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Abstract
Marine ecosystems evolve under many interconnected and area-specific pressures. To 
fulfil society’s intensifying and diversifying needs while ensuring ecologically sustainable 
development, more effective marine spatial planning and broader-scope management of 
marine resources is necessary. Integrated ecological–economic fisheries models (IEEFMs) 
of marine systems are needed to evaluate impacts and sustainability of potential man-
agement actions and understand, and anticipate ecological, economic and social dynam-
ics at a range of scales from local to national and regional. To make these models most 
effective, it is important to determine how model characteristics and methods of com-
municating results influence the model implementation, the nature of the advice that can 
be provided and the impact on decisions taken by managers. This article presents a global 
review and comparative evaluation of 35 IEEFMs applied to marine fisheries and marine 
ecosystem resources to identify the characteristics that determine their usefulness, ef-
fectiveness and implementation. The focus is on fully integrated models that allow for 
feedbacks between ecological and human processes although not all the models re-
viewed achieve that. Modellers must invest more time to make models user friendly and 
to participate in management fora where models and model results can be explained and 
discussed. Such involvement is beneficial to all parties, leading to improvement of mo- 
dels and more effective implementation of advice, but demands substantial resources 
which must be built into the governance process. It takes time to develop effective pro-
cesses for using IEEFMs requiring a long-term commitment to integrating multidiscipli-
nary modelling advice into management decision-making.

K E Y W O R D S

bio-economic models, comparative model evaluation, fisheries management advice, integrated 
ecological–economic fisheries models, marine spatial planning and cross-sector management, 
performance criteria and scales and risks, use and acceptance and implementation and 
communication and flexibility and complexity
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1  | INTRODUCTION

There is a growing need for tools to evaluate policies and assess trade-
offs in management of marine resources and provision of ecosystem 
services such as fishing, aquaculture, renewable energy, shipping, 
conservation and recreation (Cormier, Kannen, Elliott, & Hall, 2015; 
Degnbol & Wilson, 2008; EU 2014; Langlois, Fréon, Steyer, Delgenés, 
& Hélias, 2014; White et al., 2012). It is necessary to elaborate and 
apply common principles and broader, interdisciplinary management 
evaluation in the use of marine space involving several types of activi-
ties and sectors (Ramos et al., 2013; Soma et al., 2013; Stelzenmüller 
et al., 2013; Sundblad et al., 2014). Policymakers need to know the 
costs and benefits of conserving ecosystem goods and services to 
manage them sustainably. Moreover, according to an ecosystem-
based approach to management, specific pressures, associated un-
certainties and risks need to be taken into account (Douvere, 2008; 
Ehler & Douvere, 2009; Gilliland & Laffoley, 2008; Hicks et al., 2016; 
Stelzenmüller et al., 2011).

To meet these needs, there has been increasing development of 
Integrated Ecological–Economic Fisheries Models (IEEFMs) over the 
last two decades (Bjørndal, Lane, & Weintraub, 2004; Conrad, 1995; 
Kaplan, Holland, & Fulton, 2014; Kaplan, Horne, & Levin, 2012; Kell 
et al., 2007; Knowler, 2002; Mullon et al., 2009; Österblom et al., 
2013; Prellezo et al., 2012; Punt et al., 2011). These models incor-
porate and integrate natural and human processes that have been 
the focus of various disciplines such as oceanography, fish ecology, 
fisheries economics, anthropology and sociology (Dichmont, Pascoe, 
Kompas, Punt, & Deng, 2010; Heal & Schlenker, 2008; Mullon, 2013; 
Nielsen & Limborg, 2009; Ulrich et al., 2012). Fundamentally, an 
IEEFM is a mathematical representation of ecological and economic 
systems which can also integrate social systems in some cases based 
on linking components, parameters and processes of each dimension 
(e.g. De Marchi, Funtowicz, Lo Cascio, & Munda, 2000; Österblom, 
Crona, Folke, Nyström, Troell 2016; Punt et al., 2010; Thébaud et al., 
2013).

One of the potential benefits of IEEFMs is that one can develop 
a better and more comprehensive understanding of the feedback ef-
fects between human multi-actor activity, human economic structures 
and ecosystem dynamics. This understanding may help managers to 
avoid the well-documented unintended consequences of manage-
ment actions that might not be predicted by simpler models that do 
not account for interactions and feedback processes between system 
components (Beddington, Agnew, & Clark, 2007; Hicks et al., 2016; 
Hilborn, 2007; Hilborn, 2011; Hilborn et al., 2015; Holling, 2001; 
Marchal et al., 2016; Ostrom, 2009; Walters 1998; Wilen et al., 2002; 
Worm et al., 2009). Complex feedbacks and impacts between ecosy
stems, exploited species and fisheries systems have been investigated 
and discussed extensively (Branch et al., 2010; Garcia & Cochrane, 
2005; Gascuel et al., 2016; Hill et al., 2007; Howarth, Roberts, 
Thurstan, & Stewart, 2013; Marasco et al., 2007; Murawski et al., 
2010; Neubauer, Jensen, Hutchhings, & Baum, 2013; Österblom, 
Jouffray, Spijkers, 2016; Pauly et al., 2013; Plagányi and Butterworth 
2004; Rose et al., 2010). Comprehensive reviews of ecosystem and 

biological models have been conducted addressing this complex-
ity and feedback processes (e.g. Hyder et al., 2015; Piroddi et al., 
2015; Plagányi et al., 2014; Rose et al., 2010; Tedesco et al., 2016). 
Holistic (“end-to-end”) models have been developed during the last 
decade including management and socio-economic modules to si
mulate ecosystem complexity from diverse perspectives (Christensen, 
Steenbeek, & Failler, 2011; Fulton, Smith, Smith, & Johnson, 2014; 
Fulton et al., 2011; Girardin et al., 2016; Kaplan et al., 2012, 2014) 
allowing both strategic (long term) and tactical (medium term) ma
nagement advice on marine resources and decisions according to best 
practices (FAO 2008; Plagányi 2007). However, increased complexity 
within each dimension and greater integration of the dimensions, for 
example including economic dynamics in ecosystem models, may also 
increase the difficulty of parameterizing the models and understand-
ing and communicating the results (e.g. Stokes et al., 1999; McAllister, 
Starr, Restrepo, & Kirkwood, 1999; Rochet and Rice 2009, 2010; 
Butterworth et al., 2010; Kraak, Kelly, Codling, & Rogan, 2010; Fulton 
et al., 2011, 2014; Christensen et al., 2011). There are always trade-
offs involved with moving to these more complex integrated models 
in management advice. This is especially the case when several sec-
tors and their markets are considered which increases complexity 
and accordingly limits model implementation (e.g. Hicks et al., 2016; 
Österblom et al., 2016).

While a variety of fisheries IEEFMs, often referred to as bio-
economic models, have been developed in the past, only a small 
number of reviews comparing their capabilities and implementation 
in practice have been published. For example, Conrad (1995) and 
Knowler (2002) review models in which environmental influences are 
interlinked with economic aspects. A general introduction and over-
view of bio-economic models can be found already in Seijo, Defeo, 
and Salas (1998), but applications to specific empirical cases remain li- 
mited. Reviews of more restricted types and coverage of models 
include the following: Bjørndal et al., (2004), which also includes 
aquaculture; the review conducted by the Scientific, Technical and 
Economic Committee for Fisheries (STECF) of the European Union 
(SEC, 2006); and the review of regional economic models for fisheries 
management in the USA by Seung (2006). Finally, the reviews pro-
duced in Prellezo et al., (2012) and Lehuta, Girardin, Mahevas, Travers-
Trolet, and Vermard (2016) focused on European operational models. 
The review by Lehuta et al., (2016) concentrates on methodology and 
model development on a subset of complex models that focus on 
European fisheries advice. Other types of models based on network 
theory such as Mullon et al., (2009) and Mullon (2013) with a global 
fish meal model have emerged. Individual-based and fleet-based pre-
diction models on fuel consumption and trip planning evaluating the 
carbon footprint and energy consumption in fisheries have also pro-
gressed recently (e.g. Bastardie, Nielsen, Andersen, & Eigaard, 2013; 
Bastardie, Nielsen, & Miethe, 2014; Bastardie, Nielsen, et al., 2015; 
Basurko, Gabina, & Uriondo, 2013; Grimm et al., 2010; Sala et al., 
2011; Trenkel et al., 2013; Waldo and Paulrud 2016). The latter en-
ables the development of energy efficient approaches for fishing ves-
sels (e.g. Suuronen et al., 2012) and prediction of fuel costs (Daurès, 
Trenkel, & Guyader, 2013).
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We conduct a global comparative review and evaluation of 35 
IEEFMs to provide potential users an overview of when and how 
IEEFMs can be and have been used worldwide and to identify the 
characteristics that determine their usefulness, effectiveness and im-
plementation in fisheries advice. The review evaluates model design 
choices such as scope, spatial and temporal dimensions and scales, 
functions and processes included, level of complexity and realism, the 
ability to model uncertainty and stochastic process impact, and the 
type and robustness of advice that can be provided as well as the data 
and expertise needed to develop and parameterize IEEFMs. Model 
linking, coupling and level of integration of biological and economic 
and, to some extent, social components in the models are considered. 
This article is primarily focused on fully integrated models that allow 
for feedbacks between ecological and human processes although not 
all the models reviewed achieve that.

The review covers selected IEEFMs representing a range of ap-
proaches and perspectives rather than providing a comprehensive 
analysis of all existing models worldwide. The review serves to iden-
tify some common features and failings of models and hence may 
guide researchers in selecting existing models and further developing 
them rather than creating a completely new model. It also highlights 
modelling challenges and future directions of research especially when 
it comes to implementation of the models. The review demonstrates 
that modellers face inevitable trade-offs between complexity and 
comprehensiveness, flexibility and user-friendliness. Those trade-offs 
impact model design, performance and model acceptance and also 
must be considered in determining the best approach to communicate 
model results. No model design fits all cases and uses, but the review 
provides insights that may help both developers and users of models 
to determine the model characteristics that best suit their intended 
implementation, uses and how to more effectively communicate 
model results to ensure uptake in management advice and decisions.

The article is organized as follows: initially, the selected IEEFMs 
are listed with relevant references for their development. Second, the 
analysis methods and tools used for evaluation of the models are de-
scribed. The tools are used to describe, categorize and evaluate the 
different type of models according to a set of specific criteria covering 
the above issues. This categorization and evaluation is summarized in 
semi-quantitative spider web plots to compare the focus and capabi
lity of the different models and what main directions of development 
the different models represent. The results of this meta-analysis are 
then discussed with a focus on use and characteristics that contribute 
to effective implementation. Needs for further research are identified 
with emphasis on specific needs for further model implementation. 
The specific objectives of the study are to

-Provide a set of tools and criteria to make a comparative evalua-
tion of IEEFMs;

-Evaluate use and implementation of different types of IEEFMs 
through selected examples from around the world;

-Elucidate limitations and progress of IEEFM implementation and 
the governance process including necessary stakeholder involvement;

-Provide potential users with an overview and framework that can 
be used to guide in selection of the most appropriate models according 

to their specific needs, purpose and questions to be answered, that is 
providing guidelines for good practice in selection, use and communi-
cation of the models according to requirements and trade-offs.

2  | MATERIALS AND METHODS

2.1 | Surveyed models

A subset of models has been selected to provide a global perspec-
tive for the review. These models represent a wide range of different 
types of current and emerging IEEFMs. The 35 IEEFMs evaluated are 
listed in Table 1 with name and abbreviation and the model character-
istics detailed in the annexes (Supplementary Material Tables S1, S2 
and S3). A geographical overview of the main implementation of the 
different models is given in Figure 1. The models and their develop-
ment are published in a comprehensive scientific literature given in 
Table 2.

2.2 | Meta-analysis of bio-economic models

We use three model meta-analysis tools to compare the IEEFMs on a 
global scale according to model type, purpose, coverage, dimensions, 
scales, capacity, uses and level of implementation and to evaluate 
trade-offs associated with complexity and flexibility. Those tools con-
sist of a detailed Model Characteristics and Performance Evaluation 
Matrix (Table S1) completed by a developer of each model, a Model 
Categorization and Descriptors Summary Table (Table S2) also com-
pleted by a developer of each model, and a Model Use and Trade-
Off Summary Table (Table S3) that compiles information about all the 
models. The tools and their structure as well as the details of the clas-
sification are given in the Supplementary Material Tables S1, S2 and 
S3, respectively. Furthermore, the results and the fourth tool of the 
comparative evaluation and meta-analysis are given in summary plots 
of the tabulations in the results section (Figures 2–7). This fourth tool 
is in the form of spider web plots with frequency classification of the 
different types of models with respect to their properties, character-
istics, uses and trade-offs.

In drawing conclusions about the effectiveness of models and 
trade-offs faced by modellers, we also relied on discussions at work-
shops, working groups and special sessions organized at three sci-
entific conferences over four years in which the meta-analysis was 
evaluated, several of these models were presented, and where general 
modelling issues were discussed by panels. Since 2011, yearly mee
tings were convened focusing on evaluating and comparing IEEFMs 
in the ICES WGIMM (International Council of Exploration of the Sea 
Working Group on Integrated Management Modelling, www.ices.dk 
01Apr2017; e.g. ICES 2015a). The first two conference special ses-
sions were special sessions of the International Institute for Fisheries 
Economics and Trade (IIFET) held in Dar es Salaam, Tanzania and 
Brisbane, Australia, in 2012 and 2014, respectively (Nielsen, Schmidt, 
et al., 2014; Thébaud et al., 2013; Thunberg, Holland, Nielsen, & 
Schmidt, 2013). The last was a theme session held at the ICES Annual 
Science Conference in Copenhagen, Denmark, in 2015 (ICES 2015b; 

http://www.ices.dk
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Nielsen, Thunberg, Schmidt, Holland et al., 2015; Nielsen, Schmidt, 
Thunberg, Holland 2015) in which the meta-analysis of the models 
was presented, evaluated and discussed.

The models evaluated cover a broad range of IEEFMs covering 
aspects of commercial marine fisheries and associated fish stocks and 
ecosystems. A very broad group of model developers of the different 
types of integrated ecological–economic marine models were con-
tacted through the ICES WGIMM Working Groups and IIFET Special 
Sessions to complete this work. All model developers filling in the 
meta-analysis tools were directly involved in the review. Many of 
the modellers also attended one or more of the workshops, working 
groups or conference sessions in which the models and the meta-
analysis were discussed. In addition to the actual meta-analysis, we 
attempt to convey some of the insights gained from the evaluations 
and discussions at the working group meetings and conference theme 
sessions to help us draw some synthetic conclusions from the meta-
analysis that are not readily apparent just from comparing model 
characteristics.

2.3 | Model Characteristics and Performance 
Evaluation Matrices

The Model Characteristics and Performance Evaluation Matrices 
given in SM Table S1 compile collective experience with and col-
lective consensus on the models as given by the model developers 
including feedback to the developers from users during the model de-
velopment and model implementation processes. A full compilation 
of Model Evaluation Matrices for all models evaluated are given in 

TABLE  1 List of tabulated models and model abbreviations used 
in the evaluation and for reporting results

No. Model name
Model 
abbreviation

1 Crab Allowable Biological Catch Model 
(CRAB ABC)

CRAB ABCa

2 Crab Ocean Acidification Model (CRAB 
ACID)

3 Multispecies Stock Production Model MSPM

4 Ecological Modeling of Multiannual 
Quota (MAQ)

MAQ-ADJb

5 Ecological Modeling of Multiannual 
Quota with Adjustment Restriction 
(MAD-ADJ)

6 Economic Interpretation of ICES 
Advisory Committee for Fisheries 
Management

EIAA

7 Bio-Economic Model of European Fleets 
(extended EIAA)

BEMEF

8 Integrated model for Australian Torres 
Strait Tropical Rock Lobster

IMATSTRL

9 Bio-Economic Module Connecting 
Ecology and Economy

ECOb

10 Stochastic Age-Structure Optimization 
Model + ITQ Wealth Model

STOCH HCR

11 Individual Vessel-Based Spatial Planning 
and Effort Displacement

DISPLACE

12 Integration of Spatial Information for 
Simulation of Fisheries

ISIS-FISH

13 Baltic Coupled Fisheries Library in R and 
Stochastic Multi-species Model

BALTIC FLR-SMS

14 Impact Assessment Model for Fisheries 
Management

IAM

15 Spatial Integrated bio-economic Model 
for Fisheries (Wageningen University, 
NL)

SIMFISH

16 FISHRENT IFRO University of 
Copenhagen (DK)

FISHRENTc

17 FISHRENT TI Thunen Institute (D)

18 Swedish Resource Rent Model for the 
Commercial Fisheries

SRRMCF

19 New England Coupled Lobster Model NECLH

20 20 Baltic Sea Ecological-Economic 
Optimization Model

B SEA 
ECON-ECOL

21 Effects of Line Fishing Simulator ELFSIM

22 Australia Northern Prawn Fishery Tiger 
Prawns Bio-economic Model

NPFTPBEM

23 Simplified Bio-Economic Model for the 
Australian Northern Prawn Fishery

NPF BIOECON

24 Mediterranean Fisheries Simulation Tool MEFISTO

25 Bio-economic Impact Assessment using 
Fisheries Library in R

FLBEIA

26 Fleets and Fisheries Forecast Model 
Fcube

FCUBE

(Continues)

No. Model name
Model 
abbreviation

27 Coupled Georges bank Food Web and 
Computable General Equilibrium Model

GBFWCGE

28 Baltic Sea Atlantis Model B SEA ATL

29 California Current Atlantis Model CA CURRENT 
ATL

30 Southeast Australia Atlantis Model SE AUS ATL

31 Size-spectrum bio-climate envelope 
model & input/output tables

SS-DBEM-IOT

32 Generic Ecosystem Model GEM

33 Peruvian Ecopath with Ecosim Foodweb 
Model

PERU EwE

34 Baltic Sea Ecopath with Ecosim Foodweb 
Model

B SEA EwE

35 North Sea Ecopath with Ecosim and 
Ecospace

N SEA EwE

aCrab Ocean Acidification (CRAB ACID) is based on the Crab ABC model so 
results are combined for reporting.
bMAQ-ADJ is based on MAQ with an added restriction on quota adjust-
ments so results are reported only for MAQ-ADJ.
cFISHRENT TI and IFRO have nearly identical model characteristics and are 
combined for purposes of reporting.

TABLE  1  (Continued)
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the Supplementary Material Table S1 including the explanations of 
the categories herein. The Model Evaluation Matrix summarizes the 
following model characteristics: (i) management questions the model 
addressed or can address; (ii) corresponding advice (biological and 
economic) the model provides; (iii) institutional set-up and platforms 
for the model including needed partners; (iv) type of model inclu
ding model linking, coupling and level of integration (linked to type of 
model); (v) model dimensions and model structure; (vi) usefulness of 
the model; (vii) focus and trade-offs (linked to usefulness above); (viii) 
data requirements; (ix) status of the development, application, imple-
mentation and use of the model in case studies; (x) dissemination of 
the model including model platform, programming language, acces-
sibility; and (xi) format of output. For each of the above bullets, the 
answers could be given according to a scaling of the degree or level of 
the models, that is low, medium, high.

2.4 | Model Categorization and Descriptors 
Summary Table

Each of the above bullets is used as an axis (row or column) in a mul-
tidimensional diagram—the Model Categorization and Descriptors 
Summary Table shown in SM Table S2, which has been filled in 
for each model evaluated. Detailed descriptions of the Model 
Categorization and Descriptors Summary Table and an example for 

one model are given in the Table S2. Furthermore, the compiled ma-
terial is shown in the spider web summary plots in the results section 
in Figures 2–6.

In the summary table, the primary-level descriptors in the rows are 
categorized into (i) advisory models in the short term (fisheries advice 
with fish stock assessment), (ii) assessment of outcomes of existing 
TAC or TAE (short term), (iii) management strategy evaluation (medium 
term, long term), (iv) strategic long-term advice and (v) broader bio-
economic advice (medium-long term). The secondary-level descriptors 
in the columns of the table is categorized into three major model de-
scriptors covering (i) model dimensions and structure/resolution, (ii) 
model complexity and flexibility and (iii) model type (see further de-
scriptions and detailing of this in the Table S2).

2.5 | The Model Use and Trade-Off Summary Table

The Model Use and Trade-Off Summary Table given in SM Table S3 
compiles the information that model developers provided in the Model 
Characteristics and Performance Evaluation Matrices and the Model 
Categorization and Descriptors Summary Table. This table notes the 
presence or absence of particular model characteristics and qualities 
in an overview form that facilitates comparison across models. There 
is a row for each model and with the columns indicating the model 
characteristics according to the primary use and types of use, as well 

F IGURE  1 Overview of main model applications and implementation
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TABLE  2 Dissemination and publication of evaluated models

No Model abbreviation Model publication

1 CRAB ABC Punt et al., 2012.

2 CRAB ACID Punt et al., 2014; Seung et al., 2015; Punt et al., 2016.

3 MSPM Horbowy, 1996, 2005.

4 EIAA Frost, Levring, Hoff, & Thøgersen, 2009;.

5 BEMEF Frost et al., 2009; Carpenter & Esteban, 2015; New Economics Foundation 2016.

6 MAQ Van Dijk et al., 2013.

7 MAQ-ADJ Van Dijk, Hendrix, Haijema, Groeneveld, & van Ierland, 2016.

8 IMATSTRL van Putten et al., 2012; van Putten, Deng, et al., 2013; van Putten, Gorton, Fulton, Thebaud 2013; Plagányi 
et al., 2012, 2013; Pascoe, Hutton, van Putten, Dennis, Plagányi, et al., 2013; Pascoe, Hutton, van Putten, 
Dennis, Skewes, 2013; Hutton et al., (2016).

9 ECO² Bethke, 2013a,b, 2015, 2016; Bethke, Bernreuther, & Tallman, 2013;.

10 STOCH HCR (ITQ 
WEALTH)

Da Rocha & Gutiérrez, 2011; Da-Rocha & Pujolas, 2011;  Da Rocha & Mato-Amboage, 2016; Da Rocha & 
Sempere, 2016; Da Rocha, Cerviño, & Gutiérrez, 2010; Da Rocha, Gutiérrez, & Antelo, 2012; Da Rocha, 
Gutiérrez, & Cerviño, 2012; Da Rocha, Gutiérrez, Cerviño, & Antelo, 2012; Da Rocha, Gutiérrez, & Antelo, 
2013; Da Rocha, Gutiérrez, Garcia-Cutrin, & Jardim, 2015; Da Rocha, Gutiérrez, Garcia-Cutrin, & Touza, 2016; 
Da Rocha, Gutiérrez, & Garcia-Cutrin, 2016; Da Rocha, Gutiérrez, Garcia-Cutrin, & Jardim, 2017; Arnason, 
2002; Weninger and Just, 2002; Heaps, 2003; Weninger and Waters, 2003; Weninger, 2008; Kitts et al., 2011.

11 DISPLACE Bastardie, Nielsen, Andersen, & Eigaard, 2010; Bastardie et al., 2013, 2014; Bastardie, Nielsen, Eigaard, et al., 
2015; Bastardie, Nielsen, Eero, Fuga, & Rindorf, 2017; Nielsen, Kristensen, Lewy, & Bastardie, 2014; www.
displace-project.org (01 Apr 2017).

12 ISIS-FISH Mahevas & Pelletier, 2004; Pelletier et al., 2009; Drouineau, Mahévas, Pelletier, & Beliaeff, 2006; Drouineau, 
Mahévas, Bertignac, & Duplisea, 2010; Duplisea, 2010; Lehuta, Mahévas, Petitgas, & Pelletier, 2010; Rocklin, 
Pelletier, Mouillot, Tomasini, & Culioli, 2010; Lehuta, Mahévas, & Le Floc’h, 2013; Lehuta, Petitgas, et al., 2013; 
Lehuta, Holland, & Pershing, 2014; Lehuta, Vermard, & Marchal, 2015; Rochet & Rice, 2010; Marchal, Little, & 
Thebaud, 2011; Marchal, De Oliveira, Lorance, Baulier, & Pawlowski, 2013; Hussein et al., 2011a,b; Vermard 
et al., 2012; Gasche, Mahevas, & Marchal, 2013; Reecht et al., 2015.

13 BALTIC FLR-SMS Bastardie et al., 2009; Bastardie, Nielsen, & Kraus, 2010; Bastardie, Vinther, Nielsen, Ulrich, & Storr-Paulsen, 
2010; Bastardie, Vinther, & Nielsen, 2012; Bastardie, Nielsen, & Vinther, 2015; Bastardie & Nielsen, 2011;  
Nielsen et al., 2011; Feekings et al., (submitted).

14 IAM Macher, Guyader, Talidec, & Bertignac, 2008; Macher et al., 2013; Merzéréaud, Biais, Lissardy, Bertignac, & 
Biseau, 2013; Merzéréaud et al., 2011;  Simmonds et al., 2011; Raveau et al., 2012; Guillén et al., 2013; Guillén, 
Macher, Merzéréaud, Fifas, & Guyader, 2014; Guillén, Macher, Merzéréaud, Boncoeur, & Guyader, 2015;  EU 
STECF, 2015a,b,c.

15 SIMFISH Bartelings, Hamon, Berkenhagen, & Buisman, 2015; Kempf et al., 2016.

16 FISHRENT IFRO Frost, Andersen, & Hoff, 2011, 2013; Lassen, Anker Pedersen, Frost, & Hoff, 2013; Thøgersen et al., 2012; Salz 
et al., 2010.

17 FISHRENT TI Salz et al., 2011; Simons, Bartelings, et al., 2014; Simons, Döring, Temming 2014; Simons, Döring, & Temming, 
2015a; Simons, Döring, & Temming, 2015b.

18 SRRMCF Waldo and Paulrud 2013a,b; 2016; Paulrud & Waldo, 2011.

19 NECLH Holland, 2011a,b; Lehuta et al., 2014;.

20 BAL. ECON-ECOL Tahvonen, 2009; Voss, et al., 2011; Voss, Quaas, Schmidt, Hoffmann 2014; Voss, Quaas, Schmidt, Tahvonen et 
al., 2014; Skonhoft et al., 2012; Tahvonen et al., 2013.

21 ELFSIM Little et al., 2007; Little, Punt, Mapstone, Begg, Goldman, Ellis 2009; Little, Punt, Mapstone, Begg, Goldman, 
Williams, 2009;.

22 NPFTPBEM Dichmont, Punt, Deng, Dell, & Venables, 2003; Dichmont et al., 2010; Dichmont, Deng, Punt, Venables, & 
Hutton, 2012; Punt et al., 2010; 2011; Deng, Punt, Dichmont, Buckworth, & Burridge, 2015;.

23 NPF BIOECON Gourguet et al., 2014, 2016; Dichmont et al., 2003, 2008; Punt et al., 2010, 2011.

24 MEFISTO Lleonart et al., 1999, 2003; Maynou, Sardà, Tudela, & Demestre, 2006; Maynou, Martínez-Baños, Demestre, & 
Franquesa, 2014; Mattos, Maynou, & Franquesa, 2006; Merino, Karlou-Riga, Anastopoulou, Maynou, & 
Lleonart, 2007; Tratnik et al., 2007; Silvestri and Maynou 2009; Guillén et al., 2012;  Maynou, 2014; Maouel, 
Maynou, & Bedrani, 2014; Maravelias, Pantazi, & Maynou, 2014;.

(Continues)
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as major trade-offs. The compiled table and descriptions to it are given 
in the SM Table S3. Also for this table, the compiled material is shown 
in the spider web summary plots in the results section in Figures 2–6.

The columns of the table categorize each model in terms of six 
major factors. The main uses and focus of the model are identified 
including: whether it is used to evaluate data needs (e.g. specific 
types of data or specific data collection programs); whether it has a 
single-stock, multispecies, mixed fishery or ecosystem orientation; 
and whether it provides economic and social advice (main coverage 
of use). Several models do include some social parameters such as 
employment and distribution of impacts across fishing fleets and 
among vessel owners and crew. Most models include only economic 
parameters but may be used to evaluate the implications of ma
nagement changes on broader social concerns such as security of re-
source supply to regional or local community industry. Bio-economic 
models may also proxy for family status or tradition by modifications 
to parameters affecting fishing trip duration or fishing effort allo-
cation. The matrix table specifies what governance body and level 
each model are meant to provide advice to (e.g. a specific country, 
ICES, EU, Australian or North American regional management bo
dies) and the degree to which advice from the model has been im-
plemented (management advice). The matrix table indicates whether 
a paper based on the model has been published in a peer-reviewed 
journal or only a report or internal agency/department documents, 
and whether it has been frequently cited. The age of the model is 
shown along with the level of model development (e.g. is it only for 

advance users, is there a big multiuser development group, is there a 
website for the model?). This covers the level of model development, 
application and implementation. Finally, trade-offs in model use are 
noted according to whether the model is simple or complex, whether 
it is specialized or flexible, and whether the model is usable only by 
model developers or is open access and user friendly. In the Table 
S3, further details and descriptions of the different categories in the 
matrix table are provided.

2.6 | Spider web charts with frequency 
classification of the models

A set of semi-quantitative spider web plots (Figures 2–7) is produced 
based on the compiled model summary and descriptor tables. Here, 
each of the rows or columns in the summary tables is depicted in 
spider web plots in which the frequency of models belonging to a 
certain category with respect to model properties, characteristics 
or type of model can be summarized according to criteria used for 
evaluating the models. The frequency plots are used to compare the 
focus and capability of the different models and what main direc-
tions of development the different models represent. For example, 
the figures summarize the findings in terms of the level of imple-
mentation of the models according to the purpose of the models, for 
example whether it is for academic purposes, application in advice 
and management, and whether the model is fully developed and in-
tegrated or not.

No Model abbreviation Model publication

25 FLBEIA Garcia, Santurtun, Prellezo, Sanchez, & Andres, 2012; Garcia, Urtizberra, Diez, Gil, & Marchal, 2013; García, 
Prellezo, et al., 2016; García, Sanchez, Prellezo, Urtizberea, Andres 2016; Jardim et al., 2013; Prellezo et al., 
2016.

26 FCUBE ICES 2006, 2014a,b; Hoff et al., 2010; Ulrich et al., 2011, 2017; Iriondo et al., 2012; Maravelias, Damalas, Ulrich, 
Katsanevakis, & Hoff, 2012; Jardim et al., 2013; EU STECF, 2015b; ICES 2015c,d.

27 GBFWCGE Seung 2006; Steele et al., 2007; Pan, Failler, & Floros, 2007;.

28 BALTIC ATL Fulton et al., 2011; Palacz et al., 2014, 2015, In Revision; Nielsen, Thunberg, et al., 2015; Nielsen et al., 2015b; 
Nielsen, Palacz, et al., 2015.

29 CA CURRENT ATL Kaplan et al., 2009, 2012, 2014; Fulton et al., 2011; Kaplan & Leonard, 2012;.

30 SE AUS ATL Fulton et al., 2011; van Putten, Gorton, Fulton, Thebaud 2013; van Putten, Deng, et al., 2013; Fulton et al., 
2014;.

31 SS-DBEM-IOT Fernandes et al., 2013; Fernandes, Kay, et al., 2016; Fernandes, Papathanasopoulou, et al., 2016; Queirós et al., 
2015.

32 GEM Ravn-Jonsen 2011; Andersen, Brander, Ravn-Jonsen 2014; Andersen, Andersen, Mardle 2014; Ravn-Jonsen 
et al., 2016.

33 PERU EwE Polovina 1984; Christensen & Pauly, 1992; Christensen & Walters, 2004; Walters and Martell 2004; Walters 
and Christensen 2007; Walters et al., 1997, 1999, 2000; Christensen et al., 2011, 2014; Bevilacqua, Carvalho, 
Angelini, Steenbeek, & Christensen, In prep.

34 B SEA EwE Polovina 1984; Christensen & Pauly, 1992; Christensen & Walters, 2004; Walters and Martell 2004; Walters 
and Christensen 2007; Walters et al., 1997, 1999, 2000; Tomczak et al., 2012, 2013.

35 N SEA EwE Polovina 1984; Christensen & Pauly, 1992; Christensen & Walters, 2004; Walters and Martell 2004; Walters 
and Christensen 2007; Walters et al., 1997, 1999, 2000; Plagányi and Butterworth 2004; Mackinson, 2014; 
Mackinson & Daskalov, 2007; Mackinson, Deas, Beveridge, & Casey, 2009; Heymans, Mackinson, Sumaila, 
Dyck, & Little, 2011; ICES 2011; Romagnoni et al., 2015; Colléter et al., 2015.

TABLE  2  (Continued)
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3  | RESULTS

The results of the global review cover a comparative evaluation of 
35 IEEFMs (Tables 1–2, Figure 1). The selected models represent a 
broad range of IEEFMs, but all address commercial fisheries and as-
sociated fish stocks. The metadata collected for each model provided 
information on capabilities, model structure, trade-offs and model 
uses. Throughout it is important to keep in mind that the evaluations 
of model characteristics are primarily based on self-assessments 
provided by the modellers themselves. In this section, we present 
summary information for these self-assessments across all models on 
each of these aforementioned dimensions. Throughout we use the 
model abbreviations noted in Tables 1-2. The geographical distribu-
tion of model implementation is shown in Figure 1. Several models 
have been widely implemented, for example Atlantis and EwE, 
and only a few examples of specific implementations are shown in 
Figure 1. Some of the 35 models analysed are included with several 

implementations and similar models have been clustered (Tables 1–
2) resulting in 32 categories in the model meta-analysis plots in 
Figures 2-8. The order and sequence of the models in Tables 1–2 
and accordingly in the Figures 2–8 was determined by type of ad-
vice addressed and units included in the models (data collection, 
single-stock, multispecies, mixed fishery, bio-economics, ecosystem; 
Figure 2 Panel 3) as well as according to completeness and integra-
tion of modules (biological such as single-/multispecies only, single-
stock economic, multispecies economic, multispecies ecosystem/
economic; Figure 2 Panel 4).

Figure 2 reports the range of capabilities in terms of type of man-
agement advice from short to long term (Panel 1) and input/output 
type of advice (Panel 2), structural components in terms of advice level 
(Panel 3) and structural modules and linkages included in the models 
(Panel 4).

Panel 1 shows the management advice capabilities as concentric 
rings where the innermost ring represents models that may be used 

F IGURE  2 Model capabilities Panel 1—model design capabilities to provide short-term tactical, medium-term MSE or long-term strategic 
advice; Panel 2—model capability to provide management advice on setting TACs, effort limits, ITE and ITQ; Panel 3—model structural 
characteristics in terms of advice on data collection, stocks, fleets, economic and ecosystem components; Panel 4—model use index in terms of 
included modules and their linkages for biology (stocks), economic and ecosystems
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to provide short-term advice on TACs or impacts, and the outer ring 
represents models that are designed to provide long-term strategic 
advice. For any given model, the range of capabilities can be traced 

along the ray emanating from the origin to the model abbreviation 
where a marker on each ring denotes the presence of each capability 
(short-term tactical advice (1), medium-term MSE advice (2) and 

F IGURE  3 Model characteristics Panel 1—model fishing fleet characteristics (entire fishery, métiers or agent-based); Panel 2—model spatial 
resolution characteristics (VMS track, subarea, stock area, regions, or ecosystem); Panel 3—model biological characteristics (age-structured, 
size-structured, or biomass); Panel 4—model time step (season, year, multiyear); Panel 5—model characteristics in terms of static, dynamic or 
equilibrium with respect to coupling; Panel 6—model characteristics in terms of simulation and/or optimization algorithms
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long-term strategic advice (3). For example, 15 models include the 
capability to provide short-term, medium-term MSE and longer-term 
strategic advice. By contrast, MAQ-ADJ and GEM are designed only 

for long-term strategic advice. However, these two models are the 
exception as all other models are constructed to provide multiple ad-
visory capabilities.

F IGURE  4 Model characteristics Panel 1—fishing sector components (catch sector, fishery system including processing and distribution, 
communities, and multiple sectors of a local or regional economy); Panel 2—estimation of model parameters (qualitative indicators, deterministic 
or stochastic parameters), Panel 3—model characteristics in terms of use of market prices, consideration of the value chain and inclusion of non-
market values; Panel 4—type of embedded interactions (linear, nonlinear or both); Panel 5—nature of embedded economic behavioural model 
(tactical, strategic or no behavioural module); Panel 6—included functions (recruitment, catchability, fish prices and harvest costs)
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Panel 2 of Figure 2 shows structural components of the model 
capability with respect to type of advice provided by the model. As 
was the case for Panel 1, markers on each concentric ring denote the 
presence of each of four components such as output advice on TAC 
and quota (1), input effort advice (2), individual tradeable effort quota 
advice (3) or individual transferable quota advice (4). Most models pro-
vide TAC-Quota advice (22 models). Three models provide advice on 
all four levels. Another three models provide advice on three levels, 
while eight provide both TAC-quota and effort-based advice, but no 
advice relevant to individual effort or catch quotas. In total, three 
models provide only individual-based advice covering both output 
(ITQ) and input (ITE) advice, two models provide only ITQ advice, and 
one model provides only ITE advice. Finally, one model provides only 
effort-based advice.

Panel 3 of Figure 2 shows the structural components included in 
each model in terms of advice level. Markers on each concentric ring 
denote the presence of each of six components with advice on data 
collection level (1) single-stock level (2), multispecies level (3), mixed 

fishery level (4), bio-economic level (5) and ecosystem level (6). With 
a few exceptions, single-species models can be scaled up to multispe-
cies, although this does not necessarily mean that the opposite is also 
true. In total, 28 models include multispecies, 25 include mixed fish- 
eries, 34 include bio-economic functions or parameters, and nine 
include ecosystem considerations. All nine models that include eco-
systems also include mixed fisheries, bio-economic and multispecies 
structural components except for one not including mixed fisheries. 
The Atlantis model does include the capacity to cover individual spe-
cies and to have that in a food web with functional groups (either 
age or size resolved or biomass pools). The ECO2 has the potential 
to formulate simple biological models at present up to full ecosystem 
models in future. The term multispecies here should in most cases 
(except for the below mentioned) be interpreted as multistock where 
several species single-stock assessments have been included. Only 
very few models include dynamic full feedback biological/trophic 
interactions and/or estimate fish natural mortality (mortality due to 
natural causes) as function of, for example, predation pressure. Such 

F IGURE  5 Model trade-offs Panel 1—expertise required to conduct model runs (developer, specialized expertise or training, or general 
expertise); Panel 2—model applications (specialized, simple or flexible); Panel 3—model accessibility to end users (software required, open access 
and user-friendliness); Panel 4—relationship between model complexity and data needs (simple with low data needs, simple with high data needs 
and complex with high data needs)
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F IGURE  6  : Summary of model use 
Panel 1—model implementation (none, 
low, medium, high); Panel 2—academic use 
(models that only have technical reports, 
models that have been published in the 
peer-reviewed literature and models that 
have been widely cited), Panel 3—level of 
advice for models (National, EU, National 
and EU, EU and ICES, National, EU and 
ICES)
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explicit modelling of biological interactions is only performed by a 
few ecosystem and multispecies-interaction models such as Atlantis, 
EwE, SS-DBEM-IOT, GBFWCGE, Baltic-FLR-SMS and the Baltic-Econ-
Ecol models. The GEM explicit models a bio-energetic budget of the 
individual predator and thereby links somatic growth with the preda-
tion mortality inflicted on its prey.

Panel 4 of Figure 2 provides a score for structural linkages in terms 
of single or multispecies, bio-economics and ecosystem. In this case, 
the position of each model on the concentric circles is interpreted 
as the level of structural linkage where a score of 1 means that the 
model only includes single or multiple species; the model has neither 
bio-economic nor ecosystem linkages. A score of 2 denotes a single-
species model that is linked with bio-economics. The majority of 
models (17) had a score of 3, which denotes models that include multi-
species and bio-economics linkages. Models that include multispecies, 
bio-economic and ecosystem linkages (9) were scored a 4.

Model characteristics are reported in Figure 3 in terms of fishing 
fleet (Panel 1), spatial resolution and/or coverage of advice (Panel 2), 
biological characteristics (Panel 3), time step and/or coverage in advice 
(Panel 4), dynamics (Panel 5) and algorithm used to produce model 
outputs (Panel 6). In each panel, concentric rings with markers indicate 
the presence of a specific model characteristic.

Panel 1 of Figure 3 shows the different ways models incorporate 
fishing fleets where the treatment of fleets in each model can be as-
certained along the ray from the origin to the model abbreviation. 
Nearly all models incorporate full fishing fleets, while 24 models in-
corporate multiple métiers and only two incorporate exclusively single 
métier. Only three models (DISPLACE, IAM and ELFSIM) capture fish-
ing fleets as individual vessels.

Panel 2 of Figure 3 reports the spatial resolution and coverage in 
advice supported by each model where the resolution for each model 
(ecosystem (1), region (2), stock areas (3), stock subareas (4) and VMS 
track (5)) is denoted by a marker in each concentric circle. Ecosystem 
is a more complex but spatial coarse resolution than VMS track. Only 
DISPLACE includes a spatial resolution at the level of VMS track. Note 

that DISPLACE may also be applied at a stock area or regional spatial 
resolution. Twelve models have a spatial resolution needed to evaluate 
stock subareas, of which 11 can be scaled up to a stock area. Nine mod-
els (all Atlantis and EwE applications, GBFWCGE, SS-DBEM-IOT, GEM) 
support an ecosystem spatial resolution, although all but GEM and the 
EwE applications are scalable to a region, stock or stock area. ISIS-FISH 
is scalable to a region, stock or stock subarea. This classification of the 
models enables the user to distinguish whether the models are spa-
tially explicit or not, that is do they only cover one area (region, or stock 
distribution area, or fishery area, or ecosystem) or do they contain and 
cover several areas and spatial units (stock subareas, ecosystem sub-
areas, other spatial distinction such as ICES subareas, statistical rect-
angles) or do they follow very high spatial resolution on a haul to haul 
basis (or similar) or on an agent-based level when for example using 
VMS data.

Panel 3 of Figure 3 shows the biological characteristics (biomass, 
e.g., production models (1), size-based (2), and age-based, for example 
virtual population analysis (VPA) (3)) embedded in each model. In the 
majority of models (21), stock dynamics were of the age-based VPA 
type. Of these age-based models, 10 models (CRAB ABC, DISPLACE, 
ISIS-FISH, NECLH, ELFSIM, NECLH, MEFISTO; NPFTBEM, SS-DBEM-
IOT and GEM) also include size-based biological considerations. It 
should be noted that certain ecosystem models such as the Atlantis 
model has emergent size-at-age, that is not a fixed growth curve, so 
it also takes size-based interactions into account (e.g. through gape 
limitation and size constrained reproduction). Whether age-based or 
size-based, most of these models are scalable up to an estimate of 
biomass. Age-based models like DISPLACE, Baltic-FLR-SMS, IAM, 
NECLH, MEFISTO, Baltic-Econ-Ecol and GEM certainly do include bio-
mass estimation. Seven of the models included in this study (MSPM, 
MAQ-ADJ, EIAA, BEMEF, ECO2, FISHRENT IFRO and SRRMCF) are 
production models, for example of the Schaeffer or Cobb–Douglas 
type, based solely on biomass.

Panel 4 of Figure 3 reports the time steps and time resolution 
and/or temporal coverage in advice for each model as seasonal (e.g. 

F IGURE  7 Effect of model accessibility 
and required expertise on model 
implementation
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less than an annual time step) (1), a year (2) or multiyear (3) time 
period, where the time step capability is indicated by a mark on 
each concentric circle. All but five of the IEEFMs are annually based, 
that is with yearly time steps and coverage, and many (20) of those 
operate with multiannual aspects. More than half (18) of the models 
are seasonally explicit as well indicating general high time resolution. 
Several of the models that can be run and provide advisory output 
for a year or multiple years have finer scale time steps/resolution in 
their modelling process, for example Atlantis can be run with 12- to 
24-hour time steps that is then run out to year or multiple years. In 
total, 20 models can be run for multiple years, 27 models can be run 
on an annual basis and 18 on a seasonal basis. MSPM is an annual 
model but can be run over multiple years while FLBEIA, as well as 
several others (eight models), includes season, annual and multiyear 
modelling capabilities.

Panel 5 of Figure 3 identifies model performance in terms of whether 
the processes considered are static (1), equilibrium (2) or dynamic (3). 
The majority of models (26) incorporate dynamic processes while 3 
(MSPM, STOCH HCR and FISHRENT IFRO) also incorporate processes 
based on equilibrium conditions. Only two models (BALTIC ECON-
ECOL and GBFWCGE) have processes exclusively based on equilibrium 
conditions. ISIS-FISH has elements of both static and dynamic processes 
while EIAA, BEMEF, SS-DBEM-IOT and SRRMCF are static models.

Panel 6 of Figure 3 indicates the types of algorithms used to pro-
duce model outputs. A marker on the inner ring (1) means that the 
model uses a simulation algorithm. A marker on the second ring (2) 
denotes models that are based on an optimization algorithm, and a 
maker on the outer ring (3) indicates models that incorporate both, 
simulation and optimization algorithms. Less than half of the models 
(14) are simulation models, 2 are strict optimization models, while the 
last half (16) incorporate both types of algorithms.

Figure 4 reports additional model characteristics of the IEEFMs 
with focus on economic characteristics and sector coverage.

Panel 1 of Figure 4 explores fishing sector components in the 
model coverage categorized into catch sector (1), fishery system in-
cluding processing and distribution (2), societal communities (3) and 
multiple sectors of a local or regional economy (4). All models address 
the catch sector and of those 21 also address the wider fishery system 
and 8 also address communities. Only two models (GBFWCGE and 
SS-DBEM-IOT) cover multiple sectors.

Panel 2 of Figure 4 evaluates the estimation of model parame-
ters covering qualitative indicators (1), deterministic parameters (2) 
or stochastic (3). Most models (25) include deterministic parameters, 
while 12 of the 25 also include stochastic parameter estimation. A few 
models include both qualitative indicators and stochastic parameter 
estimation (3) or deterministic parameters (1) while only five mo
dels include exclusively stochastic parameter estimation (MAC-ADJ, 
STOCH HCR, DISPLACE, BALTIC FLR-SMS and ELFSIM).

Panel 3 of Figure 4 shows model characteristics in terms of use of 
market prices/values (1), consideration of the value chain (2) and inclu-
sion of non-market values (3). All models, except the MSPM, include 
market values, while six also consider the value chain and two include 
both market and non-market values.

Panel 4 of Figure 4 explores the type of embedded interactions 
covering linear (1), nonlinear (2) or both (3). Most models (23) include 
nonlinear interactions, while eight include both. Only one model in-
cluded only linear interactions.

Panel 5 of Figure 4 investigates the nature of the embedded eco-
nomic behavioural model covering no behavioural module (1), a stra-
tegic module (2) or a tactical module (3) included. Most models include 
tactical modules (21) and of those nine include also strategic modules. 
Only four models include only strategic behaviour, and five models 
have no behavioural module included (Crab ABC, MSPM, SRRMCF, 
NPF BIOECON and FCUBE).

Panel 6 of Figure 4 explores some basic functions included in 
the models in relation to recruitment (1), catchability (2), fish prices 
(3) and the harvest costs (4). Most models include indicators and 
parameters for recruitment, catchability, costs and prices. Some 
models have those indicators included as endogenous relationships, 
other models use exogenous relationships for those indicators, 
while other models include linear or nonlinear interactions for those 
parameters.

Models typically require trade-offs that need to be made that can 
affect how the model may be applied to address a management ques-
tion. Some of the key trade-offs among models that were evaluated 
for this study are reported in Figure 5. Some of these trade-offs in-
clude the expertise required to conduct analyses (Panel 1), range of 
applications and degree of specialization (Panel 2), accessibility to end 
users (Panel 3) and the relationship between model complexity and 
data needs (Panel 4).

A marker in the inner ring (1) of Figure 5, Panel 1 denotes models 
where analyses or model runs need to be conducted by the model 
developer. There are 15 models that fall into this category. A marker in 
the second ring (2) of Panel 1 means that analyses do not necessarily 
need to be conducted by the model developer but require specialized 
expertise or significant training before obtaining proficiency in using 
the model. Fourteen models require specialized expertise. The outer 
ring (3) denotes models that can be used with some training but can 
be used by individuals with general expertise. These models include 
FLBEIA and MEFISTO.

Panel 2 of Figure 5 reports trade-offs along a continuum from 
specialized to flexible in terms of possible uses and management 
applications the model can address. With very few exceptions, all 
models were self-assessed as being complex. For this reason, com-
plexity was not included in Panel 2 since doing so would not provide 
any meaningful information for the purpose of model comparisons. 
A marker in the inner ring (1) indicates models that have been devel-
oped to address a specialized fishery or specific application for special 
management issues. These models (7) include CRAB ABC, IMATSTRL, 
BALTIC ECON-ECOL, NPFTPBEM, SS-DBEM-IOT, MEFISTO and 
PERU EwE. Two models (NECLH and STOCH HCR) are placed on 
the second ring, which denotes simple models, that is less complex 
models with an intermediate level of application with respect to ap-
plication and management issues that can be addressed, that is be-
tween the specialized/specific application and the capability of general 
application addressing several management issues. All other models 
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lie on the outer ring (3), which denotes models that may be applied 
in a wide range of fisheries and/or to address many different man-
agement issues.

Panel 3 of Figure 5 reports accessibility trade-offs. A marker on 
the inner ring (1) of Panel 3 denotes models that would require user to 
obtain or purchase specialized or proprietary software prior to using 
the model. Many models belong to this category (10). A marker on the 
second ring means that the model has, on the contrary, been made 
available as open access which is the case for 22 of the models. In a 
few (5) of these cases, access has been provided as a free download 
from a website, and sometimes there is also an elaborated user manual 
available at the public website. In this case, the model has a marker 
in the third ring (3). A marker on the outer ring (4) denotes models 
that also are both open access and user friendly. These models include 
BEMEF, ISIS-FISH, MEFISTO and the EwE applications.

Panel 4 of Figure 5 shows the relationship between model com-
plexity and data needs where simple with low data needs are placed 
on the inner ring (1), simple with high data needs on the centre ring 
(2) and complex with high data needs situated on the outer ring (3). 
By far, the majority of models are highly complex with high data 
needs (23), while two are in the second category and seven in the 
first category.

An important consideration in the present model evaluation is 
whether and how models are used. Model use may be conditional 
on the stage of model implementation. In some cases, they are only 
used in an academic setting to further develop or improve modelling 
capabilities. In other cases, they are used (or intended to be used) to 
provide advice to different levels of management organizations. In the 
SM Table S3, a Model Use and Trade-Off Summary Table is given with 
an overview of all IEEFMs evaluated according to main use and types 
of use, as well as major trade-offs in relation to the use. Based among 
other on this table, the Figure 6 gives an overview and reports model 
comparisons on each of the dimensions of model use: model imple-
mentation (Panel 1), academic use (Panel 2) and management advice 
level and organizations (Panel 3).

Panel 1 of Figure 6 provides an ordinal rating of each model in 
terms of level of implementation from models that have been de
veloped but have not been applied to any specific issue (1) to levels of 
low (2), medium (3) and high (4) implementation. Models that have a 
high level of implementation include EIAA, IMATSTRL, STOCH HCR, 
ISIS-FISH, ELFSIM, NPFTPBEM, FLBEIA, FCUBE, SEAUS ATL, SS-
DBEM-IOT and the EwE applications (in total 13). By contrast, mod-
els that have not yet been implemented include CRAB ACID, BALTIC 
ECON-ECOL, NPF BIOECON, GBFWCGE and BALTIC ATL (5). All 
other models were rated as either a low or medium level of implemen-
tation with seven models in each of those main ratings.

Panel 2 of Figure 6 is an ordinal rating of each model in terms of 
academic dissemination and use. Models where a technical report has 
been prepared but not through the peer-reviewed literature are de-
noted as 1, models that have been published in peer-reviewed journals 
are denoted as 2, and peer-reviewed models that have been frequently 
cited are denoted as 3. Both BALT ATL and BEMEF provide techni-
cal reports but have not appeared in the peer-reviewed literature; 

however, a paper has been submitted on the first. Eight models have 
been frequently cited in peer-reviewed academic journals. These fre-
quently cited models include IMATSTRL, ISIS-FISH, ELFSIM, FCUBE, 
SS-DBEM-IOT, GEM and EwE (8). All other models (22) have been 
documented in peer-reviewed literature.

Panel 3 of Figure 6 reports the advice level and types of manage-
ment organizations for which each model is designed to provide ad-
vice. Here, we limit our focus to models that have been developed 
to provide advice to European management institutions. For report-
ing purposes, we assign a 1 to models that seek to provide advice to 
management organizations in a single nation. We assign a 2 to models 
that may provide advice to EU nations or management institutions. 
A 3 is assigned to models that address both single nation and EU ad-
vice; a 4 is assigned to models that may provide advice to both the EU 
and to ICES; a 5 is assigned to models that provide advice to National 
management bodies, the EU and ICES. Seven models (MSPM, ECO2, 
SRRMCF, NECLH, NPFTPBEM, NPF BIOECON and GBFWCGE) have 
been designed to only provide advice to National management bodies 
which cover to high extent non-EU models. Three models (MAQ-ADJ, 
STOCH HCR and BALTIC ECON-ECOL) address EU management con-
cerns alone, while EIAA and MEFISTO address both EU and National 
management institutions. The BALTIC ATL and SS-DBEM-IOT address 
both EU and ICES management concerns, and all other models (11) 
are designed to provide advice to management bodies at the National, 
EU and ICES levels.

The use of a model is dependent on the combinations and trade-
offs in relation to model implementation (experience with the model), 
model expertise needed to use the model and the accessibility of the 
model to users. Figure 7 illustrates the integrated categorization of the 
models according to those three criteria and evaluates the effect of 
model accessibility and required expertise on model implementation. 
The levels of categorization of the rings in the spider web chart include 
0: none, 1: low, 2: medium and 3: high. There are no strong or general 
trends observed; however, there is a tendency towards higher imple-
mentation when accessibility is higher and when complexity and ex-
pertise requirements are moderate. Also, there is a trade-off in model 
use and level of implementation with the age of the models which is 
analysed in Figure 8. It appears that all models with no implementa-
tion have an age of 5 years or less, and most of the models with low 
or medium implementation are also “young” models with an age of 
5 years or less. However, a relatively high proportion of models with 
high implementation also have a low age of 5 years or less, but in this 
category, the sum of models with higher age of 6-10 and 11-15 years 
is higher than young models.

4  | DISCUSSION AND CONCLUSIONS

This study compares and contrasts 35 IEEFMs with a wide diversity 
of characteristics and uses. This diversity reflects recognition by mo
dellers that no single model approach, structure or orientation is ap-
propriate for all needs. This requires modellers to make trade-offs to 
best meet the needs of the intended uses and users for each model. 
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Our aim is to help managers and scientists better understand how 
and why the characteristics of IEEFMs vary so much, what trade-offs 
modellers face, and what they have learned from developing and 
communicating these models. The documentation of the character-
istics of the specific models, the development of the methods and 
specific tools to evaluate and categorize model characteristics, and 
what the model developers see as the model strengths capabilities 
and limitations also provide potential users and other modellers with 
information about how models (and modellers) may be useful to them 
either to provide management advice or in developing new models. 
Accordingly, we can help managers and scientists choosing the most 
appropriate models for their specific systems, advisory and manage-
ment needs, and questions to be addressed. Given previous experi-
ences and expert knowledge, we can provide methods and insights 
on what aspects of models to be aware of and implementation issues 
of the models.

This meta-analysis, based on self-assessments by model develop-
ers, compiles the experience of many different modellers. We found 
that it was important to collect metadata from model developers 
rather than just use a “standard literature review” because many of 
the above questions can only be answered with the insight the model 
developers have on their own models. However, responses compiled 
in the developed meta-analysis tools depend on modellers’ perceived 
ideas and insight, for example complexity of a model depends partially 
on the eye of the beholder. For this reason, it is important to have 
the same type of people (in this case model developers) filling in the 
matrices and summary tables. At the same time, it has been import-
ant to have a balanced group evaluating the models with participation 
of economists, biologists, ecologists, theoretical people and people 
working with applied advice and model implementation. The present 
group of model developers represents such a balanced group, and it 
has been very useful to have group discussions during working group 
and conference meetings among scientists of different fields in the 
present evaluation.

4.1  | GENERAL CHARACTERISTICS OF THE 
EVALUATED IEEFMS OBTAINED FROM THE 
META-ANALYSIS

Most of the models reviewed are case-specific—designed or at least 
parameterized for specific fisheries and areas and sometimes to ad-
dress specific management questions. However, a number of models 
are based on more generic modelling platforms but are parameter-
ized for particular areas and fisheries and may also focus on different 
operating models within the more general models (e.g. various ap-
plications of the Atlantis and EwE ecosystem models). Most models 
reviewed provide short-term (tactical) advice and medium-term man-
agement strategy evaluation (MSE), while only about half provide both 
short-term and medium-term advice, as well as medium-term MSE. In 
many situations, adequate detailed ecosystem data and/or long-term 
time-series data are not available to obtain adequate precision to pro-
vide robust parameters for short-term advice with these models. This 
is particularly true for the more complex models with multiple species 
or fine-scale spatial dynamics. However, nearly all models can provide 
long-term strategic advice.

Most models were classified as multistock (multispecies) and 
mixed fisheries models having modules that also considered economics in  
relation to fisheries (métiers). Most of these models are actually mul-
tistock models, that is considering several stocks in a mixed fish-
eries context with technical interactions between fleets, but not 
multispecies in the sense that they integrate biological interactions, 
for example predation, between the different fish stocks, or eco
system interactions. Only a few IEEFMs include biological interac-
tions, for example actual fish multispecies prey–predator interactions, 
and/or trophic dynamics and interactions (the Atlantis and EwE  
applications, SS-DBEM-IOT, GBFWCGE, Baltic-FLR-SMS, Baltic-
Econ-Ecol and the GEM models). All models contain biological– 
economic interactions with respect to stocks and fisheries, except the 
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MSPM which is an example of a stock production model where the 
economic module is not yet implemented, while only very few models 
(2) are also multisector, that is include non-fishery sectors to allow for 
marine spatial planning (MSP). The focus on multistock models and bi-
ological–economic interaction reflects broad interest in understanding 
the technical interactions that connect fisheries. This is in large part 
driven by concerns about by-catch and discarding that have been an 
important policy focus in recent years, particularly in Europe. Although 
the importance of understanding ecological interactions is clearly rec-
ognized, parameterizing these models accurately in a way that enables 
provision of tactical advice is often still not possible, and the end-to-
end ecosystem models that have been developed tend to be focused 
on longer-term strategic advice.

In relation to model dimensions and scales, the majority of mo
dels only operate with one geographical area and unit, that is they are 
not spatially explicit. Some models operate with several areas such as 
stock or ecosystem subareas or management and advisory subregions, 
while only a few models are agent-based operating at very high spa-
tial (and time) resolution. Modelling spatial dynamics at a fine scale 
not only greatly increases model complexity, but it also requires data 
on ecological and human processes that is often lacking or patchy. 
Management advice also still tends to focus on removals at the stock 
level. However, the increasing amount of use conflicts in marine areas, 
not just between fisheries, but between other uses such as electricity 
production, aquaculture and marine transport will continue to create 
interest in developing more spatially explicit models.

Most models are age-based or both age-  and size-based, while 
only a very few are exclusively size-based. The broader ecosystem 
models usually operate with age disaggregation for the vertebrates 
(fish, sea mammals and birds; higher trophic levels), but not for the 
invertebrates and lower trophic levels. Age- and size-structure models 
are the standard for full analytical stock assessments, the data and 
information to parameterize age or size-structured models are often 
available, and age or size-structured bio-economic models are neces-
sary to provide advice comparable to that of the full analytical stock 
assessments. Also, as management is often focused on issues of by-
catch and discarding of juveniles, age and size-structure models are 
often necessary to address key management questions.

With respect to the types of processes (and functions) considered 
in the IEEFMs most models incorporate dynamic processes, while only 
a few were static models. Most models operate with costs, prices, 
catchability and recruitment as exogenous variables or functions. Only 
a few models include equilibrium processes. About half of the models 
include both simulation and optimization routines with respect to 
estimation of output parameters, while only very few are exclusively 
optimization models. The rest are pure simulation models. Among the 
models that include simulation and optimization routines, most opti-
mize over fishing effort (to maximize profit or minimize costs), while 
ecosystem and multispecies biological interactions are simulated. This 
is due to the fact that the complexity of biological interactions and 
ecosystem dynamics does not lend itself to optimization. Most eco-
system and multispecies models are either equilibrium or simulation 
models where different scenarios of different factors (climate change, 

eutrophication pressure levels and/or fishing pressure levels on var-
ious fish species, etc.) can be evaluated through “what if” scenario 
evaluation.

Most models provide only deterministic quantitative estimates; 
however, a few provide output parameters with confidence limits and 
uncertainty indicated. Given their role in decision support for manage-
ment, it is essential to know how the models incorporate uncertainty, 
for example uncertainty from a distribution range of output from 
multiple simulations, stochastic variables, deterministic processes or 
variables modelled as random processes. Communicating uncertainty 
is clearly important, but also a major challenge. It may increase the 
complexity and computational needs of models (e.g. requiring hun-
dreds of stochastic runs). Modellers also may lack information on the 
correlation of stochastic processes in different model components 
even when they have good information on variation of individual pro-
cesses. Even when modellers can provide estimates of uncertainty, 
users often focus on the mean or median results. It can be difficult 
to convey whether or how decisions should be adjusted to reflect 
uncertainty and doing so is often the place of the managers not the 
modeller.

With respect to model development, complexity, user-friendliness 
and flexibility, for example to what extent the models are easily used 
and informative for policymakers and stakeholders (i.e. industry, 
NGOs, other interest groups, science, managers)—nearly half of the 
models require analyses to be performed by the developer (due to dif-
ficulty of model use). The remainder of the models (with the exception 
of two models which may be operated with general expertise) could be 
analysed by someone other than the developer, but that person would 
require specialized training or expertise. Only four IEEFM models 
are characterized as user friendly. The majority of models were de-
veloped using open access software but a few have specific software 
requirements. Most IEEFMs are characterized as flexible, and only 
few of the models are specialized, and very few are considered to be 
simple. Most models have high data needs, which adds to complexity 
of implementation and the need for a higher level expertise to use 
them. This complexity and lack of user-friendliness almost certainly 
limits the use of many models unless modellers are able to actively 
engage with users of the model information. However, developing 
user-friendly interfaces for models can be costly and many modellers 
do not have those skills.

Somewhat fewer than half of the IEEFMs have achieved a high 
level of implementation, that is several cases of implementation 
and direct use in fisheries management advice. A similar proportion 
has a medium or low level of implementation in advice, while only a 
few models have no implementation at all, that is only scientific de
velopment. For many of the implemented models, the targeted advice 
has been broader regional, ICES or EU, while only a few models have 
targeted only national advice. The latter models have typically been 
implemented in single jurisdiction systems, such as United States, 
Canada or Australia. Most of the IEEFMs are published in scientific 
peer-reviewed journals; however, only about a fourth of the mo
dels have frequent citations. A few models have their own websites 
that are frequently used and sometimes involve model download. 
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According to the above results of the meta-analysis, there are several 
examples of IEEFMs that have been successful according to purpose, 
because the models have been used in real advice and management 
decision, and they have been picked up by people other than the 
original developer.

4.2  | MAIN CONSIDERATIONS, TRADE-
OFFS AND INSIGHTS GAINED FROM 
DISCUSSIONS OF THE META-ANALYSES 
AT CONFERENCE THEME SESSIONS AND 
WORKING GROUP MEETINGS CONCERNING 
MODEL IMPLEMENTATION AND USE

The above meta-analysis suggests a number of factors that determine 
the usefulness of models in providing management advice and con-
sequently the degree to which model advice informs and influences 
management decisions. Some of these suggest trade-offs for model-
lers to consider.

In general, it is important to determine and assess the context of 
the use of the model in order to have a well-defined problem before 
designing and/or implementing a model, that is what management 
objectives, purposes and decisions are to be addressed and informed 
in the application of the model, or whether the model only intended 
for theoretical (academic) use. Here, there is a trade-off between suc-
cessful implementation of a model and the previous effort put into an
alysis of the context the model should be used in. The efforts needed 
for application of the model and the expected outcomes need to be 
considered and balanced with the political and management advisory 
needs and economic importance of the advice in order to be cost effi-
cient because implementation of models is very resource demanding. 
Similarly, it is necessary to define and formulate quantifiable objectives 
and make these a priority which the IEEFMs directly can address. The 
key to dissemination and transmission has often been advisory work-
ing groups and bodies, larger research projects and dedicated training 
courses where a broader range of model experts have participated. In 
most cases, the developers are involved in providing technical support 
and in the formal use of the model. Expanded use of model websites 
and platforms show that model developers can more efficiently 
communicate their work and models through cooperation with visual 
communications experts and graphic designers and by participating in 
communications trainings.

More complex models may be able to account for interconnected 
ecological and economic processes and provide more nuanced advice, 
but unless the modeller is involved in the management process and 
can tailor the outputs and model scenarios to meet managers’ needs, 
the model may only be used to provide general strategic advice rather 
than informing specific decisions. A simpler, user-friendly model may 
provide less nuanced advice, but if managers and stakeholders can use 
it themselves, it may have more influence on decisions. Consequently, 
there is a trade-off between the use and extent of inclusion of ecosystem 
or economic or social complexity in the IEEFMs which gives more 
nuances but also has the risk of reducing likelihood of use.

There is a trade-off between the model projection period, that is 
the time scale, in the advice or management evaluation it informs and 
the precision of the model output and advice. The data needed, the 
precision of the data, the tools used, as well as the output produced 
vary depending on whether the model deals with a strategic (what 
should be done in the long-run), versus a tactical approach (what can 
be done in the short-run). Models that provide useful tactical advice 
may need to incorporate single-species biological models comparable 
to stock assessment models and may need to incorporate techni-
cal interactions in fisheries. Models useful for strategic advice need 
to consider how ecological and economic and social processes may 
change and interact over time, but these processes may be hard to 
parameterize in ways that provide both accurate short-term predic-
tions and longer-term insights. For example, a statistically fitted stock 
assessment model may provide accurate short-term predictions, while 
an ecosystem model may be more useful for considering how the fish-
ery system will react to changes in the environment over time. This 
orientation towards tactical vs. strategic advice is particularly relevant 
with respect to human behavioural and social processes. Modellers 
face important choices about whether to try to simulate observed be-
haviour with statistically fitted models, use theoretically based models 
or specify behaviour in the model to achieve some objective (e.g. set 
effort or catch to maximize profits or to follow historical patterns of 
effort allocation). Generally, the former is most useful for models to 
be used for tactical advice, while models aimed at providing strategic 
advice and long-term insights may also take the latter approaches. The 
choice is also dependent on the management context. For example, 
does the model assume an open pool resource, effort limitations, indi-
vidual transferable quotas, or communal management, or some other 
representation. Modelling behaviour in ITQ or communal management 
regimes may require modelling strategic behaviour of fishermen and 
group dynamics, while modelling behaviour in a common pool, par-
ticularly one observed for some time, may be simpler. If the model is 
expected to make predictions when the management regime is funda-
mentally changed, statistically fitted behavioural models based on prior 
observed behaviour are likely to do a poor job of predicting behaviour 
in a new management regime, and it may be necessary to either specify 
behaviour or incorporate a theoretically based behavioural model.

It is important to use an appropriate spatial scale to match the 
biological scale and the scale of key human processes. For example, 
the management areas and units addressed in a model ideally should 
match the resource distribution areas, that is distribution of the fish 
stocks to be managed. If the management area and the model domain 
only cover parts of the stocks distribution areas, important ecological 
parameters and population dynamics may not be captured and taken 
fully into account in the models (e.g. migrations, growth and recruit-
ment in relation to spawning or feeding areas) which will bias their 
output. On the other hand, boundaries must be drawn at some point 
and enlarging them will necessarily add complexity. Modellers must 
ultimately decide whether processes external to the model domain are 
consequential enough to require modelling or can be specified rather 
than modelled directly (e.g. a certain catch or natural mortality applied 
outside the model domain).
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The uptake and use of models may depend on how flexible they 
are. While models built from scratch tailored to specific purposes may 
provide more accurate answers to the specific questions they were 
designed for, models that enable users to modify assumptions and 
processes may ultimately be more useful and can provide users the 
ability to determine the sensitivity of results to assumptions or explore 
questions not originally envisioned by the model developer. Models 
that have been around longer and are more familiar to managers are 
probably more likely to be used because they are more likely to have 
been reviewed and people have some basis for deciding whether they 
provide useful and accurate advice. The number of times the model 
has previously been implemented or brought to a policy institution as 
a decision support tool, the more likely the advice will be used because 
policymakers are comfortable with it and perhaps have had a chance 
to see whether prior advice was useful. Thus, there may be a trade-off 
between introducing a new model, even if it is an improvement, and 
sticking with or adapting an existing model.

4.3  | GLOBAL EXPERIENCES IN 
IMPLEMENTATION AND USE OF IEEFMS—
ADDITIONAL INSIGHTS FROM THE 
CONFERENCE THEME SESSION AND 
WORKING GROUP DISCUSSIONS

The effective integration of IEEFMs into the provision of management 
advice can be driven by and depend on having advisory and/or ma
nagement bodies and fora (institutional set-up) where the models can 
be used in cooperation with stakeholders. It can take time for building 
trust in these fora, for the bodies to develop and for participants to 
learn to use models effectively. For example, in the Australian fisher-
ies management and advisory system, the participatory management 
and advice between many stakeholders has been the main driver of 
the implementation of the models (Smith et al., 1999, 2001, 2014; 
Sainsbury et al., 2000; Rayns 2007). Such a system requires the es-
tablishment of appropriate facilitating legislation and comanagement 
bodies which can be a long process (5–10 years). Importantly, the 
comanagement structure or adaptive management process needs to 
be cross-sector involving a number of parties, including, conservation 
and recreational fishery sectors along with the commercial. Such a 
long-term, cross-sectoral view has been taken in the contested envi-
ronment on the Great Barrier Reef (Mapstone et al., 2008).

Effectively using IEEFMs to provide management advice can 
be enhanced by simulation tests of management plans to evaluate 
trade-offs and robustness to uncertainty, and it is important to in-
volve stakeholders in this process. In Australia, formal methods of the 
management strategy evaluation have been used to assess impacts 
of alternative sets of measures aimed to meet a variety of manage-
ment goals (Fulton et al., 2014). Involving stakeholders directly in 
management and/or advice is important because it creates incentives 
for involvement in advance and drives the need for adequate man-
agement strategy evaluation tools to address complex questions in-
volving many stakeholders and both ecological and economic aspects 

of management and advice. Thus, it is important that governance 
structures are in place for establishing processes that enable stake-
holders to participate in management strategy evaluations (see, e.g. 
Fulton et al., 2011, 2014).

The preeminent management objectives mandated by legislation 
can be important in determining whether and how IEEFMs are used 
to provide management advice, particularly for tactical management 
decisions such as set TACs each year? For example, while manage-
ment of fisheries in Australia is supported through the application 
of bio-economic models, these play virtually no role in fisheries 
management in New Zealand (Pascoe et al., 2016). This discrepancy 
is a direct result of the differing emphasis on how economic objec-
tives are achieved, with Australia targeting maximum economic yield 
(MEY), while New Zealand targets maximum sustainable yield (MSY) 
(Pascoe et al., 2016). Similar to New Zealand, fisheries management in 
Europe and USA tends to be driven primarily by biological targets and 
reference points related to MSY. Economic and social factors enter 
mostly in allocation decisions and designing management approaches 
to achieve desired catch levels. In contrast, when MEY is the objective, 
it becomes necessary to integrate human behaviour, economics and 
perhaps social factors into integrated models that can identify what 
MEY is and how it can be achieved.

When integrating models into comanagement structures and 
processes, model flexibility, transparency, portability, build-up time, 
expert knowledge of the system to model and the model interface 
available can be critical determinants of success. It seems necessary 
to concentrate more on making models flexible, more understandable 
to stakeholders, portable and more user friendly to increase the level 
of implementation and use by stakeholders in general. Here, it should 
be noted that flexibility to be implemented in different cases does not 
necessarily come with greater complexity.

Involvement of stakeholders and establishing suitable advisory and 
management structures to enhance implementation of IEEFMs may be 
particularly challenging in the EU which consists of a variety of mem-
ber countries bound together with several supra-national institutions 
(Marchal et al., 2016). The scientific management advice in the EU 
and Iceland for conservation and utilization of the resources is mainly 
conducted by scientists using IEEFMs for providing advice although 
there are informal consultations in decision-making. In contrast, there 
are mandatory and formalized consultations with stakeholders both 
in scientific advice and in decision-making in Australia, USA and New 
Zealand allowing IEEFMs to be used in an interactive and integrative 
way for providing commonly agreed advice for management. (Marchal 
et al., 2016). In USA, there have been some problems with insufficient 
trust in the management institutions or processes or a lack of trust 
between different stakeholders; in this case, integrated models will 
not evolve and not be used. It takes a long time to build up trust in 
the management structures and between the user groups in order to 
cooperate on IEEFM approaches. In a review on implementation of 
ecosystem models, Hyder et al., (2015) conclude that it is necessary 
to establish a stronger link to social and economic systems to increase 
the range of policy-related questions that the models can address, 
and it is also important to improve communication between policy 
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and modelling communities so there is a shared understanding of the 
strengths and limitations in the use of ecosystem models.

The EU and member states have invested considerable resources to 
develop various multispecies and ecosystem models for different ma-
rine ecosystems and regional seas and, in parallel, to conduct field pro-
grams advancing process knowledge on biological and trophodynamic 
interactions and the response of food webs to anthropogenic changes 
in environmental conditions. Strong evidence has accumulated across 
all EU waters for the importance of accounting for the dynamics of 
species interactions when attempting to understand and predict the 
response of fisheries resources to ecosystem change. As a result, mul-
tispecies and ecosystem models exist for all regions. For every proposal 
of a new EU fisheries regulation, the European Commission is required 
to provide an assessment of ecological, economic and social impacts of 
the regulation. Over the last decade, several impact assessments have 
been undertaken applying the available bio-economic models. In par-
ticular, in EU research projects, the models for this have been further 
developed and implemented to be able to provide the necessary tools 
for the assessments (see Supplementary Material S4 for details of im-
plementation of various IEEFMs through a row of extensive projects).

ICES has in its latest Strategic Plan (www.ices.dk;05Apr2017) ex-
plicitly requested integrated fisheries management advice and defined 
advisory needs for IEEFMs. It seems that adequate methods and re
levant advanced IEEFMs are already developed and in place to meet 
these advisory demands according to the management types used 
in ICES context. Also, relevant model developer expertise exists on 
national basis within the ICES member countries besides the global 
experiences and methods for model evaluation outlined in this paper 
which can be directly used in ICES context. Given the model evalua-
tion methods developed and the experiences outlined above it will, 
however, be necessary to formally establish integrated ICES working 
groups where economists, biologists and sociologists can interact. It 
will also be important to allow for and promote involvement of stake-
holders in using IEEFMs for management advice.

4.4  | CONCLUSIONS

Managers of marine resources must balance diverse and often com
peting interests and must make decisions about highly complex sys-
tems with limited and imprecise knowledge. IEEFMs are playing an 
increasingly important role in supporting this challenging task. They 
can provide managers with a better and more explicit understanding 
of how natural and human processes interact to influence outcomes. 
IEEFMs can provide a means to quantify the trade-offs between dif-
ferent management objectives and how benefits and costs for differ-
ent groups of stakeholders are affected by management decisions. If 
model results can be effectively conveyed to stakeholders, or prefer-
ably if stakeholder can be involved in development and use of IEEFMs, 
this can generate greater acceptance of management actions and fa-
cilitate more effective implementation.

IEEFMs represent complex systems, and modellers face trade-offs 
when attempting to limit complexity to make models more tractable 

and easier for managers and stakeholders to use. Our review suggests 
that modellers are sometimes reticent to make these trade-offs. Many 
of the models reviewed are extremely complex and are designed to 
provide both short-term tactical and long-term strategic advice on a 
range of management decisions. Many attempt to model multiple spe-
cies, sometimes with both technical and ecological interactions. This 
complexity may often be justified, but it places much greater demands 
on the modellers and the managers to use the models effectively. 
Modellers need to be willing to invest time into making models user 
friendly or be prepared to participate directly, and probably repeatedly, 
in management fora where models and model results can be explained 
and discussed. This involvement can be beneficial to all parties, leading 
both to improvement of models and more effective implementation of 
advice, but can demand substantial time and resources which must be 
built into the governance process. It may also take time to develop 
effective processes for using IEEFMs requiring a long-term commit-
ment to integrating multidisciplinary modelling advice into management 
decision-making. Given the mismatch between the time required for a 
model to become mature (6 or more years) and the funding duration 
typically available (3–4 years), there is a need for new funding schemes 
that support development of models with good documentation and 
user-friendly, open-source platforms that enable replicability and 
continuing development and adaptation of the models.

This article is a step towards developing methods and specific 
tools to evaluate model characteristics and applying a categorization 
system for these complex models. Future studies should standardize 
and detail those tools more, for example by quantifying and detail-
ing further the ranges of the different categorizations in the classes, 
for example level of implementation and the time ranges for short-, 
medium- or long-term management advice. The evaluation, discussion 
and feedback on the meta-analysis conducted in the working group, 
workshop and conference meetings in ICES and IIFET context have 
led to a more standardized way for model developers to conduct self-
assessments of their models.
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