
biotope are poor long distance dispersers. However the moderately strong tidal currents of this
biotope enable these species to disperse over greater distances than in slow flowing environments.

The resilience and the ability to recover from human induced pressures is a combination of the
environmental conditions of the site, the frequency (repeated disturbances versus a one-off event)
and the intensity of the disturbance.  Recovery of impacted populations will always be mediated by
stochastic events and processes acting over different scales including, but not limited to, local
habitat conditions, further impacts and processes such as larval-supply and recruitment between
populations. Full recovery is defined as the return to the state of the habitat that existed prior to
impact.  This does not necessarily mean that every component species has returned to its prior
condition, abundance or extent but that the relevant functional components are present and the
habitat is structurally and functionally recognisable as the initial habitat of interest. It should be
noted that the recovery rates are only indicative of the recovery potential.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

High High Not sensitive
Q: High A: Low C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Most fucoids are cold-temperate species (Lüning, 1984), and temperatures above 20°C are
generally considered unsuitable (Zou et al., 2012). The effect of high temperature stress on
photosynthesis in brown algae is related to inactivation of enzymes and the induction of reactive
oxygen species (ROS), leading to photoinhibition (Suzuki & Mittler, 2006). Growth rates of adult
brown macroalgae may be affected by temperature through the increase in metabolic rates
(Nygard & Dring, 2008). However, Fucus serratus is found along the Atlantic coast of Europe from
Svalbard to Portugal and on the shores of north-east America. The seaweed is thus well within its
thermal range in the British Isles.

Increased temperature (>15°C) can enhance biotic stress on Fucus plants by increasing mico- and
macrofouling rates (Wahl et al., 2010). Several studies observed adverse effects of Fucus serratus as
a result to warm thermal stress in terms of growth, physiological performance and reproductive
output in Spain and Portugal (Pearson et al., 2009; Viejo et al., 2011; Martínez et al., 2012).
Jueterbock et al. (2014) however determined that these negative impacts can be explained by
within-population genetic diversity. Southwest-Ireland and Brittany are hot-spots of genetic
diversity (Coyer et al., 2003; Hoarau et al., 2007) and may thus be more resilient to changes in
temperature. Indeed, Nielsen et al. (2014) found no negative effects on growth rates of adult Fucus

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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serratus to water temperatures of 22°C (laboratory experiment with specimen collected from Firth
of Forth, Scotland). Phenotypic plasticity plays therefore an important role in determining the
sensitivity of individual populations to changes in temperature.

The geographical ranges of a variety of associated species such as Halichondria panicea, Chondrus
crispus and Ascidiella scabra suggest that these organisms will be tolerant to a change in
temperature at the pressure benchmark. It is however possible that acute changes in temperature
will have adverse effects resulting in mortalities. 

Sensitivity assessment. An increase in 5°C above average British and Irish temperatures is not
likely to have a detrimental effect of Fucus serratus and associated communities, however,
phenotypic plasticity will influence the tolerance of individual population. Resistance and
resilience are therefore both assessed as ‘High’ (no impacts to recover from). The biotope group is
‘Not Sensitive’ to a change in temperature at the pressure benchmark. 

Temperature decrease
(local)

High High Not sensitive
Q: High A: Low C: NR Q: High A: High C: High Q: High A: Low C: Low

Lüning (1984) reported that Fucus serratus survived in the laboratory for a week a range
temperature between 0°C and 25°C.  Fucus serratus is found along the Atlantic coast of Europe
from Svalbard to Portugal and on the shores of north-east America. The seaweed is thus well
within its thermal range in the British Isles. Lüning (1984) placed this species in his 'Cold
temperature North Altantic group'.

Sensitivity assessment. A decrease in acute or chronic temperature above average British and
Irish temperatures is not likely to have a detrimental effect of Fucus serratus and associated
communities, based on global distribution. However, it should be noted that phenotypic plasticity
will influence the tolerance of individual population. Resistance and resilience are therefore both
assessed as ‘High’ (no impacts to recover from). The biotope group is ‘Not Sensitive’ to a change in
temperature at the pressure benchmark. 

Salinity increase (local) Medium High Low
Q: Low A: NR C: NR Q: High A: High C: Medium Q: Low A: NR C: NR

This biotope group is found in the intertidal and is therefore likely to experience cyclical periods of
hypo- and hyper-salinity. Seaweeds are able to compensate for changes in salinity by adjusting
internal ion concentrations. However this will occur at a cost, reducing photosynthetic rate and
hence affecting the growth rate of the seaweed. Growth rates for Fucus serratus are maximal at a
salinity of 20 psu with the critical limit for recruitment set at 7 psu (Malm et al., 2001).

Sensitivity assessment. Fucus serratus, commonly inhabit narrow fjords where salinity can vary
widely along a spatial (kms) and/or temporal (hours to daily) scale. Species associated with this
biotope are therefore likely to be tolerant to an increase in salinity from 35 to 40 units for one
year.  No direct evidence was found on the effects of hypersaline (>40 units) conditions. However,
hypersaline conditions may result in damage to the fucoid but loss of associated community (e.g.
ascidians and sponges).  Therefore a tentative resistance of 'Medium' is recorded, at low
confidence. Resilience is probably 'High', so that the biotope is probably of 'Low' sensitivity at the
pressure benchmark.
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Salinity decrease (local) High High Not sensitive
Q: High A: High C: High Q: High A: High C: Medium Q: High A: High C: Medium

This biotope group is found in the intertidal and is therefore likely to experience cyclical periods of
hypo- and hyper-salinity. Seaweeds are able to compensate for changes in salinity by adjusting
internal ion concentrations. However this will occur at a cost, reducing photosynthetic rate and
hence affecting the growth rate of the seaweed. Growth rates for Fucus serratus are maximal at a
salinity of 20 psu with the critical limit for recruitment set at 7 psu (Malm et al., 2001).

Sufficient salinity is essential for successful fertilization and germination in Fucus (e.g., Brawley,
1992; Serrão et al., 1999). Malm et al. (2001) found that fertilization success in Fucus serratus
decreased substantially with strongly reduced salinity. Indeed the study found that fertilization
success was 87% at 9 psu but declined to 5% at 6 psu. Reduced salinity also affects dispersal by
decreasing swimming performance of fucoid sperm (Serrão et al., 1996).

Other characterizing species associated with this biotope are likely to be tolerant of a reduction in
salinity. Halichondria panacea, Chondrus crispus  amd Ascidiella scabra can all be found in reduced
salinity conditions. Patella vulgata can endure periods of low salinity and was found to die only
when the salinity was reduced to 3-1 psu (Fretter & Graham, 1994). However, Little et al. (1991)
observed reduced levels of activity in limpets after heavy rainfall and in the laboratory activity
completely stopped at 12 psu.

Sensitivity assessment. At the level benchmark a reduction in salinity of from full to variable or
reduced in one year could have beneficial effects on Fucus serratus as growth rates are maximal
below full saline conditions. Other characterizing species associated with this biotope are also
tolerant of reduced salinity at the level of the benchmark. Resistance and resilience are therefore
both assessed as ‘High’ (no impacts to recover from). The biotope is therefore ‘Not Sensitive’.

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: High A: Low C: Medium Q: High A: High C: High Q: High A: Low C: Medium

The rich community of suspension feeders in this biotope is, in part, due to the strong tidal streams
with which it is associated. Strong currents provide suspension feeder with a continual supply of
food and removes sediment that would otherwise interfere with their feeding apparatus. A
decrease in water flow rate could lead to siltation, to the detriment of filter feeders. Furthermore,
grazers unable to cope with the strong flow rates normally associated with this biotope may be
able to graze more efficiently, increasing herbivory pressure.  High water flow rates increases
mechanical stress on macroalgae by increasing drag. This can result in individuals being torn off the
substratum. Once removed, the attachment cannot be reformed causing the death of the algae.
Any sessile organisms attached to the algae are also lost. Fucoids are however highly flexible and
are able to reorientate their position in the water column to become more streamlined. By going
with the flow, fucoids can reduce the relative velocity between algae and the surrounding water,
thereby reducing drag and lift (Denny et al., 1998). Propagule dispersal, fertilization, settlement,
and recruitment are also influenced by water movement (Pearson & Brawley, 1996). In addition,
increased water flow will cause scours though increased sediment movement affecting in
particular small life stages of macroalgae by removing new recruits from the substratum and hence
reducing successful recruitment (Devinny & Volse, 1978) (see ‘siltation’ pressures).  Changes in
water motion can thus strongly influence local distribution patterns of Fucus spp. (Ladah et
al., 2008). Increases in drag can however be counterbalanced in the long-term by changes in
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morphology resulting in structurally more resistant thalli and holdfasts (Haring et al., 2002).

An increase in water flow rate could also adversely affect this biotope. The mixed nature of the
substratum means that suspended sediment of various sizes will be re-suspended and cobbles and
pebbles are likely to move across the seabed. The movement of pebbles, cobbles and boulders
across the sea floor may scour epilithic sponges, bryozoans and hydroids off the rocks and clumps
of algae may become dislodged. Re-suspended sediments are likely to interfere with the
suspension feeders feeding apparatus and respiratory currents to their detriment (see ‘suspended
sediment’ pressure). In wave sheltered areas where this biotope occurs, the breadcrumb sponge
Halichondria panicea grows in massive forms. Poorly attached massive forms may be ripped off by
an increase in water flow rate leading to the death of large colonies.

Sensitivity assessment.  Moderately strong tidal flow, characteristic of this biotope, encourages
communities of sponges and ascidians. Changes to the hydrological regime are therefore likely to
directly influence the presence of these species. As the biotope occurs in moderately strong
tidal flow (0.5-1.5 m/s) an increase in water flow may result in disturbance or mobilization of the
hard substrata (i.e. cobbles and pebbles), resulting in abrasion or loss of attached epilfora and
epifauna. A reduction in water flow is likely to result in a loss of the suspension feeding species, an
overall reduction in species richness, and result in loss of this biotope, as it is replaced by another
Fucus serratus dominated biotope, e.g. LR.LLR.F.FserrX.  However,  a change of 0.1-0.2 m/s(the
benchmark)  is unlikely to adversely affect the biotope, although a reduction may decrease feeding
and hence growth rates.  Therefore, a resistance of 'High' is recorded, with a resilience of
'High' and a sensitivity of 'Not sensitive' at the benchmark level. 

Emergence regime
changes

Low Medium Medium
Q: High A: Medium C: Medium Q: High A: High C: Medium Q: High A: Medium C: Medium

This biotope group is found in the intertidal and is therefore subjected to cyclical immersion and
emersion. Fucus serratus and Chondrus crispus are both intertidal species adapted to a degree of
periodic desiccation. Fucus serratus is more susceptible to desiccation than other Fucus species
located further up the shore and subjected more frequently to aerial exposure (Schonbeck &
Norton, 1978). The critical water content for Fucus serratus is estimated at 40% with water losses
past this point causing irreversible damage. Beer et al. (2014) found that Fucus serratus could not
regain any positive photosynthetic rates after rehydrating from 10% water content. In addition,
early life history stages will be more susceptible than adults (Henry & Van Alstyne, 2004).
Germlings are however protected from desiccation by the canopy of adults. A study by Brawley &
Jonhnson (1991) showed that germling survival under adult canopy was close to 100% whereas
survival on adjacent bare rock was close to 0% during exposure to aerial conditions.
The Fucus canopy is also likely to protect other underlying species to a great extent. Mortalities of
other component of the community will however occur if the canopy is removed (see ‘abrasion’
pressure). Mathieson & Burns (1971) measured the photosynthetic rate of Chondrus crispus at
varying degrees of desiccation and found that after loss of 65% of its water content, the rate of
photosynthesis dropped to 55% of the control rate. In Palmaria palmata, 50% of the plant's water
content can be lost in less than 4 hours in dry air at 25°C (Kain & Norton, 1990). This scenario can
reasonably be expected at low tide in summer in Britain, although the Fucus canopy is likely to
protect the underlying red algae to some extent. The upper shore extent of Fucus
serratus and Chondrus crispus may be replaced by species more tolerant of desiccation and more
characteristic of the mid-eulittoral such as Fucus vesiculosus or Ascophyllum nodosum.
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A decrease in submergence is likely to adversely affect the suspension feeder population by
reducing feeding opportunities as immersion is a prerequisite of feeding. This can prove fatal for
short lived species such as bryozoans and ascidians. The tissue of Halichondria panicea holds some
water and can tolerate a certain degree of desiccation. On the other hand, the soft bodied sea
squirt Ascidiella scabra has a greater vulnerability to this pressure. The sea squirt is commonly
found in damp crevices or under the canopy of macroalgae offering protection from desiccation
but individuals at the highest point on the shore may dry out and die at the benchmark level.

On the other hand, an increase in submergence is likely to benefit this biotope. Feeding
opportunity for suspension feeders will increase; desiccation and temperature stresses for all flora
and fauna will decrease as will predation from birds. The biotope may extend further up the shore
but this extension is likely to be counteracted by a reduction in the lower shore extent of the
biotope likely to be taken over by seaweeds more characteristic of the sublittoral
fringe. Furthermore, predation by the common shore crab Carcinus maenas is likely to increase.

Sensitivity assessment.  Severe desiccation and associated osmotic stress can increase mortality
in Fucus serratus (Pearson et al., 2009). Other species better able to tolerate desiccation will
competitively displace Fucus serratus following changes in emergence regime. The characterizing
species of this biotope are largely protected from extreme levels of desiccation by the
macroalgal canopy. However, the increase in emergence will result in loss of the extent of the
biotope up the shore.  Therefore, resistance is thus assessed as ‘Low’, resilience assessed as
‘Medium’, and the biotope assessed as ‘Medium’ sensitivity to changes in emersion regime at the
level of the benchmark.

Wave exposure changes
(local)

Medium High Low
Q: High A: Low C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Fucus serratus is highly flexible but not physically robust and an increase in wave exposure will
cause mechanical damage, breaking fronds or even dislodging algae from the substratum. Fucoids
are permanently attached to the substratum and are not able to re-attach if removed. Organisms
living on the fronds and holdfasts will be washed away with the algae whereas free-living
community components could find new habitat in surrounding areas. The biotope is found in wave
sheltered to extremely sheltered habitats. In these locations, the breadcrumb sponge Halichondria
panicea grows in massive forms. Poorly attached massive forms may be ripped off by an increase in
water flow rate leading to the death of large colonies. A reduction in wave action would have little
effect as the species is naturally found in wave sheltered conditions.

Sensitivity assessment. Fucus serratus and associated communities are sensitive to an increase in
wave action as increased exposure would result in important losses both in biomass and species
richness. The biotope may be preplaced by another Fucus serratus dominated biotope
e.g. LR.MLR.BF.Fser. Resistance is thus assessed as ‘Medium’. Recovery will depend on the extent
of Fucus serratus loss but will be rapid once conditions return to normal if some of population
remain, resulting in ‘High’ resilience. Overall this biotope group scores a ‘Low’ sensitivity to this
pressure at the pressure benchmark. 

 Chemical Pressures
 Resistance Resilience Sensitivity

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed but evidence is presented where available.

Radionuclide
contamination

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Sustained reduction of dissolved oxygen can lead to hypoxic (reduced dissolved oxygen) and
anoxic (extremely low or no dissolved oxygen) conditions. Sustained or repeated episodes of
reduced dissolved oxygen have the potential to severely degrade an ecosystem (Cole et al.,
1999). Josefson & Widbom (1988) investigated the response of benthic macro and meiofauna to
reduced dissolved oxygen levels in the bottom waters of a fjord in Sweden. At dissolved oxygen
concentrations of 0.21 mg/l, the macrofaunal community was eradicated and was not fully re-
established 18 months after the hypoxic event. Meiofauna seemed, however, unaffected by
deoxygenation.

Sensitivity assessment. Macroalgae may be negatively impacted by reduced dissolved oxygen
level at the level of the benchmark (2 mg/l for 1 week) resulting in direct mortalities.  However, the
strong water movement in tide-swept tidal currents combined with turbulent flow over rocks
would aerate the water column, and emersion at low tide would mean that any oxygen depletion
was transient. Therefore, resistance is assessed as ‘High’. Hence, resilience is assessed as ‘High’,
and the biotope as 'Not sensitive'.
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Nutrient enrichment High High Not sensitive
Q: High A: High C: Medium Q: High A: Low C: Medium Q: High A: Low C: Medium

Nutrient enrichment generally stimulates ephemeral macroalgae growth (Duarte, 1995). This
stimulation of annual ephemerals may accentuate the competition for light and space and hinder
perennial species development or harm their recruitment (Kraufvelin et al., 2007). Krauflin et al.
(2006) found only minor effects on the fucoid community structure as a response to high nutrient
levels during the first 3 years of the experiment. During the 4th year of exposure, however,
Fucus serratus started to decline and population consequently crashed in the 5th year. The study
observed full recovery of the algal canopy and animal community in less than 2 years after
conditions returned to normal. The results indicate that established rocky shore communities of
perennial algae with associated fauna are able to persist for several years, even at very high
nutrient levels, but that community shifts may suddenly occur if eutrophication continues. They
also indicate that rocky shore communities have the ability to return rapidly to natural
undisturbed conditions after the termination of nutrient enhancement.

An influx of nutrients is also likely to stimulate phytoplankton production, depending on other
environmental conditions. This means that the amount of food potentially available to the
suspension feeders could increase but in the long-term, a sustained increase in nutrients could lead
to algal blooms. Algal blooms have the potential to block light from underlying plants, thereby
reducing their photosynthetic capacity. In addition, the eventual biodegradation of the blooms will
result in the reduction of available oxygen causing reduced growth in macroalgae species such as
Fucus serratus. Johansson et al. (1998) investigated the changes in the algal vegetation of the
Swedish Skagerrak coast, an area heavily affected by eutrophication, between 1960 and 1997.
Slow growing species, including Chondrus crispus, declined in abundance, probably due to
competition from faster growing red algal species such as Phycodrys rubens and Delesseria
sanguinea. However, this biotope occurs in areas with moderately strong to very strong tidal
currents rapidly renewing depleted oxygen levels (‘see ‘de-oxygenation’ pressure).  

Sensitivity assessment. The benchmark of this pressure (compliance with WFD ‘good’ status)
allows for a slightly less diverse community of red, green and brown seaweeds with cover variable
depending on local physical conditions. Therefore, at the level of the benchmark both resistance
and resilience are assessed as ‘High’. The biotope group is, therefore ‘Not Sensitive’ to this
pressure at the pressure benchmark.

Organic enrichment Medium High Low
Q: Low A: NR C: NR Q: High A: Low C: Medium Q: Low A: Low C: Low

Organic enrichment can stimulate the production of primary consumers and may lead to
eutrophication (see ‘nutrient enrichment’ pressure). Husa et al. (2014) found that the
macroalgal communities beyond the immediate proximity of fish farms in Hardangerfjord, Norway,
seemed to be little affected by the deposition of organic matter from the salmon farming industry.
Bellgrove et al. (2010) however determined that coralline turfs out-competed fucoids at a site
associated with organic enrichment caused by an ocean sewage outfall.

Sensitivity assessment. At the level of the benchmark, resistance is assessed as ‘Medium’ as some
mortalities are likely to occur. Recovery will be rapid resulting in ‘High’ resilience score. The
biotope has thus a ‘Low’ sensitivity to organic enrichment at the level of the benchmark. 
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 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.  

Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope group occurs on hard substratum (boulders, pebbles and cobbles) on muddy
sediment. A change towards a sedimentary substratum would lead to the direct loss of suitable
attachment areas resulting in the loss of Fucus serratus, Chondrus crispus and other red seaweeds.
The loss of macroalgae will result in the loss of habitat for associated sponge and ascidian
communities. Resistance is assessed as ‘None’. As this pressure represents a permanent change,
recovery is impossible as suitable substratum for fucoids is lacking. Consequently, resilience is
assessed as ‘Very low’.  The habitat, therefore, scores a ‘High’ sensitivity. Although no specific
evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of
this pressure.  

Physical change (to
another sediment type)

Low Very Low High
Q: High A: High C: High Q: High A: Medium C: Medium Q: High A: Medium C: Medium

This biotope group occurs on hard substratum (boulders, pebbles and cobbles) on muddy
sediment. A change towards a soft sedment and loss of associated mixed hard substrata (boulders,
pebbles and cobbles)  would lead to the direct loss of suitable attachment areas resulting in the
loss of Fucus serratus, Chondrus crispus and other red seaweeds. The loss of macroalgae will result in
the loss of habitat for associated sponge and ascidian communities. Resistance is assessed as
‘Low’. As this pressure represents a permanent change, recovery is impossible as suitable
substratum for fucoids is lacking. Consequently resilience is assessed as ‘Very low’.  The habitat
therefore scores a ‘High’ sensitivity. Although no specific evidence is described confidence in this
assessment is ‘High’, due to the incontrovertible nature of this pressure.  

Habitat structure
changes - removal of
substratum (extraction)

None Low High

Q: Low A: NR C: NR Q: High A: Low C: Medium Q: Low A: Low C: Low

Extraction of sediment to 30 cm could remove the underlying sediment but also remove a
proportion of the boulders, cobbles and pebbles on which the biotope developes, As a result the
biotope could be lost or severely damaged, depending on the scale of the activity (see abrasion).
Therefore, a resistance of 'None' is suggested. Resilience is probably ' Low', therefore the biotope
is likely to have a 'High' sensitivity to this pressure. 

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Abrasion/disturbance of
the surface of the
substratum or seabed

Low Medium Medium

Q: High A: Medium C: High Q: High A: Low C: Medium Q: High A: Low C: Medium

The biotope group is found in the lower intertidal, an area easily accessible by humans especially at
low tide. Most macroalgea are very flexible but not physically robust. The trampling of shores by
humans will result in increased breakage of algal thalli, decreased thallus height and a net
reduction in biomass (see Tyler-Walters & Arnold, 2005 for review).  

In the UK, Boalch et al. (1974) and Boalch & Jephson (1981) noted a reduction in the cover of
fucoids at Wembury, south Devon, when compared to surveys conducted by Colman (1933). The
size ranges of Ascophyllum nodosum, Fucus vesiculosus and Fucus serratus were skewed to smaller
length, and the abundance of Ascophyllum nodosum in particular was reduced (Boalch & Jephson,
1981). It was suggested that visitor pressure, especially after the construction of a car park, was
responsible for the reduced cover of fucoids (Boalch et al., 1974). They suggested that the raised
edges of the slatey rock severed fronds when the rocks were walked over. However, no
quantitative data was provided.

Pinn & Rodgers (2005) compared a heavily visited ledge with a less visited ledge at Kimmeridge
Bay, Dorset. Although the mean species richness was similar at both sites, the total number of
species was greater at the less utilized site.  Comparatively, the heavily utilized ledge displayed a
reduction in larger, branching algal species (e.g. Fucus serratus) and increased abundances of
ephemeral and crustose species (e.g. Ulva linza and Lithothamnia spp. respectively). Fletcher and
Frid (1996a; 1996b) examined the effects of persistent trampling on two sites on the north east
coast of England. The trampling treatments used were 0, 20, 80, and 160 steps per m2 per spring
tide for 8 months between March and November. Using multivariate analysis, they noted that
changes in the community dominated by fucoids (Fucus vesiculosus, Fucus spiralis and Fucus serratus)
could be detected within 1 to 4 months of trampling, depending on intensity. Intensive trampling
(160 steps/m2 /spring tide) resulted in a decrease in species richness at one site. The area of bare
substratum also increased within the first two months of trampling but declined afterwards,
although bare space was consistently most abundant in plots subject to the greatest trampling
(Fletcher & Frid, 1996a, 1996b). The abundance of fucoids was consistently lower in trampled
plots than in untrampled plots. Fletcher and Frid (1996a) noted that the species composition of the
algal community was changed by as little as 20 steps per m2 per spring tide of continuous trampling
since recolonization could not occur. A trampling intensity of 20 steps per m2 per spring tide could
be exceeded by only five visitors taking the same route out and back again across the rocky shore
in each spring tide. Both of the sites studied receive hundreds of visitors per year and damage is
generally visible as existing pathways, which are sustained by continuous use (Fletcher & Frid,
1996a, 1996b). However, the impact was greatest at the site with the lower original abundance of
fucoids.

Brosnan & Crumrine (1994) noted that trampling significantly reduced algal cover within 1 month
of trampling. Foliose algae were particularly affected and decreased in cover from 75% to 9.1% in
trampled plots. Mastocarpus papillatus decreased in abundance from 9% to 1% in trampled plots
but increased in control plots. Fucus distichus decreased in the summer months only to recover in
winter but in trampled plots remained in low abundance (between 1 and 3% cover). Trampling
resulted in a decrease in cover of Pelvetiopsis limitata from 16% to 1.5%. Iridaea cornucopiae
decreased from 38 to 14% cover within a month and continued to decline to 4-8% cover. However,
after trampling ceased, recovery of algal cover including Iridaea cornucopiae and Mastocarpus
papillatus was rapid (ca 12 months) (Brosnan & Crumrine, 1994). Fletcher & Frid (1996a; 1996b)
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reported a decrease in the understorey algal community of encrusting coralline algae and red
algae, which was probably an indirect effect due to increased desiccation after removal of the
normally protective fucoid canopy (see Hawkins & Harkin, 1985) by trampling. They also noted
that opportunistic algae (e.g. Ulva sp.) increased in abundance. Schiel & Taylor (1999) also
observed a decrease in understorey algae (erect and encrusting corallines) after 25 or more
tramples, probably due to an indirect effect of increased desiccation as above. However, Schiel &
Taylor (1999) did not detect any variation in other algal species due to trampling effects. Similarly,
Keough & Quinn (1998) did not detect any effect of trampling on algal turf species.

Algal turfs seem to be relatively tolerant of the direct effects of trampling (based on the available
evidence) and some species may benefit from removal of canopy forming algae (Tyler-Walters,
2005). Their tolerance may result from their growth form as has been shown for vascular plants
and corals (Liddle, 1997). Brosnan (1993) suggested that algal turf dominated areas (on shores
usually dominated by fucoids) were indicative of trampling on the rocky shores of Oregon.
However, tolerance is likely to vary with species and their growth form and little species specific
data was found. Furthermore, algal turfs may suffer negative indirect effects where they form an
understorey below canopy forming species.

Conversely, fucoid algae are particularly intolerant of trampling, depending on intensity. Fucoid
algae demonstrate a rapid (days to months) detrimental response to the effects of trampling,
depending on species, which has been attributed to either the breakage of their fronds across rock
surfaces (Boalch et al., 1974) or their possession of small discoid holdfasts that offer little
resistance to repeated impacts (Brosnan & Crumrine, 1992; Fletcher & Frid, 1996b). Foliose
species such as Mastocarpus papillatus, Pelvetiopsis limitata and Iridaea cornucopiae are also likely to
be intolerant of trampling (Brosnan & Crumrine, 1994). Brosnan (1993) suggested that the
presence or absence of foliose algae (e.g. fucoids) could be used to indicate the level of trampling
on the rocky shores of Oregon.

Once Fucus serratus has been removed, understory algae will become exposed. Macroalgae
canopies buffer the effects of high temperatures and water loss on organisms below their fronds in
particular when exposed to air. For instance Bertness et al. (1999) determined that
substratum temperatures were on average 8-10°C lower under the canopy than on bare rock.
Desiccation of understorey algae will create bare patches (see ‘changes in emergence regime’
pressure). These bare patches can lead to invasions by grazing limpets which in turn can promote
even greater changes in community composition (Little et al., 2009). The removal of macoralgae
canopy due to abrasion will thus have a direct impact on the entire community. However cracks
and crevices are ideal places for germlings to develop and sessile species to settle as these sites
may be protected from abrasion.  Stagnol et al. (2013) found that opportunistic ephemeral green
algae such as Ulva sp. responded positively to disturbance. These green ephemeral algae are major
competitors of Fucus serratus for space colonization and nutrient uptake. Blooms of ephemeral
algae facilitated by disturbance may then slow the development of longer-lived perennial algae,
especially fucoids. Disturbance is a structuring factor in intertidal habitats. Perturbation events
often remove organisms, increase mortality, and release resources such as space, nutrients and
light that may enhance the appearance of new colonists (Connell et al., 1997). As a result of these
contrasting effects, post-disturbance communities are frequently different from initial
communities in terms of composition and dominance of species. Overall, disturbance causes a shift
towards a disturbance tolerant seaweed community (Little et al., 2009).

Epifaunal species have been found to be particularly adversely affected by physical disturbance,
either due to direct damage or modification of the habitat (Jennings & Kaiser, 1998). Similarly,
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Dayton (1971) observed greatly reduced abundance of species living on, under, and among fucoids
following large disturbance events. Hydroids, bryozoans and encrusting fauna are easily ripped
from the substratum and are unlikely to re-attach and will die. The shells of limpets, tubeworms
and periwinkles may be crushed by the weight and force of the abrasion. However, some epifaunal
species have been reported to exhibit increased abundances on high fishing effort areas, probably
due to their ability to colonize and grow rapidly (Bradshaw et al., 2000). For instance Ascidiella
species had increased in abundance in an area subject to scallop dredging (Bradshaw et al., 2002).
The breadcrumb sponge Halichondria panicea is attached to the substratum and will not survive
abrasion and physical disturbance. Hiscock (1983) noted that a community, under conditions of
scour and abrasion from stones and boulders moved by storms, developed into a community
consisting of fast growing species such as Spirobranchus triqueter due to decreased competition. A
shift in community composition is thus expected immediately after the disturbance event.  

The effects of trampling are dependent on intensity, expressed as frequency and force per unit
area of the impacting 'foot print' (see Liddle, 1997, Tyler-Walters & Arnold, 2008). Clearly,
mechnical abrasion due to vehicles, jack-up-barges, or grounding vessels will excede the abasive
'intensity' of trampling by humans or livestock. In addition, any potential abrasive activtiy that
drags or moves across the substratum could overturn the boulders, cobbles and pebbels on which
this biotope occurs, or even remvoe them from the area, resulting in signifcant damage or loss of
the biotope. 

Sensitivity assessment. Physical disturbance resulting from activities such as trampling (by
humans and livestock) or absrasive activities (e.g. vehicles, jack-up-barges, or grounding vessels)
could cause a significant loss of fucoid cover and and an important reduction in species abundance
and diversity. Resistance is thus assessed as ‘Low’. If some of the Fucus serratus population remains
recovery will be fairly rapid. However recruitment mortality, grazing by limpets and the presence
of turfs and encrusting algae can slow down and limit recovery. Resilience is thus assessed as
‘Medium’. The biotope, therefore, scores a ‘Medium’ sensitivity to abrasion pressure. If the entire
population of Fucus serratus is removed, other species may come to dominate and the recovery will
take considerably longer. Re-establishment of the seaweed may depend on the ability to out-
compete other species and this may be dependent on suitable environmental conditions.

Penetration or
disturbance of the
substratum subsurface

None Medium Medium

Q: High A: Medium C: High Q: High A: Low C: Medium Q: High A: Low C: Medium

Penetrative activities (e.g. anchoring, scallop or suction dredging) are likely to remove or displace
the cobbles, pebbles, or small boulders on which this biotope develops. As a result the biotope
could be lost or severely damaged, depending on the scale of the activity (see abrasion above).
Therefore, a resistance of 'None' is suggested. Resilience is probably ' Low', therefore the biotope
is likely to be 'Highly' sensitive to this pressure. 

Changes in suspended
solids (water clarity)

Medium High Low
Q: Medium A: Medium C: Medium Q: High A: Low C: Medium Q: Medium A: Low C: Medium

Light is an essential resource for all photo-autotrophic organisms. Changes in suspended solids
affecting water clarity will have a direct impact on the photosynthesising capabilities of Fucus
serratus. Irradiance below light compensation point of photosynthetic species can compromise
carbon accumulation (Middelboe et al., 2006). However water clarity is only relevant when the
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biotope is covered with water. Seaweed photosynthesis declines on emersion and recommences
when recovered with water. In addition, increased siltation may cover the frond surface of Fucus
serratus with a layer of sediment further reducing photosynthesis and growth rate. Sediment
deposition can also interfere with attachment of microscopic stages of seaweeds reducing
recruitment (see ‘siltation’ pressures). Red algae can tolerate a wider range of light levels than any
other group of photosynthetic plants (Kain & Norton, 1990) and will therefore be less affected by a
reduction in water clarity. 

In turbid waters, the feeding apparatus of suspension feeders may become clogged with particles
interfering with their feeding and respiratory currents resulting in net losses. For instance, the
hydroid Dynamena pumila experienced marked decline in areas with increased silt content in
Strangford Lough, Northern Ireland (Seed et al., 1983). Some filter feeders have the ability to cope
with siltation and excess suspended material. For example, the sea squirt  Ascidiella scabra can
extend its siphons to a small extent and can maintain a passage through the silt to the siphons.
However Robbins (1985b) found that increased inorganic particulate concentrations reduced
growth rates of Ascidiella scabra with mortalities occurring in high level of suspended sediments.
The breadcrumb sponge Halichondria panicea has a cleaning mechanism sloughing off its complete
outer tissue layer together with any debris (Barthel & Wolfrath, 1989). There is however an
energetic cost in cleaning resulting in reduced growth. For short lived species, such as the star
ascidian Botryllus schlosseri, reduced growth could prove fatal.

Sensitivity assessment. Changes in suspended solids reducing water clarity will have adverse
effects on the biotope group reducing species richness. Resistance is thus assessed as ‘Medium’.
Once conditions return to 'normal' Fucus serratus is likely to rapidly regain photosynthesising
capabilities as well as growth rate. Associated communities will also rapidly recover as most of the
intolerant species produce planktonic larvae and are therefore likely to be able to recolonize
quickly from surrounding areas. Resilience is thus assessed as ‘High’. Overall this biotope group
scores a ‘Low’ sensitivity to this pressure.

Smothering and siltation
rate changes (light)

High High Not sensitive
Q: High A: Medium C: Medium Q: Medium A: Medium C: Medium Q: Medium A: Medium C: Medium

Macroalgae are attached to the substratum by a holdfast and are thus not able to relocate in
response to increased sedimentation. Sedimentation of bedrock can impede attachment of Fucus
embryos as well as decrease survival and growth of juvenile through both scour and burial (Schiel
et al., 2006). An increase in the vertical sediment overburden can also reduce growth whilst
hindering the regeneration abilities of adults (Umar et al., 1998).

Some filter feeders have the ability to cope with siltation and excess suspended material. For
example, Ascidiella scabra can extend its siphons, to a small extent, above silt whilst maintaining a
passage through the silt to the siphons. It also attaches to other erect biota and may thereby
escape smothering effects. The breadcrumb sponge Halichondria panicea has a mechanism for
sloughing off its complete outer tissue layer together with any debris (Barthel & Wolfrath, 1989).
However, there is an energetic cost in cleaning, and this species, together with other filter feeders,
would probably experience reduced. For annual species, including the star ascidian Botryllus
schlosseri, reduced growth could prove fatal. The hydroid Dynamena pumila experienced marked
decline in areas with increased silt content in Strangford Lough, Northern Ireland (Seed et al.,
1983).

Sensitivity assessment. Smothering by a 5 cm layer of sediment is unlikely to adversely affect this
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biotope given that it is associated with areas of moderately strong to very strong tidal flow. The
sediment layer will be washed away and 'normal' conditions will resume rapidly. The suspension
feeders may experience some short lived interference with feeding but, at the level of the
benchmark, this is not likely to adversely affect their viability. Resistance and resilience are
therefore both assessed as ‘High’ (no impacts to recover from). The biotope group is ‘Not Sensitive’
to a decrease in salinity at the pressure benchmark.

Smothering and siltation
rate changes (heavy)

Low Medium Medium
Q: High A: Low C: Medium Q: Low A: NR C: NR Q: Low A: NR C: NR

Several studies found that increasing the vertical sediment burden negatively impact species
characterizing this biotope. At the level of the benchmark (30 cm of fine material added to the
seabed in a single event) smothering will result in important mortalities. Resistance is assessed as
‘Low’ as all individuals exposed to siltation at the benchmark level are predicted to die. However
the biotope is associated with areas of moderately strong to very strong tidal flow. The sediment
layer will be washed away and 'normal' conditions will resume rapidly. Resilience is thus assessed
as ‘Low’ and resistance as ‘Medium.  Sensitivity based on combined resistance and resilience is
therefore assessed as ‘Medium’.

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not assessed

Electromagnetic changes No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Species characterizing this biotope do not have hearing perception but vibrations may cause an
impact, however no studies exist to support an assessment

Introduction of light or
shading

Medium High Low
Q: High A: Low C: Medium Q: High A: Medium C: Medium Q: High A: Low C: Medium

Fucoids are dependent on light, so that changes in light intensity are likely to affect
photosynthesis, growth, competition and survival. Chapman (1995) noted that too little or too
much light are likely to be stresses.  There is considerable literature on the light compensation
point of marine algae (see Luning, 1990) but it is difficult to correlate such evidence with 'shading',
as light saturation and compensation points depend on light availability, light quality, season and
turbidity.  As fucoids are out-competed in sublittoral conditions, it is likely that permanent shading
woud affect their growth and allow them to be out-competed by other, more shade tolerant
species, within the affected area. Therefore a resistance of ' Medium' is suggested albeit at low
confidence. Resilience is likely to be 'High' so that sensitivity is 'Low.  
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Barrier to species
movement

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant – this pressure is considered applicable to mobile species, e.g. fish and marine
mammals rather than seabed habitats. Physical and hydrographic barriers may limit propagule
dispersal.  But propagule dispersal is not considered under the pressure definition and benchmark.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to seabed habitats.  NB. Collision by grounding vessels is addressed under ‘surface
abrasion’.

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Key characterizing species within this biotope are not cultivated or translocated. This pressure is
therefore considered ‘Not relevant’ to this biotope group.

Introduction or spread of
invasive non-indigenous
species

Medium Low Medium

Q: High A: Medium C: Medium Q: Low A: NR C: NR Q: Low A: NR C: NR

Thompson & Schiel (2012) found that native fucoids showed high resistance to invasions by the
Japanese kelp Undaria pinnatifida. However cover of Fucus serratus was inversely correlated with
the cover of Sargassum muticum indicating competitive interaction between the two species
(Stæhr et al., 2000). Stæhr et al. (2000) determined that the invasion of Sargassum muticum could
affect local algal communities through competition mainly for light and space.  The Portuguese
oyster Magallana gigas was introduced in England in 1926 for cultivation purposes and is now
found in the wild. The species can form dense beds e.g. in the Netherlands, and, together
with Crepidula fornicata, have the potential to cover large patches on the shore. In areas where the
biotope coincides with the distribution of Magallana gigas, i.e. the south coast of Devon and coast of
Essex, the oyster may become dominant.

Sensitivity assessment. Resistance is assessed as ‘Medium’ since invasive species have the
potential to alter the recognizable biotope. Recovery would be rapid once conditions return to
normal, resulting in a ‘High’ resilience. However, return to ‘normal’ conditions is highly unlikely if
an invasive species would come to dominate the biotope. Indeed recovery would only be possible if

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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the majority of the INIS were removed (through either natural or unnatural process) to allow the
re-establishment of other species. Therefore actual resilience will be much lower (‘Low’ to ‘Very
Low’) resulting in an overall ‘Medium’ sensitivity score. 

Introduction of microbial
pathogens

High High Not sensitive
Q: Low A: NR C: NR Q: Low A: NR C: NR Q: Low A: NR C: NR

Very little is known about infections in Fucus (Wahl et al., 2012). Coles (1958) identified parasitic
nematodes that caused galls on Fucus serratus in the Southwest of Britain. More recently, Zuccaro
et al. (2008) detected a number of fungal species associated with Fucus serratus. So far no
mortalities have been associated to the introduction of microbial pathogens however the potential
for increased biotic interactions involving parasites or pathogens is on the rise in many marine
systems (Torchin et al., 2002). Other characteristic species, for example Chondrus crispus and
Mytilus edulis are known to be adversely affected by infestation by microbial pathogens (see
relevant MarLIN reviews). However, even if microbial infestation resulted in the loss of these two
species from the biotope, the recognizable biotope per se would not be affected.

Sensitivity assessment. Both resistance and resilience are assessed as ‘High’; the biotope is
therefore ‘Not Sensitive’ to this pressure. However the assessment has a low confidence score as
more research is needed into the effects of microbial pathogen on Fucus serratus and associated
communities. 

Removal of target
species

Low Medium Medium
Q: Low A: NR C: NR Q: High A: Medium C: Medium Q: Low A: Low C: Low

Fucus serratus is one of several harvested and exploited algal species. Seaweeds were collected
from the middle of the 16th century for the iodine industry. Nowadays seaweeds are harvested for
their alginates, which are used in the cosmetic and pharmaceutical industries, for agricultural
supply, water treatment, and for human food and health supplements (Bixler & Porse, 2010).

The commercial harvest removes seaweed canopies which will have important direct and indirect
effects on the wider ecosystem. Stagnol et al.(2013) investigated the effects of commercial
harvesting of intertidal Fucus serratus on ecosystem biodiversity and functioning. The study found
that the the removal of macroalgae affected the metabolic flux of the area. Flows from primary
production and community respiration were lower on the impacted area as the removal of the
canopy caused changes in temperature and humidity conditions. Suspension feeders were the
most affected by the canopy removal as canopy-forming algae are crucial habitats for these
species, most of them being sessile organisms.

Other studies confirm that loss of canopy had both short and long-term consequences for benthic
communities in terms of diversity resulting in shifts in community composition and a loss of
ecosystem functioning such as primary productivity (Lilley & Schiel, 2006; Gollety et al., 2008).
Removal of the canopy caused bleaching and death of understorey red turfing algae. Stagnol et al.
(2013) observed Patella vulgata recruiting in bare patches of disturbed plots. Experimental studies
have shown that limpets control the development of macroalgae by consuming microscopic phases
(Jenkins et al., 2005) or the adult stages (Davies et al., 2007). The increase in Patella
vulgata abundance could thus limit the recruitment and growth of Fucus serratus on the impact
zone. Due to the high intolerance of macroalgae communities to human exploitation, the European
Union put in place a framework to regulate the exploitation of algae establishing an organic label
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that implies that ‘harvest shall not cause any impact on ecosystems’ (no. 710/2009 and 834/2007).

Sensitivity assessment. Removal of the Fucus serratus canopy will have a negative impact on the
diversity of animal community and the metabolism of the area. The harvesting impact on the
animal community was amplified by the settlement of an ephemeral canopy of Ulva spp., a seasonal
opportunistic green alga (Stagnol et al.,2013). Resistance is thus assessed as ‘Low’. If some Fucus
serratus population remain recovery will be fairly rapid. However recruitment mortality, grazing by
limpets and the presence of turfs and encrusting algae can slow down and limit recovery. A switch
to a disturbance community will also slow the recovery of Fucus serratus and associated
community. Resilience is thus assessed as ‘Medium’. The biotope therefore scores a ‘Medium’
sensitivity to this pressure.  If the entire population of Fucus serratus is removed, other species may
come to dominate and the recovery will take considerably longer. Re-establishment of the
seaweed may depend on the ability to out-compete other species and this may be dependent on
suitable environmental conditions.

Removal of non-target
species

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The harvest of algae, crabs snails, mussels, and some species of fish from the shore is a widespread
practice. None of the components of this biotope have known obligate relationships and the
removal of non-target species will therefore not have a significant impact.  Resistance to this
pressure is deemed ‘High’.  Resilience is also ‘High’ as there are no ecological impacts to recover
from, resulting in a ‘Not Sensitive’ score. The assessment is based on expert knowledge resulting in
a 'Low' confidence score.

Components of this biotope may be directly removed or damaged by static or mobile gears that
are targeting other species. These direct, physical impacts are assessed through the abrasion and
penetration of the seabed pressures. The sensitivity assessment for this pressure considers any
biological/ecological effects resulting from the removal of non-target species on this biotope. 
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