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A B S T R A C T 
Zooplankton seasonality and its environmental drivers were studied at four coastal sites 

within the Northeast Atlantic Shelves Province (Bilbao35 (B35) and Urdaibai35 (U35) 
in the Bay of Biscay, Plymouth L4 (L4) in the English Channel and Stonehaven (SH) in 

the North Sea) using time series spanning 1999–2013. Seasonal community patterns 
were extracted at the level of broad zooplankton groups and copepod and cladoceran 

genera using redundancy analysis. Temperature was generally the environmental factor 
that explained most of the taxa seasonal variations at the four sites. However, between-
site differences related to latitude and trophic status (i.e. from oligotrophic to 

mesotrophic) were observed in the seasonality of zooplankton community, mainly in the 
pattern of taxa that peaked in spring-summer as opposed to late autumn-winter 
zooplankton, which were linked primarily to differences in the seasonal pattern of 
phytoplankton. The percentage of taxa variations explained by environmental factors 

increased with latitude and trophic status likely related to the increase in the co-
variation of temperature and chlorophyll a, as well as in the increase in regularity of the 
seasonal patterns of both temperatura and chlorophyll a from south to north, and of 
chlorophyll a with trophic status. Cladocerans and cirripede larvae at B35 and U35, 

echinoderm larvae at L4 and decapod larvae at SH made the highest contribution 
to shape the main mode of seasonal pattern of zooplankton community, which showed a 
seasonal delay with latitude, as well as with the increase in trophic status. 

Keywords: zooplankton, multivariate ordination, seasonal changes, trophic status, 

latitudinal variation, North Atlantic. 

 

 

Introduction 

Zooplankton comprise a key component of marine pelagic ecosystems, forming the  

link between primary producers and upper trophic level consumers (Dam, 2013). In the 

marine environment, the seasonal cycle of zooplankton abundance and composition, 

together those of key environmental variables are among the strongest contributors to 

total temporal variance (Mackas et al., 2012). Furthermore, the study of the seasonality 

of zooplankton is critical, since it may have profound implications for the coupling-
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decoupling of food webs (e.g. match-mismatch hypothesis, Cushing, 1990). Seasonal 

variations of zooplankton have been reported in the literature (e.g. Colebrook, 1984; 

Longhurst, 1998), but a need for a broader understanding of zooplankton seasonality 

has been identified, in order to better quantify and monitor future plankton phenology 

shifts induced by climate change (Ji et al., 2010), particularly in coastal areas where 

there is greater variability (Ribera d’Alcalà et al., 2004). In addition to describing 

temporal patterns of variation, knowledge of the influence of environmental factors in 

marine plankton is also essential to understand ecological properties of pelagic 

ecosystems and their potential responses to a changing environment (Pepin et al., 2015).  

Given the relevance for the entire food web dynamics, zooplankton seasonality is also 

an important aspect to be taken into account when delimiting marine eco-geographical 

units (Longhurst, 1998). Regarding these, Longhurst (1998) divided the sea into biomes, 

each one containing one or several provinces, but as he stated, the coastal/shelf 

provinces could rationally be subdivided almost infinitely. The Northeast Atlantic 

Shelves Province (NECS) extends from Cape Finisterre (NW Spain) to the edge of the 

Faroe Shetland channel in the north and as far east as the Baltic Sea, and is one of the 

largest continental shelf regions.  

The aim of the present work was to compare zooplankton community seasonal 

variability and its environmental drivers at four coastal sites in the NECS, located in the 

Bay of Biscay (Urdaibai35 and Bilbao 35), the English Channel (Plymouth L4) and the 

North Sea (Stonehaven), for which comparable time-series exist, thus covering almost 

the entire latitudinal range within this province. In addition, the two sites located in the 

Bay of Biscay are at the same latitude but differ in their trophic status (Iriarte et al., 

2010). Therefore, time-series from these four sites allowed us to explore the influence 

of latitude and anthropogenic nutrient enrichment on the seasonal dynamics of 

zooplankton community in the NECS. This is in line with the objectives of policy 

directives such as the Marine Strategy Framework Directive that seek to better 

understand the dynamics of coastal communities over broad geographical areas, 

identifying the effect of human activities.  

Studies on the seasonal patterns of zooplankton have been conducted in each of these 

coastal areas: North Sea (e.g. Greve et al., 2001; Van Ginderdeuren et al., 2014; 

Bresnan et al., 2015), English Channel (e.g. Eloire et al. 2010; Highfield et al., 2010) 

and Bay of Biscay (e.g. Huskin et al., 2002; Stenseth et al., 2006; Valdes et al 2007), 

but fewer attempts have been made to compare zooplankton community seasonal 
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dynamics and their drivers between these different shelf areas. For example, using CPR 

data Beaugrand et al. (2000) compared zooplankton seasonality between the English 

Channel and the Bay of Biscay and Mackas et al. (2012) made comparisons between the 

North Sea (using a combination of CPR data and Helgoland Roads time-series data) and 

the English Channel (using Plymouth L4 time series data). However, to the best of our 

knowledge, comparative studies on coastal zooplankton community seasonal dynamics 

and their environmental drivers from these three areas (North Sea, English Channel and 

Bay of Biscay) using the same methodology for data analysis have not been conducted 

so far. Moreover, most studies of zooplankton seasonality have dealt with the seasonal 

timing of the abundance or biomass of individual taxa, but the approach used in the 

present work has been the assessment of the seasonal pattern of zooplankton at the 

community level using multivariate ordination methods, which help to understand 

complex data (Walker and Jackson, 2011) and provide a more holistic and synthetic 

information.  

 

 

Methods 

 

Study area and data acquisition 

Time-series of zooplankton (< 200 µm) abundance, water temperature, salinity and 

chlorophyll a from 1999 to 2013 obtained at four sites in the North East Atlantic 

Shelves province (NECS) were used in this study. These are, from south to north, 

Urdaibai 35 (U35) and Bilbao 35 (B35), both located in the inner Bay of Biscay, 

Plymouth L4 (L4) in the western English Channel, and Stonehaven (SH) in the 

northwest North Sea (Fig. 1).  

B35 and U35 

B35 (43° 24.15’N, 3º 5.25’W) is a coastal site (< 1 km offshore) influenced by the 

plume of the estuary of Bilbao (high nutrient enrichment and pollution). It is partially 

mixed and has a mean depth of 13 m. U35 is a shallower (mean depth of 4.5 m), well-

mixed coastal (< 1 km offshore) site, that bears the influence of the Urdaibai estuary, 

but because of high tidal flushing, the estuarine influence is much lower than at B35. 

For the study period, these sites could be classified as mesotrophic (B35) and 
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oligotrophic (U35) according to the chlorophyll a concentration criteria (Molvaer et al., 

1997; Smith et al., 1999). 

At both sites samplings were performed monthly. Zooplankton were sampled by 

horizontal tows at mid-depth, below the halocline (when present), of a 200 µm mesh 

size ring net (mouth diameter 0.25 m) equipped with a flowmeter. More details on the 

methodology used for data acquisition can be found in Fanjul et al. (submitted). 

L4 

L4 is a transitionally mixed site (Southward et al., 2004) with a mean depth of 54 m 

located at about 13 km southwest of Plymouth (50° 15’N, 4° 13’W), and 6.5 km away 

from the nearest land (Litt et al., 2010). It receives periodic freshwater inputs from the 

rivers Plym and Tamar outflowing at Plymouth and it is influenced by oceanic water 

during periods of strong south west winds (Rees et al., 2009). Samplings were carried 

out weekly (weather permitting). Vertical net hauls (WP2 net, 200 µm mesh size, 0.57 

m diameter) from 50 m to the surface were used to collect zooplankton samples. More 

details on the methodology used for data acquisition can be found in Atkinson et al. 

(2015).  

SH 

SH is located 5 km offshore from Stonehaven (56° 57.8′ N, 02° 06.2′ W). It has a 

mean depth of ca. 48 m with reduced freshwater inputs from the rivers Dee and Don 

(outflowing at Aberdeen, fifteen miles north). This site remains well mixed for most of 

the year due to strong tidal currents, and a weak thermal stratification is usually 

restricted to neap tides in the summer months. Samplings were carried out weekly, 

weather conditions permitting. Zooplankton samples were taken by vertical hauls from 

45 m to the surface using 200 μm mesh Bongo nets (40 cm diameter (30 cm during 

January, February and March 1999). More details on the methodology used for data 

acquisition can be found in Bresnan et al. (2015).  

Additionally, monthly values of NAO 

(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.nao.monthly.b5001.c

urrent.ascii), EA (ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/ea_index.tim) and 

AMO (https://www.esrl.noaa.gov/psd/data/timeseries/AMO/) indices were obtained 

from the NOAA.  

 

Data pretreatment 
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As B35 and U35 were sampled monthly, usually during, or close to, the last week of 

the month, whereas L4 and SH were generally sampled weekly, the mean of all values 

for each month were calculated for L4 and SH. Occasional missing values (fewer than 

5%) in the monthly data sets were filled in by linearly interpolating between the mean 

value of the previous month and that of the following month. 

Zooplankton data were grouped and analysed at: (i) the herein termed zooplankton 

group level (ZG), which included six holoplankton categories (copepods, cladocerans, 

appendicularians, chaetognaths, siphonophores and doliolids) and nine meroplankton 

categories (cirripede larvae, decapod larvae, gastropod larvae, bivalve larvae, 

polychaete larvae, fish eggs and larvae, bryozoan larvae, echinoderm larvae and 

hydromedusae) and (ii) the cladoceran and copepod genera level (CCGen), consisting of 

genera or genera-assemblages (exceptionally family) of cladocerans and copepods: 

Evadne and Podon genera for the cladocerans and Acartia, Centropages, Temora, 

Oithona, Oncaea, Corycaeus genera, the “PCPC-calanus” genera assemblage (this 

includes Paracalanus, Clausocalanus, Pseudocalanus and Ctenocalanus), and the 

family Calanidae for the copepods. 

Prior to RDA analyses, the zooplankton abundance data were transformed using log (x 

+ 1) (ter Braak and Smilauer, 2002). 

 

Data treatment 

Multivariate ordination methods were used to model the relationship between 

zooplankton community structure and explanatory variables using Canoco v. 4.55 (ter 

Braak and Smilauer, 2002). Depending on whether the relationships between taxa and 

environmental variables are unimodal or linear, the use of Canonical Correspondence 

Analysis (CCA) or Redundancy Analysis (RDA), respectively, is advised. To elucidate 

this, as a first step, Detrended Correspondence Analyses were performed, as 

recommended by ter Braak and Smilauer (2002). Since the length of the longest 

gradient was in all cases < 2, we opted for conducting RDAs. Separate RDA analyses 

were performed for each of the four sites (B35, U35, L4 and SH) and each of the two 

taxonomic levels (ZG and CCGen) tested. 

In order to extract the seasonal pattern of the zooplankton community, as well as the 

contribution of the different taxa to this seasonal variability, partial RDAs in which 

months were used as categorical explanatory variables and years as categorical 

covariables (thereby removing the effect of years) were performed.  
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In order to test the relationship between zooplankton community seasonal variations 

and environmental variables, preliminary partial RDAs were carried out using as 

explanatory variables the relevant water environment variables routinely monitored at 

all sites, namely, surface water temperature (WT), Chlorophyll a (Chla) and salinity 

(Sal), plus the following climate indices that can be influential in the North Atlantic: 

NAO (Northern Atlantic Oscillation), EA (Eastern Atlantic) and AMO (Atlantic 

Multidecadal Oscillation), with years as covariables (thereby removing the effect of 

years). In order to obtain the final models, these partial RDAs were re-done, but using 

as explanatory variables only those that, in the preliminary partial RDAs, significantly 

explained some of the zooplankton data variation (conditional effects, with forward 

selection of variables). The rest of environmental factors (i.e. the non- significant ones) 

were included as supplementary variables, thus not influencing the analyses.  

In all RDAs Monte Carlo tests were performed with 499 permutations under reduced 

model (ter Braak and Smilauer, 2002). The permutations were unrestricted and the 

blocks defined by the covariables. 

In order to test more specifically the relationship between environmental factors and 

the seasonal patterns represented along the two main ordination axes obtained in RDAs, 

correlations (Spearman rank) were carried out between the sample scores along each 

axis and environmental variables. Additionally, in order to test for differences between 

the sites in the seasonal patterns obtained for each of the two main axes, between-site 

Spearman rank correlations  of the month scores along each axis were carried out. 

Finally, between-year correlation analyses were performed for temperature, chlorophyll 

a concentration and total zooplankton abundance (Pearson correlation for the former 

and Spearman rank correlation for the two latter). This allowed us to assess differences 

between sites in the degree of year-to-year regularity of the annual cycles of those 

variables. All correlations were carried out using SPSS Statistics for Windows, Version 

23.0 (IBM Corp., Armonk, NY). 

 

 

Results  

The RDA monthly scores along axis 1 revealed differences in the main seasonal mode 

of zooplankton variation from U35 to L4 and to SH, which were more evident for 

CCGen than for ZG (Fig. 2). For ZG the main differences were found between U35 and 

both L4 and SH. The community which was most different from that of late autumn-
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winter occurred in spring (March-May) at U35, and in summer (July-August) at L4 and 

SH. For CCGen, the differences between the patterns of the three sites were much 

clearer: the most differentiated community from that of late autumn-winter was found in 

early spring (March-April) at U35 and in summer (July-August) at SH, whilst at L4 

similar levels of differentiation were found in spring (May) and summer (August). In 

accordance, month scores along axis 1 from U35 showed no correlation with those 

obtained for L4 or SH for any of the taxonomic levels tested (Table 1). The bimodal or 

stepped seasonal patterns observed at U35 and SH for both taxonomic levels tested 

reinforced the differences between them, because from the two peaks of the month 

scores distribution the smallest one was the latest one (August or September) at U35 

and the earliest one (April or May) at SH. In addition, the rather similar magnitude of 

the two peaks obtained for CCGen at L4 depicts an intermediate situation between those 

at U35 and SH. At the mesotrophic B35 site the major differences from the late autumn-

winter community were found in early summer (June) for both taxonomic levels tested, 

but the distribution of the month scores showed two more subtle secondary peaks in 

early spring (March) and early autumn (September) for CCGen. Month scores along 

axis 1 from B35 showed weaker correlation with those from U35 than with those from 

L4 and SH for ZG, but no correlation with those from SH was observed for CCGen 

(Table 1). 

The contribution of zooplankton taxa to the main mode of seasonal variation (axis 1) 

in each site (Fig. 3) showed that cladocerans made a high contribution to the seasonal 

pattern of ZG at B35, U35 and L4, but their contribution decreased at SH. Cirripede 

larvae also made a high contribution at the lowest latitude sites (B35 and U35), but their 

contribution ranked lower at L4 and SH. In contrast, decapod larvae were the group that 

contributed most at the highest latitude site (SH), but their contribution decreased with 

decreasing latitude, particularly at U35 and B35. Another meroplankton group, the 

echinoderm larvae, was the taxon with the highest contribution at L4, but their 

relevance decreased at the other sites, particularly at the lowest latitude (B35 and U35).  

Appendicularians ranked high at all latitudes in oligotrophic sites (U35, L4 and SH), but 

not at the mesotrophic site (B35). Regarding the main mode of variability (axis 1) for 

CCGen, Podon and Evadne were among the three taxa with the highest contribution at 

B35, U35 and L4, but not at SH. Acartia showed the highest contribution at SH and 

U35, and Temora showed high contributions only at SH and L4.  
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The scores of months along axis 2 showed that the second seasonal mode of 

zooplankton variation had a higher between-site similarity for ZG than for CCGen (Fig. 

4). The ZG responsible for this mode of variability showed the largest differences 

between late winter-early spring (February-April) and late summer-early autumn 

(August-October). L4 was an exception to this, where this second period extended 

through the entire second half of the year. Significant correlations of the month scores 

along axis 2 between all stations were found (Table 2). For CCGen the distribution of 

month scores was rather similar at all sites in the second half of the year (peaks in 

September-October) but not in the first half. Month scores along axis 2 only showed 

significant correlations between U35 and B35 and between L4 and SH (Table 2). As 

shown in Fig. 5, for ZG, doliolids at the lowest latitude sites (B35 and U35) and 

siphonophores at L4 and SH contributed most to this secondary seasonal pattern, 

together with chaetognaths at all sites. In contrast to the above mentioned groups, 

cirripede larvae and fish eggs and larvae at all sites, together with polychaete larvae at 

U35, also showed high contributions. For cladoceran and copepod genera there were 

clear between-site differences in the contribution ranking of genera, but Oncaea, 

Corycaeus and PCPC-calanus at all sites, Temora at the lowest latitude sites (B35 and 

U35), Centropages at L4 and Calanidae at SH showed high contributions. 

Results of the partial RDAs of zooplankton data with environmental variables as 

explanatory variables showed that there was a clear increase from U35 to L4 and to SH 

in the percentage of seasonal variation of zooplankton data explained by environmental 

variables at both taxonomic levels tested (Fig. 6). It was also higher at the mesotrophic 

B35 site both for ZG and CCGen than at the oligotrophic U35 site.  

Examination of the conditional effects of environmental variables on the seasonal 

zooplankton taxa variations (Table 3) showed that WT and Chl a were selected by the 

model for both taxonomic levels tested at U35, L4 and SH, but the largest percentage of 

variation was explained by WT at U35 and L4, and by Chl a at SH. The percentage of 

variation explained both by WT and Chla increased from south to north from U35 to 

SH. AMO was selected in third place to explain the variability of zooplankton groups at 

L4 and to explain the variability at both zooplankton levels at SH, although the increase 

in the percentage of variance explained was very small. At the mesotrophic B35 site, 

WT explained a higher percentage of variance than at U35, and the contribution of Chla 

was smaller for ZG and non significant for CCGen.  
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However, correlations between sample scores along each ordination axis and 

environmental variables (Tables 4 and 5) showed that Chla was the factor with the 

highest correlation with the main mode of zooplankton community seasonal variability 

(sample scores along axis 1) at all stations and taxonomic levels tested (exception was 

at L4 where very similar correlation coefficients were obtained for Chla and WT). 

Conversely, WT was the environmental variable that showed the highest correlation 

with the second seasonal mode of zooplankton community variability (axis 2) and in 

most cases no significant correlation with Chla was observed (Table 5).  

Fig. 7 shows that there was also an increasing pattern in the degree of between-year 

correlation in WT, Chla and total zooplankton abundance from The two Spanish sites to 

L4 and to SH, showing an increase in the regularity of the annual cycle from U35 to L4 

and to SH. Regularity was also higher at B35 than at U35 for Chla and total 

zooplankton abundance. 

As shown in Figs. 8 and 9, at B35 most zooplankton groups, but only some copepod 

genera such as Corycaeus, Oncaea and Temora were strongly related to WT. In general, 

the number of zooplankton groups with high correlation with WT decreased with 

latitude from U35 to SH, and the relation of cladoceran and copepod genera with WT or 

Chla also decreased with latitude from U35 to SH. At U35 a group of genera related to 

WT (Corycaeus, Oncaea, Centropages, Temora) was clearly distinguished from a group 

of genera related to Chla (Evadne, Podon, Acartia). At SH, however, most groups 

showed similar relationships with WT and Chla. In general, chaetognaths, doliolids and 

siphonophores were the zooplankton groups with the highest relationship with WT, and 

cirripede larvae and appendicularians the most highly related ones to Chla at all sites.   

 

 

Discussion 

Zooplankton communities contain developmentally, physiologically and behaviourally 

diverse organisms that can show a relatively wide range of annual cycles of abundance 

(e.g. Colebrook, 1984; Highfield et al., 2010). However, the analysis of the seasonal 

pattern at the community level by using multivariate ordination techniques (Beaugrand 

et al., 2000) helps the understanding of complex data through a process of dimension 

reduction (Walker and Jackson, 2011), and has allowed us to assess differences in 

zooplankton seasonality in a more synthetic way. In general, our data evidenced 

differences between sites in the seasonal pattern that were related chiefly to the main 
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mode of community variability (axis 1), which represented the pattern driven by taxa 

that peaked in the central part of the year (spring-summer) as opposed to late autumn-

early winter zooplankton. On the contrary, no marked between-site differences were 

observed related to the second main mode of seasonal variability (axis 2) for ZG or for 

taxa that peaked latest in the second half of the year for CCGen. Within the oligotrophic 

sites, in the southern Bay of Biscay (U35) the seasonal pattern represented by the main 

mode of variability of ZG was mainly accounted for by taxa that peaked in spring, 

whilst at the western English Channel (L4) and North Sea (SH) sites it was mainly 

accounted for by taxa that peaked in summer. Between-site differences along the 

gradient from south to north were clearer at the CCGen level than at the ZG level, likely 

due to the fact that genera reflect better a seasonal succession of species that is masked 

at the group level. The difference in seasonal pattern of the zooplankton community we 

observed between U35 and L4 agrees well with that reported by Beaugrand et al. (2000) 

who studied an area from the northeastern English Channel down to the southern Bay of 

Biscay. Similarly, Bot et al. (1996) observed a seasonal delay in the maxima of 

copepods from south to north in Northwest European shelves. This south to north 

gradient in the seasonal timing is in agreement with the general view that, for spring and 

summer zooplankton, the development, reproduction, and onset/termination of seasonal 

dormancy all shift earlier in the year where the environment is warmer (Mackas and 

Beaugrand, 2010).  

These differences in the main mode of seasonal variability pattern were accompanied 

by differences in the zooplankton taxa that contributed most to shape each pattern. At 

the southern Bay of Biscay sites, cladocerans made the highest contribution. 

Cladocerans can consume components of the microbial food web (Katechakis and 

Stibor, 2004), but they feed mainly on phytoplankton (Brown et al., 1997). In 

accordance, the timing of their seasonal peak differed from U35 to B35 (maxima in 

early spring and early summer, respectively) in relation to differences in the seasonal 

pattern of chlorophyll a (see Fanjul et al., submitted). At the English Channel and North 

Sea sites, meroplankton groups, i.e. echinoderm larvae and decapod larvae respectively, 

contributed most. During the present study period, echinoderm larvae have been shown 

to peak in July at L4, and decapod larvae in August at SH (Fanjul et al., submitted). 

Other works have also shown both echinoderm and decapod larvae maxima in summer 

in the northern North Sea (Lindly and Kirby, 2007) and western English Channel 

(Highfield et al., 2010). It is noteworthy that both of these meroplankton groups are 
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known to have increased their abundances in the North Sea since the 1990s, likely due 

to seawater warming (Kirby et al., 2008). Meroplankton was also important at U35 and 

B35, since cirripede larvae, a group that peaked in early spring at U35 but in early 

summer at B35 (Fanjul et al., submitted), ranked high in the contribution to the main 

mode of seasonal variability at these sites. The relevance of meroplankton groups at all 

sites underscores the influence of benthic communities on the seasonality of pelagic 

ones, and provides support for the idea that benthic-pelagic coupling has a prominent 

role in coastal environments by significantly affecting energy transfer in food webs 

(Griffith et al., 2017). 

Water temperature generally explained the highest zooplankton taxa variability, and 

this agrees with the role of temperature as a primary structuring factor of the seasonality 

of zooplankton (Mackas et al., 2012), since it controls their rates of egg development, 

feeding, production, respiration and other metabolic processes (Peters and Downing, 

1984; Ambler et al., 1985; Ikeda, 1985) and, indirectly, it can also control their food 

availability (Mackas et al., 2012). However, the correlations between environmental 

factors and sample scores on axis 1 and axis 2 performed separately, showed clearly that 

the between-site differences in the main mode of zooplankton seasonal variability (axis 

1) was more strongly related to chlorophyll a concentration than to temperature and, 

therefore, that it was mainly the timing of phytoplankton availability which could 

account for the major between-site seasonal variations of zooplankton community. The 

facts that (i) the phytoplankton spring bloom is delayed from U35 to L4 and to SH 

(Fanjul et al., submitted), and (ii) delays in phytoplankton blooms with latitude may be 

a generalized pattern within the latitudinal range at which our stations are located in the 

east Atlantic shelf waters (Martinez et al., 2011; Racault et al. 2012), support the view 

that the main differences in the seasonal zooplankton community pattern between U35, 

L4 and SH may be the consequence of a latitudinal effect driven by latitudinal 

differences in the availability of phytoplankton throughout the spring-summer period.  

In addition to differences between the oligotrophic sites, our data also showed a delay 

in the timing of the peak in the zooplankton seasonal pattern conformed by month 

scores along axis 1 from the oligotrophic U35 to the eutrophic B35. These differences in 

zooplankton community seasonal pattern may be related to differences between these 

two sites in the level of anthropogenic nutrient enrichment and in hydrographical 

features. The presence of an estuarine plume at B35 (Ferrer et al., 2009) results in 

higher nutrient concentrations at B35 than at U35 (Iriarte et al., 1997; Villate et al., 
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2013). It also causes B35 to have a more estuarine/enclosed coastal ecosystem type of 

phytoplankton seasonal cycle (sensu Cebrián and Valiela, 1999), with high 

phytoplankton biomass in spring, but higher ones in summer, whereas U35, where tidal 

flushing is high, is characterized by the typical temperate shelf water bimodal seasonal 

pattern found in the southern Bay of Biscay (Stenseth et al., 2006) with spring (main) 

and autumn (secondary) peaks, and low summer phytoplankton biomass (Iriarte et al., 

2010; Villate et al., 2017). 

It is also interesting to note that for the oligotrophic sites the proportion of zooplankton 

taxa variations explained by environmental factors increased from U35 to L4 and to SH. 

It is clear that there was a higher seasonal covariation of water temperature and 

chlorophyll a at SH, and this can contribute to a more similar correlation of most 

zooplankton taxa with these two factors. Conversely, as stated above, as we move 

towards lower latitudes (L4 and U35) the spring phytoplankton bloom occurs earlier in 

the year, and as a consequence, the effect of temperature and phytoplankton biomass 

becomes less additive. Another influential factor can be the increase in the year-to-year 

regularity of the seasonal patterns of temperature and chlorophyll a with latitude from 

U35 to SH. This causes the year-to-year variation pattern of seasonal zooplankton also 

to be most regular at the northernmost site. We also observed an increase in the 

proportion of zooplankton community seasonal variations explained by environmental 

factors from the oligotrophic U35 to the mesotrophic B35. In this case, the higher 

covariation between water temperature and chlorophyll a could also be the most 

plausible explanation. In fact, the conditional effect of chlorophyll a was low or not 

significant at B35, despite the marginal effect was significant (data not shown). A 

higher regularity in the seasonal pattern of chlorophyll a concentration can also be 

influential. Differences in the regularity and predictability of the seasonal pattern of 

zooplankton can have important implications for predator-prey interactions (Atkinson et 

al. 2015). A more regular, predictable seasonal pattern of zooplankton that we have 

observed northwards or under mesotrophic conditions can increase the trophic match 

probability between fish larvae and their zooplankton prey (Ji et al., 2010, Mackas et al. 

2012), and therefore, enhance the feeding success probability of the former, according 

to the match-mismatch hypothesis (Cushing, 1990; Fortier et al., 1995).  

Our analysis focusses on the role of environmental factors on the seasonal distribution 

of zooplankton, but predation controls can also be important. For instance, work at L4 

on phenology of successive planktonic trophic levels reveals high inter-annual 
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variability in timings of both predators and prey (Atkinson et al. 2015). The effects of 

temperature and food availability on zooplankton seasonality are also influenced 

strongly by simultaneous and strong top-down effects that modify the timing and 

amplitude of abundance peaks (Maud et al. 2015). 

The second main mode of variability of ZG showed a high degree of coincidence 

between sites because it was mainly accounted for by taxa that peaked later in the year 

at all sites and correlated strongly with WT (i.e. chaetognaths at all sites, doliolids at 

B35 and U35 and siphonophores at L4 and SH) in opposition to taxa that peaked earlier 

in the year and correlated mainly with chlorophyll a (i.e. cirripede larvae, 

appendicularians). Highfield et al. (2010) also found cirripede larvae to be related to the 

timing of chlorophyll a at L4 and so did Korn and Kulikova (1995) in Avacha Inlet. 

Pelagic cirripede nauplius larvae are filter-feeders that feed on phytoplankton (Moyse, 

1963) and chlorophyll concentration greatly influences the release of larvae by 

barnacles (Starr et al., 1991). Within appendicularians food (phytoplankton) availability 

has been found to be the most limiting factor for Oikopleura dioica in coastal waters 

(Tomita et al., 2003). We have no information on the species composition of 

appendicularians at L4 and SH, but at U35 and B35 Oikopleura was the dominant genus 

and O. dioica the most abundant one among the Oikopleura identified to species level 

(Fanjul et al., submitted). Among the zooplankton groups that best correlated with 

temperature, however, we have two groups of predators, the siphonophores and the 

chaetognaths. Within the siphonophores, individuals of the Muggiaea genus were the 

most abundant ones at the four stations (see Fanjul et al., submitted), and they are 

known to reproduce rapidly when temperature and prey densities are elevated (Blackett 

et al. 2014). In fact, peak periods of siphonophores coincided with high copepod 

densities at our four study sites (Fanjul et al., submitted). Regarding chaetognaths, 

despite the dominance of different species at the different sites we studied (Parasagitta 

friderici, Parasagitta setosa, Parasagitta elegans), peak chaetognath densities were 

observed in late summer at all stations, at the time of highest densities of small 

copepods (Fanjul et al., submitted), i.e. their main prey (Falkenhaug, 1991; Tönnesson 

and Tiselius, 2005). The high correlation of doliolids with temperature, however, does 

not seem to be related to the timing of maximum food availability; instead, it may be 

related to more stratified conditions being favourable for them (Menard et al., 1997).  

At the finer taxonomic level among the copepods and cladocerans, various copepod 

genera appeared well correlated with temperature (Corycaeus, Oncaea, Temora, 
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Centropages), but only Corycaeus (Dytrichocoricaeus) seemed to be consistently 

correlated with temperature across sites (less well correlated at SH). This may be 

because a single common species, D. anglicus, dominates this genus at B35, U35 and 

L4, a species considered to be a temperate warm water indicator (Bonnet and Frid, 

2004), whereas larger differences in species composition between sites were observed 

within Temora and Centropages genera, for instance.  

Regarding the effect of climate indices, AMO was the one that showed the highest 

correlation with seasonal variations of zooplankton community (although no correlation 

was observed in the oligotrophic site of the Bay of Biscay for the seasonal variability 

reflected by ordination along axis 1). AMO has been suggestedto exert significant 

effects variations of the marine biota of the North Atlantic at multidecadal scales 

(Edwards et al., 2013; Alheit et al., 2014), however, in the present study of seasonal 

variations correlations were markedly smaller than with direct driving factors, such as 

temperature and chlorophyll a.  

In general, our results reinforce the view that coastal zooplankton community seasonal 

dynamics within the Northeast Atlantic Shelves Province (Longhurst, 1998) show 

geographical variations (Beaugrand et al., 2000; McGinty et al., 2011). Furthermore, the 

sites under study are located in three different Large Marine Ecosystems (LMEs): the 

Iberian Coastal (U35 and B35), the Celtic-Biscay shelf (L4) and the North Sea (SH) 

(Sherman et al., 2004). However, the seasonal pattern of zooplankton community at 

U35 is a bimodal cycle similar to that described by Beaugrand et al. (2000) for the 

southern part of the Celtic Sea and the Bay of Biscay, although the spring peak occurs 

earlier in the year at U35. Moreover, the seasonal variability of zooplankton abundance 

at U35 does not seem to conform to those observed at other coastal sites located on the 

northwestern Iberian Peninsula (e.g. Vigo and A Coruña stations), where zooplankton 

maxima occur in summer/early autumn due to the influence of upwelling processes 

(Bode et al., 2013). Upwelling events show decreasing intensity easterly along the 

Cantabrian shelf, and the weakness of upwelling processes in the Basque coast 

(innermost Cantabrian shelf) precludes breaking of the stratification up to the surface 

layers (Valencia and Franco, 2004). This fact explains the decline of phytoplankton and 

zooplankton after the spring maxima at coastal sites that are poorly fertilized by river 

inputs, as is the case of U35. Therefore, a lack of homogeneity in terms of zooplankton 

community seasonality within the Iberian Coast LME is also evident. The division of 

the marine environment into coherent biogeographic units entails much complexity 
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because of the many influencing variables (topographical, hydrographical, climatic, 

ecological etc.), and it is an even harder task for the more variable coastal areas where 

local processes usually interfere more with broader scale drivers to affect ecological 

phenomena. The present work provides helpful information to better delineate the 

boundaries between meaningful biogeographic units in the marine environment and 

baseline phenological data that can be useful to detect significant departures over time. 
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Figure Captions 

Figure 1. Map showing the location of sampling sites.  

Figure 2. Month scores on Axis 1 obtained from RDAs using months as explanatory 

variables and years as covariables for (a) zooplankton groups and (b) copepod and 

cladoceran genera.  

Figure 3. Taxa scores on Axis 1 obtained from RDAs using months as explanatory 

variables and years as covariables for (a) zooplankton groups and (b) copepod and 

cladoceran genera. Acar: Acartia, Appe: appendicularians, Biva: bivalve larvae, Bryo: 

bryozoans, Cala: Calanidae, Cent: Centropages, Chae: chaetognaths, Cirr: cirripede 

larvae, Clad: cladocerans, Cope: copepods, Cory: Corycaeus, Deca: decapod larvae, 

Doli: doliolids, Echi: echinoderm larvae, Evad: Evadne, Fish: fish eggs and larvae, 

Gast: gastropod larvae, Hydr: hydromedusae, Oith: Oithona, Onca: Oncaea, PCPC: 

PCPC-calanus, Podo: Podon, Poly: polychaete larvae, Siph: siphonophores, Temo: 

Temora. 

Figure 4. Month scores on Axis 2 obtained from RDAs using months as explanatory 

variables and years as covariables for (a) zooplankton groups and (b) copepod and 

cladoceran genera.  

Figure 5. Taxa scores on Axis 2 obtained from RDAs using months as explanatory 

variables and years as covariables for (a) zooplankton groups and (b) copepod and 

cladoceran genera. Abbreviations as in Fig. 3. 

Figure 6. Percentage of total zooplankton variance explained by environmental factors 

at the level of (a) zooplankton groups and (b) copepod and cladoceran genera.  

Figure 7. Histograms of between-year correlations of annual cycles of temperature, 

chlorophyll a and total zooplankton abundance  

Figure 8. RDA biplot of Zooplankton group taxa (thin black arrows) and environmental 

variables (thick black arrows for variables with significant conditional effects and grey 

arrows for variables with non significant conditional effects). In parentheses the 

percentage of taxa-environment relationship explained by each axis. Taxa and 

environmental variable abbreviations as in Fig. 3 and Table 3, respectively. 

Figure 9. RDA biplot of Cladoceran and Copepod genera (thin black arrows) and 

environmental variables (thick black arrows for variables with significant conditional 

effects and grey arrows for variables with non significant conditional effects). In 

parentheses the percentage of taxa-environment relationship explained by each axis. 

Taxa and environmental variable abbreviations as in Fig. 3 and Table 3, respectively. 
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Tables 

Table 1. Between-site correlation (Spearman rank correlation coefficients with p-values in 

parentheses) of the month scores on Axis 1 for Zooplankton groups (ZG) and Cladoceran 
and Copepod genera (CCGen) 

 
ZG 

 
CCGen 

 
U35 L4 SH 

 
U35 L4 SH 

B35 0.734 (0.007) 0.867 (<0.001) 0.832 (0.001) 
 

0.755 (0.005) 0.748 (0.005)   0.475 (0.118) 

U35 
 

0.559 (0.059) 0.538 (0.071) 
 

 0.329 (0.297) -0.007 (0.983) 

L4 
  

0.986 (<0.001) 
 

    0.874 (<0.001) 

        
 

Table 2. Between-site correlation (Spearman rank correlation coefficients with p-values 
in parentheses) of the month scores on Axis 2 for Zooplankton groups and Cladoceran 

and Copepod genera. 

 
Zooplankton groups (ZG) 

 
Copepod and cladoceran genera (CCGen) 

 
U35 L4 SH 

 
U35 L4 SH 

B35 0.916 (<0.001) 0.874(<0.001) 0.902 (<0.001) 
 

0.615 (0.033) 0.510 (0.090) 0.063 (0.846) 

U35 
 

0.720 (0.008) 0.741 (0.006) 
 

 0.364 (0.245) 0.315 (0.319) 

L4 
  

0.916 (<0.001) 
 

  0.755 (0.005) 

        
 
Table 3. Conditional effects of environmental variables for Zooplankton groups (ZG) and 

Cladoceran and Copepod genera (CCGen). Variables with significant effects in bold. Sal: 

salinity, WT: water temperature, Chla: concentration of chlorophyll a, NAO: North Atlantic 

Oscillation index, EA: East Atlantic index, AMO: Atlantic Multidecadal Oscillation index.  

 Zooplankton groups (ZG) 
 

Cladoceran and Copepod genera (CCGen) 

 Variable LambdaA F p-value 
 

Variable LambdaA F p-value 

B35 

WT 0.17 36.58 0.002 

 

WT 0.14 29.25 0.002 

Chl a  0.01 2.90 0.028 
 

Chl a 0.01 2.43 0.060 

AMO 0.00 0.88 0.472 

 

Sal 0.01 1.83 0.092 

NAO 0.01 0.85 0.522 
 

AMO 0.01 1.55 0.166 

Sal 0.00 0.61 0.738 
 

NAO 0.00 0.81 0.470 

EA 0.00 0.30 0.974 
 

EA 0.00 0.56 0.726 

          

U35 

WT 0.06 13.06 0.002 
 

WT 0.07 13.4 0.002 

Chl a 0.04 6.48 0.002 

 

Chl a 0.02 4.86 0.002 

Sal 0.00 1.34 0.184 
 

AMO 0.01 2.39 0.058 

AMO 0.01 1.41 0.208 

 

Sal 0.01 1.00 0.400 

NAO 0.00 0.67 0.676 
 

NAO 0.00 0.45 0.862 

EA 0.00 0.40 0.938 

 

EA 0.00 0.45 0.874 

          

L4 

WT 0.23 59.09 0.002 
 

WT 0.18 42.66 0.002 

Chl a 0.08 23.22 0.002 

 

Chl a 0.09 23.81 0.002 

AMO 0.02 3.04 0.014 
 

Sal 0.00 1.63 0.170 

Sal 0.00 2.74 0.056 
 

AMO 0.01 1.54 0.158 

EA 0.01 0.75 0.564 

 

EA 0.00 0.78 0.474 

NAO 0.00 0.54 0.776 
 

NAO 0.00 0.47 0.760 

          

SH 

Chl a 0.31 79.61 0.002 

 

Chl a 0.28 71.77 0.002 

WT 0.17 58.95 0.002 

 

WT 0.18 62.33 0.002 

AMO 0.00 2.23 0.050 
 

AMO 0.00 2.64 0.022 

EA 0.01 1.32 0.248 
 

EA 0.01 1.69 0.148 

NAO 0.00 1.08 0.324 
 

NAO 0.00 1.18 0.294 

Sal 0.00 0.60 0.726 
 

Sal 0.00 0.51 0.772 
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Table 4. Correlations between environmental factors and sample scores on axis 1 of 
Zooplankton groups (ZG) and Cladoceran and Copepod genera (CCGen). Significant 

correlation coefficients in bold (** p<0.01; * p<0.05). Abbreviations as in Table 3. 

 ZG  CCGen 

 B35  U35  L4  SH  B35  U35  L4  SH 

Sal 0.041  0.070  -0.164*
 
  0.247**   -0.011  -0.066  -0.160 *  0.333 ** 

WT -0.567 **  -0.313
 
**  -0.606

 
**  0.533

 
**  0.390 **  -0.124  -0.521 **  0.661 ** 

Chla -0.585
 
**  -0.359

 
**  -0.600

 
**  0.839

 
**  0.537 **  0.265 **  -0.582 **  0.774 ** 

NAO 0.108  0.024  0.149 *  -0.176 *  -0.054  0.081  0.107  -0.221** 

EA -0.093  -0.043  -0.131  0.097  0.071  -0.065  -0.096  0.112 

AMO -0.230 **  -0.109  -0.347 **  0.384 **  0.156 *  -0.131  -0.264 **  0.382 ** 

                 

 

Table 5. Correlations between environmental factors and sample scores on axis 2 of 
Zooplankton groups (ZG) and Cladoceran and Copepod genera (CCGen). Significant 

correlation coefficients in bold (** p<0.01; * p<0.05). Abbreviations as in Table 3. 

 ZG  CCGen 

 B35  U35  L4  SH  B35  U35  L4  SH 

Sal 0.101  -0.065  -0.018  0.566 **  0.122   0.080   0.184 *  -0.079  

WT 0.529 **  0.609 **  -0.672 **  0.734 **  0.614 **  -0.525 **  0.445 **  -0.131  

Chla -0.055  -0.087  -0.010   -0.159 *  0.059  -0.206 **  0.101   -0.017  

NAO -0.191 *   -0.194**   0.099   -0.109  -0.145   0.187 *  -0.021   0.020  

EA 0.095  0.109  0.005   -0.025   0.049  -0.059   -0.054   -0.094  

AMO 0.240 **  0.302 **  -0.274 **  0.227 **  0.294 **  -0.260 **  0.159 *  -0.038  
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