
Accepted Manuscript

Patterns and drivers of phytoplankton phenology off SW Iberia: a phenoregion
based perspective

Lilian Anne Krug, Trevor Platt, Shubha Sathyendranath, Ana B. Barbosa

PII: S0079-6611(18)30082-X
DOI: https://doi.org/10.1016/j.pocean.2018.06.010
Reference: PROOCE 1977

To appear in: Progress in Oceanography

Received Date: 31 March 2018
Accepted Date: 25 June 2018

Please cite this article as: Anne Krug, L., Platt, T., Sathyendranath, S., Barbosa, A.B., Patterns and drivers of
phytoplankton phenology off SW Iberia: a phenoregion based perspective, Progress in Oceanography (2018), doi:
https://doi.org/10.1016/j.pocean.2018.06.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.pocean.2018.06.010
https://doi.org/10.1016/j.pocean.2018.06.010


  

 
 

1 
 

Patterns and drivers of phytoplankton phenology off SW Iberia: a phenoregion based 

perspective 

Lilian Anne Kruga *, Trevor Platt b, Shubha Sathyendranathc, Ana B. Barbosaa 

 

aUniversity of the Algarve/ Centre for Marine and Environmental Research (CIMA), Campus de 

Gambelas, 8005-139 Faro, Portugal. 

bPlymouth Marine Laboratory. Prospect Place, The Hoe, PL1 3DH, Plymouth, Devon, United 

Kingdom. 

cNational Centre for Earth Observation, Plymouth Marine Laboratory, Prospect Place, The Hoe, 

PL1 3DH, Plymouth, Devon, United Kingdom 

lakrug@ualg.pt, tplatt@dal.ca, ssat@pml.ac.uk, abarbosa@ualg.pt 

*Corresponding author. University of the Algarve, Centre for Marine and Environmental 

Research (CIMA). Campus de Gambelas, 8005-139, Faro, Portugal. Tel: +351 289 800 900 (ext 

7372), E-mail address: lakrug@ualg.pt. 

 

 

 

 

 

 

 

 

 

 



  

 
 

2 
 

Abstract 

Phytoplankton patterns, tightly linked to the dynamics of the ocean surface layer and its 
atmospheric forcing, have major impacts on ecosystem functioning and are valuable indicators 
of its response to environmental variability and change. Phytoplankton phenology and its 
underlying drivers are spatially variable, and the study of its patterns, particularly over 
heterogeneous regions, benefits from a delineation of regions with specific phenological 
properties, or phenoregions. The area Southwest off the Iberian Peninsula (SWIP, NE Atlantic) 
integrates a highly complex set of coastal and ocean domains that collectively challenge the 
understanding of regional phytoplankton phenology and related forcing mechanisms. This 
study aims to evaluate phytoplankton phenology patterns over the SWIP area, during an 18-
year period (September 1997 - August 2015), using an objective, unsupervised partition 
strategy (Hierarchical Agglomerative Clustering – HAC) based on phenological indices derived 
from satellite ocean colour data. The partition is then used to describe region-specific 
phytoplankton phenological patterns related to bloom magnitude, frequency, duration and 
timing. Region-specific variability patterns in phenological indices and their linkages with 
environmental determinants, including local ocean physical-chemical variables, hydrodynamic 
variables and large scale climate indices, were explored using Generalized Additive Models 
(GAM). HAC analyses identified five coherent phenoregions over SWIP, with distinctive 
phytoplankton phenological properties: two open ocean and three coastal regions. Over the 
open ocean, a single, low magnitude and long bloom event per year, was regularly observed. 
Coastal phenoregions exhibited up to six short bloom events per year, and higher intra-annual 
and variability. GAM models explained 50 to 90% of the variance of all phenological indices 
except bloom initiation timing, and revealed that interannual patterns in phytoplankton 
phenology and their environmental drivers varied markedly among the five phenoregions. 
Over the oceanic phenoregions, large-scale climate indices (Eastern Atlantic Pattern, Atlantic 
Meridional Oscillation), mixed layer depth (MLD) and nitrate concentration preceding primary 
bloom events were influential predictors, reflecting the relevance of nutrient limitation. For 
the Coastal-Slope, a relatively more light-limited phenoregion, North Atlantic Oscillation and 
wind speed were more relevant, and bloom magnitude was also positively influenced by 
riverine discharge. This variable was a significant predictor of bloom frequency, magnitude and 
duration over the Riverine-influenced region. Over the Upwelling-influenced region, upwelling 
intensity and mean annual MLD showed stronger partial effects on phytoplankton phenology. 
Overall, our phenology-based unsupervised approach produced a biologically-relevant SWIP 
partition, providing an evaluation of the complexity of interactions between phytoplankton 
and multiple environmental forcing, particularly over coastal areas. 
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1 - Introduction 

Phytoplankton are the dominant primary producers of marine ecosystems, responsible for 

about 50% of global primary production (Field et al., 1998), and a key component of the 

biological carbon pump (Gregg et al., 2003; Cermeño et al., 2008). Phytoplankton growth is 

mostly controlled by light and nutrient availability and, therefore, tightly linked to the 

dynamics of the ocean surface mixed layer (Longhurst, 2007; Cloern and Dufford, 2005) and 

regulated by atmospheric forcing and large scale climate variability patterns (Martinez et al., 

2009, 2011, 2016; Boyce et al., 2010; Racault et al., 2012, 2017; Zhai et al., 2013). Over coastal 

zones, terrestrial nutrient inputs and topographic irregularities increase the complexity of 

phytoplankton patterns and driving forces (Carstensen et al., 2015; Cloern et al., 2016). 

Together with top-down controls, these environmental determinants modulate phytoplankton 

phenology, i.e., their periodically-recurring variability patterns, including the timing and 

intensity of phytoplankton blooms, short-term events that can represent a substantial fraction 

of the annual primary production in marine ecosystems (Behrenfeld, 2014; Sallée et al., 2015; 

Martinez et al., 2016). Phytoplankton phenology patterns, and alterations therein, have large 

impacts on ecosystem functioning (see review by Ji et al. 2010), affecting the efficiency of 

carbon transfer to higher trophic levels (Edwards and Richardson, 2004; Barth et al., 2007; 

Friedland et al., 2016), the recruitment success of economically important fish and 

invertebrate resources (Platt et al., 2003; Fuentes-Yaco et al., 2007; Koeller et al., 2009; Malick 

et al., 2015), benthic-pelagic coupling (Nixon et al., 2009), the carbon export efficiency and the 

depth of remineralization (Lutz et al., 2007). Through such mechanisms, phytoplankton 

provide a critical connection between environmental changes and ecosystem dynamics and 

productivity. 

Phytoplankton phenology has been the subject of intense research in the last decade, mostly 

stimulated by the availability of satellite-retrieved surface chlorophyll-a concentration (Chl-a) 



  

 
 

4 
 

and the anticipated climate-induced changes in marine ecosystems (e.g., Platt and 

Sathyendranath, 2008; Platt et al., 2010; Racault et al., 2012, 2014a; Friedland et al., 2018; 

Henson et al., 2018). As an integrative environmental science (Schwartz, 2003), phenological 

studies have evaluated phytoplankton periodic events as well as their interactions with 

environmental conditions and climatic forcing (e.g., Henson et al., 2006, 2018; Demarcq et al., 

2012; Racault et al., 2012; Sapiano et al., 2012; Cabré et al., 2016; Kostadinov et al., 2017). 

Phytoplankton phenology has usually been synthesized into a set of ecologically relevant 

indices: the timing, duration and magnitude of bloom events (Platt and Sathyendranath, 2008; 

Platt et al., 2009, 2010; Racault et al., 2014a). These indices are currently considered key 

indicators of ecosystem functioning and its response to climate variability and change, at 

multiple scales (see Platt and Sathyendranath, 2008; Winder and Cloern, 2010; Racault et al., 

2014a; Scheffers et al., 2016).  

Global (Demarcq et al., 2012; D’Ortenzio et al., 2012; Racault et al., 2012, 2017; Sapiano et al., 

2012; Friedland et al., 2018) and regional phenological studies, based on satellite-remote 

sensing and in situ sampling, have reported significant interannual changes in phytoplankton 

phenology for a wide diversity of marine ecosystems including epipelagic, neritic (e.g., North 

Atlantic - Harrison et al., 2013; Henson et al., 2010; Land et al., 2014; Martinez et al., 2011; 

González Taboada and Anadón, 2014; Mediterranean - Lavigne et al., 2013; North Sea - 

Edwards and Richardson, 2004; North Pacific – Yoo et al., 2008; California Current – Foukal and 

Thomas, 2014; Arctic and Southern Ocean – Kahru et al., 2010; Ardyna et al., 2014; Soppa et 

al., 2016; Oziel et al., 2017) and confined or estuarine ecosystems (Wiltshire et al., 2008; Nixon 

et al., 2009; Kromkamp and van Engeland, 2010; Groetsch et al., 2016; Kahru et al., 2015). 

However, most interannual changes in phytoplankton phenology and their underlying drivers 

are spatially variable, even over particular ocean basins (e.g., Yoo et al., 2008; Henson et al., 

2010; Kahru et al., 2010; Martinez et al., 2011; Sasaoka et al., 2011; Friedland et al., 2016, 

2018) or domains (e.g., Song et al., 2010; Lavigne et al., 2013; Zhao et al., 2013; Foukal and 
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Thomas, 2014), depending on region-specific properties and factors controlling the initiation, 

collapse and magnitude of phytoplankton blooms. These results indicate that a proper 

geographic partitioning of marine ecosystems should be implemented for the investigation of 

phytoplankton phenology (e.g., Zhao et al., 2013). 

Due to their ecological relevance, the shape of phytoplankton climatological seasonal cycles, 

extracted from Chl-a time series, has been used for objectively partitioning the complex spatial 

organization of ocean surface into biologically meaningful regions (bioregions, trophic regimes 

or bloom phenology regimes), at global (D’Ortenzio et al., 2012) or regional scales (D’Ortenzio 

and Ribera d’Alcalà, 2009; Sasaoka et al., 2011; Foukal and Thomas, 2014; Lacour et al., 2015; 

Mayot et al., 2015; Ardyna et al., 2017; Eliasen et al., 2017; Krug et al., 2017b). In some cases, 

phytoplankton phenology indices were used directly as input variables for delineating ocean 

surface “phenological provinces” or (pheno)regions (see Sasaoka et al., 2011; Xu et al., 2013; 

Land et al., 2014). Ocean partition represents a relevant strategy to simplify ocean complexity 

and disentangle the interactions between phytoplankton and multiple environmental 

determinants, particularly relevant for heterogeneous marine domains, providing a framework 

for assessing marine ecosystem status and trends, as well as its resilience and vulnerability to 

climate change (see reviews IOCCG, 2009; Krug et al., 2017a).  

The southwest area off the Iberian Peninsula (SWIP; NE Atlantic), located at a transition zone 

between temperate and subtropical waters, constitutes a highly heterogeneous domain, 

particularly vulnerable to climate change (Kovats et al., 2014). A wide diversity of processes, 

including local and large scale oceanic and atmospheric circulation patterns, topographic 

irregularities, coastal upwelling and continental freshwater outflows, impacts phytoplankton 

spatial and temporal dynamics (e.g., Navarro and Ruiz, 2006; García-Lafuente and Ruiz, 2007; 

Prieto et al., 2009; Navarro et al., 2012; Bruno et al., 2013; Goela et al., 2013; Caballero et al., 

2014; Sala et al., 2018), promoting the occurrence of distinct regions where phytoplankton are 
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driven, differently, by specific combinations of physical and climatic environmental drivers (see 

Krug et al., 2017b). Due to its geographical location (eastern boundary of the North Atlantic 

basin), SWIP and its complex coastal areas are often overlooked (Follows and Dutkiewicz, 

2002; Vargas et al., 2009; Racault et al., 2012; Ferreira et al., 2014) or sparsely resolved (e.g., 

Siegel et al., 2002; Ueyama and Monger, 2005; Henson et al., 2009; Kahru et al., 2010; 

Martinez et al., 2011; Demarcq et al., 2012; D’Ortenzio et al., 2012; Sapiano et al., 2012; Land 

et al., 2014; Racault et al., 2014b, 2017; González Taboada and Anadón, 2014; Cole et al., 2015; 

Cabré et al., 2016; Friedland et al., 2016, 2018; Zhang et al., 2017) in global or basin-scale 

phenological analysis. The analysis of phytoplankton phenology over SWIP at a finer, regional-

scale resolution, however, has been restricted to the central Gulf of Cadiz area (Navarro et al., 

2012). Thus, knowledge on phytoplankton phenology over the SWIP area, its interannual 

variability and underlying environmental drivers, is still limited. 

In this context, our study aims to evaluate phytoplankton phenology patterns over the SWIP 

area, during an 18-year period (September 1997 - August 2015), using satellite ocean colour 

data, and to identify underlying environmental determinants. Our specific objectives are: (i) to 

evaluate the distribution of phytoplankton phenological indices over the study area and 

period, on a pixel-by-pixel basis; (ii) to partition the highly heterogeneous surface SWIP area 

into phenoregions using an objective, unsupervised partition based on phenological indices; 

(iii) to describe region-specific phytoplankton phenological indices and their interannual 

variability patterns; and (iv) to evaluate region-specific environmental determinants of 

phytoplankton phenology, including local ocean physical-chemical variables (mixed layer 

depth, photosynthetically available radiation and dissolved inorganic nutrients), hydrodynamic 

variables (riverine discharges and coastal upwelling intensity), and large scale climate indices.  
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2 – Materials and methods 

2.1 Study area  

SWIP comprises a variety of oceanic and coastal domains. Open ocean domains are 

interspersed with submarine seamounts and canyons and, over the coast, a 5-35 km wide 

continental shelf shifts orientation, from meridional to zonal, at Cape São Vicente (CSV). CSV is 

the northwest limit of the Gulf of Cadiz (GoC), a basin that connects the Mediterranean Sea 

and the Atlantic Ocean. The main continental influences over SWIP include topographic 

irregularities, such as prominent capes as CSV, Cape Santa Maria (CSM) and Cape Trafalgar 

(CT), and the Strait of Gibraltar, which affect coastal circulation dynamics (García-Lafuente et 

al., 2006; Sala et al., 2018). Freshwater inputs, particularly into the GoC area (e.g., Guadiana 

and Guadalquivir rivers discharge; Caballero et al., 2014; submarine groundwater discharges; 

Piló et al., 2018), are relevant local drivers of abiotic conditions and phytoplankton dynamics 

(Krug et al., 2017b). SWIP, embedded in the Iberian Canary Eastern Boundary Upwelling 

system, is strongly affected by a seasonal upwelling, promoted by northerly and westerly 

winds for western and southern coastal areas, respectively (Relvas et al., 2007; Goela et al., 

2016a). Offshore circulation over SWIP is affected by mesoscale and submesoscale features 

including fronts, cyclonic and anti-cyclonic eddies, jets and upwelling filaments (García-

Lafuente and Ruiz, 2007; Relvas et al., 2007).  

SWIP, along with Southern Europe and Mediterranean, are classified as regions particularly 

vulnerable to climate change, under effects of increased frequency and intensity of heatwaves, 

and decline in precipitation and provision of ecosystem services (Kovats et al., 2014). In fact, 

decadal climate-driven alterations over SWIP were already reported for atmospheric (Trigo, 

2006), ocean physical (Varela et al., 2015; Goela et al., 2016a) and biological properties (Horta 

e Costa et al., 2014; Gamito et al., 2016). 
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Figure 1 - The southwest area off the Iberian Peninsula (SWIP): bathymetry and main sources of 
freshwater discharges, the Guadiana and Guadalquivir rivers. CSV, CSM and CT depict the location of 
prominent topographic features, Cape São Vicente, Cape Santa Maria and Cape Trafalgar, respectively. 
PL and AR depict the location of Pulo do Lobo and Alcalá del Río hydrographic stations, respectively. Red 
diamonds shows the position of pixels used for the calculation of Cross Shore Ekman Transport, a wind-
based upwelling index. For a colour version of this figure, the reader is referred to the web version of 
this article. 

 

2.2 Phytoplankton chlorophyll-a concentration  

Satellite-derived surface Chl-a from the European Space Agency’s Ocean Colour Climate 

Change Initiative (OC-CCI), at 4 km and 8-day resolution, available at http://www.esa-

oceancolour-cci.org/, was used to derive phytoplankton phenological indices over the SWIP 

area between September 1997 and August 2015 and subsequently used to derive 

phytoplankton phenological indices. The OC-CCI Chl-a version 3 product uses remote sensing 

reflectances (RRS) derived from multiple sensors, Sea-viewing Wide Field of View Sensor 

(SeaWiFS), MODerate-resolution Imaging Spectroradiometer (MODIS-Aqua), MEdium 

Resolution Imaging Spectrometer (MERIS) and Visible Infrared Imaging Radiometer Suite 

(VIIRS), which are wavelength synchronized to account for sensor specific centre bands, bias 

corrected and merged, allowing an enhanced spatio-temporal resolution with respect to the 

use of single sensors. Moreover, Chl-a values are computed using the merged RRS and 
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estimated using a blended combination of best-performing algorithms to improve 

performance in case II waters (Sathyendranath et al., 2016, 2017). Although this OC-CCI 

product is provided at daily resolution, the 8-day resolution (hereafter weekly) was selected to 

limit the data gaps and increase accuracy and precision in the calculation of the phenological 

indices (Cole et al., 2012; Ferreira et al., 2014; Land et al., 2014; Racault et al., 2014b).  

The accuracy of satellite-derived Chl-a for the study region and adjacent Atlantic areas was 

previously assessed during calibration-validation exercises dedicated to different (standard 

and alternative) bio-optical algorithms and sensors, including SeaWiFS (Navarro and Ruiz, 

2006), MERIS (Cristina et al., 2014, 2015, 2016a, 2016b; Nechad et al., 2015; Goela et al., 

2016b; Tilstone et al., 2017), MODIS-Aqua (Caballero et al., 2014; Sá et al., 2015) and OC-CCI 

version 1 products (Sá et al., 2015). Overall, these studies indicated that satellite radiometry 

provides realistic estimates of in situ Chl-a, but usually larger than contemporaneous in situ 

estimates. Higher uncertainty and a systematic overestimation was found for nearshore 

optically-complex Case II waters. To minimize problems associated with Case II coastal waters, 

Chl-a was retrieved only for areas outside the 20 m isobath, located at a minimum distance of 

approximately 4 km from the coastline. All Chl-a values were retained, since unusually high 

Chl-a values for the study area (> 20 µg L-1; Navarro and Ruiz, 2006; Moita, 2001; Caballero et 

al., 2014) represented only less than 0.0001% of valid data. Our strategy has not accounted for 

sub-surface phytoplankton dynamics (e.g., subsurface chlorophyll maxima; Moita, 2001; 

García-Lafuente and Ruiz, 2007). 

 

2.3 Optical variables 

Weekly level-3 mapped mean surface photosynthetically available radiation (PAR) data, at 9 

km spatial resolution, were obtained from SeaWiFS (1997-2002) and MODIS-Aqua (2002-2015) 

products, available at the NASA’s Oceancolor portal (https://oceandata.sci.gsfc.nasa.gov/). 

Weekly level-3 composites of satellite-derived light attenuation coefficient at 490 nm 
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wavelength (K490), at 4 km spatial resolution, were accessed from ESA’s OC-CCI (see section 

2.2). Mean PAR intensity in the mixed layer (Im) was calculated according to Kirk (1986), using 

PAR vertical attenuation coefficient (KPAR) and euphotic zone depth (Zeu) estimates. KPAR was 

derived from K490 according to Rochford et al. (2001), and Zeu, was defined as the depth at 

which the irradiance is 1% of incident surface PAR, according to the Lambert-Beer law, 

assuming a constant attenuation coefficient and optically homogeneous waters (see Krug et 

al., 2017b for further details).  

 

2.4 Physical and chemical variables 

Daily 4-km satellite-derived sea surface temperature (SST) data for the period between 

September 1997 and December 2010 were obtained from the Sea Surface Temperature 

Climate Change Initiative (SST-CCI) version 1.0. As OC-CCI, the SST-CCI (http://esa-sst-cci.org/) 

is a multi-sensor match-up dataset that combines SSTs retrieved from data obtained from the 

Along Track Scanning Radiometer (ATSR) and Advanced Very-High Resolution Radiometer 

(AVHRR) series of sensors, creating a gap-free level-4 time series. Daily SST data for the period 

between January 2011 and August 2015 were retrieved from MODIS-Aqua night time passes, 

available at NASA’s OceanColor portal.  

Mixed Layer Depth (MLD) weekly composites were retrieved from the Ocean Productivity 

group of the Oregon State University 

(http://www.science.oregonstate.edu/ocean.productivity/index.php), based on three data-

assimilating models: Simple Ocean Data Assimilation (SODA), at a 0.5o spatial resolution (1997-

2004); Thermal Ocean Prediction Model based on The Navy Coupled Ocean Data Assimilation 

system (NCODA/TOPS), at a 1o spatial resolution (January - May 2005); and Fleet Numerical 

Meteorology and Oceanography Center model (FNMOC – June 2005 to August 2015), at a 

0.25o spatial resolution. This combination of MLD data was selected in accordance with the 

preferred MLD sources used in net primary production models of the Ocean Productivity 
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group. MLD data were adjusted to GEBCO bathymetry (IOC, IHO and BODC, 2003), and 

maximum MLD values were limited to bathymetry values. The timings of MLD shoaling and 

deepening (e.g., Lavigne et al., 2013; Shiozaki et al., 2014) were also explored as potential 

environmental determinants of phytoplankton phenology. For each annual cycle, the timing of 

MLD shoaling was considered as the week of the year coincident with the MLD maximum. The 

timing of MLD deepening, considered the week of the year when MLD started to increase 

significantly, was defined as the time when 10% of the amplitude of the normalized MLD data 

(minima and maxima on a 0 -1 range) was reached.  

Daily sea surface wind speed (W) and its zonal (U) and meridional (V) component fields were 

obtained from the Blended Sea Winds dataset (BSW) at the National Centers for 

Environmental Information of NOAA (https://www.ncdc.noaa.gov/data-access/marineocean-

data/blended-global/blended-sea-winds), at 0.25o spatial resolution. This product is based on a 

combination of several scatterometers, standardized across platforms, hence allowing a high 

quality and more complete temporal and spatial coverage of ocean winds (Zhang et al., 2006). 

The third power of the wind speed (W) was used as an index of turbulent mixing (W3) in the 

upper water column (Elsberry and Camp, 1978). 

Concentrations of dissolved inorganic macronutrients (nitrate, NO3; phosphate, PO4) and 

micronutrients (iron, Fe) were obtained from the biogeochemical model reanalysis data 

provided by the Copernicus Marine Environment Monitoring Service for the Atlantic-Iberian 

Biscay Irish-Ocean area, for the period February 2002 - December 2014 (Product: 

IBI_REANALYSIS_BIO_005_003; http://marine.copernicus.eu/). This product, derived from the 

biogeochemical model PISCES (Pelagic Interaction Scheme for Carbon and Ecosystem Studies), 

coupled with ocean physics NEMO (Nucleus for European Modelling of the Ocean), is available 

at a 0.08o spatial resolution and monthly temporal resolution, for 50 depth levels (0.50 m to 

5500 m). Validation with World Ocean Atlas climatology showed a good agreement but 

underestimation of NO3 and PO4 over the southern IBI area, which includes SWIP (Dabrowski 
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et al., 2016). To obtain a more robust estimate of nutrient availability (based on a higher 

number of data points), in comparison with subsurface level, relevant for phytoplankton, 

average nutrient concentrations were computed within the first layer, considered as the 

shallowest depth between MLD and Zeu, for each pixel and time step. 

  

2.5 Upwelling intensity and hydrographic variables 

A wind-based upwelling index, the cross-shore Ekman transport (CSET), was used to infer 

upwelling intensity and patterns during the study period. Weekly CSET was estimated for the 

west Portuguese coast, positioned at ca. 75 km from the coastline (see Fig. 1), and values were 

averaged over a 0.75o x 0.75o box, centred at the target site. Due to the N-S coastal 

orientation, the zonal component of the Ekman transport was used to calculate CSET (Alvarez 

et al., 2011; Bakun, 1973; see Krug et al., 2017b for further details). Negative CSET values 

indicate offshore Ekman transport and upwelling-favourable periods; conversely, positive 

values indicate onshore Ekman transport and downwelling-favourable periods.  

Freshwater discharge over the study area is strongly associated with Guadiana and 

Guadalquivir rivers. Daily Guadiana river discharge (Gdn), measured at the hydrometric station 

Pulo do Lobo (see Fig. 1), was accessed from the Portuguese Environmental Agency public 

database (http://snirh.apambiente.pt/). Daily Guadalquivir river discharge (Gdq), measured at 

the Alcalá del Río station (see Fig. 1), was acquired from the Spanish Regional Water 

Management Agency (http://www.chguadalquivir.es/saih/).  

All environmental variables were re-gridded to the same spatio-temporal resolution of Chl-a 

data (4-km, 8-day). Data analyses and visualization maps were generated using MATLAB 

software. 

 

2.6 Large scale climate indices 
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Six large-scale climate indices were used as indicators of remote forcing over the study area: (i) 

the Multivariate El Niño Southern Oscillation (ENSO) Index (MEI), a global scale index which 

monitors ENSO patterns based on six ocean-atmosphere variables over the tropical Pacific 

(Wolter and Timlin, 2011); (ii) the North Atlantic Oscillation (NAO) Index, a normalized 

pressure difference between the Azores and Iceland, representative of the dominant mode of 

climate variability in the north sector of the Atlantic Ocean (Hurrell, 1995); (iii) the Atlantic 

Multidecadal Oscillation (AMO), an SST-based index related to low frequency variability in SST 

and themohaline circulation in the North Atlantic (Kaplan et al., 1998); (iv) the Eastern Atlantic 

Pattern (EA), the second mode of sea-level pressure (SLP) variation in the North Atlantic 

(Hurrell et al., 2003); (v) the Western Mediterranean Oscillation (WeMO) Index, a barometric 

ratio between Padua (north Italy), and San Fernando (southwest Spain), representative of low 

frequency variability patterns of atmospheric circulation over the western Mediterranean 

basin (Martin-Vide and Lopez-Bustins, 2006); and (vi) the West Europe Pressure Anomaly 

(WEPA), based on winter (December – March) SLP, which is strongly related to winter wave 

height variability over the coast of western Europe (Castelle et al., 2017).  

Monthly values of the large-scale climate indices were retrieved from diverse sources. MEI, 

NAO, and AMO indices were accessed at NOAA’s Earth System Research Laboratory portal 

(https://www.esrl.noaa.gov/psd/data/climateindices/list/), EA was acquired at NOAA’s Climate 

Prediction Center website (http://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml), WeMO 

was retrieved from the University of Barcelona’s Climatology Group website 

(http://www.ub.edu/gc/en/2016/06/08/wemo/), and WEPA was extracted from 

supplementary material provided by Castelle et al. (2017). Significant connections between 

MEI, NAO, AMO, EA and WeMO and phytoplankton variability over SWIP were previously 

reported by Krug et al. (2017b). 

 

2.7 Data analyses 
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The general strategy used for partitioning the SWIP area, based on phytoplankton phenology, 

is summarized in Figure 2. Chl-a time series, available for each study area pixel (n=8570 pixels), 

covered an 18-year period (n= 828 Chl-a 8-day composites). First, pixel-specific Chl-a time 

series were organized considering the start point of the annual cycle as the first week of 

September (week 1; year t) and the end point as the last week of August (week 46; year t+1), 

i.e., spanning two calendar years. This 12-month delineation period was chosen to follow 

phytoplankton seasonal variability patterns (see Krug et al., 2017b). Six phenological indices 

were then computed, for each pixel. A dissimilarity analysis was used to select the set of 

independent phenological indices that were subsequently used as partitioning variables. An 

unsupervised classification technique was then used to partition SWIP into regions sharing 

similar phytoplankton phenology (phenoregions). This phenology-based SWIP partition was 

later used as a framework to investigate region-specific phenological indices, their interannual 

variability during the study period, and the underlying environmental determinants of 

phytoplankton phenology. 

 

 
Figure 2 – Flow diagram representing the different steps (A – D) involved in the partition of the area off 
South West Iberian Peninsula (SWIP) based on phytoplankton phenology during a 18-year period (1997 
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– 2015). Workflow included: (A) Extraction of the Chl-a time series for SWIP, on a pixel-by-pixel basis; (B) 
calculation of six phenological indices, on a pixel-by-pixel basis; (C) selection of specific non-redundant 
phenological indices to be used as partitioning variables; and (D) delineation of phenology-based 
coherent regions (phenoregions) using an unsupervised objective classification technique (Hierarchical 
Agglomerative Clustering). Step E represents the analyses of region-specific phenological indices and 
environmental driving forces for different bloom indices. See text for further details. For a colour version 
of this figure, the reader is referred to the web version of this article. 

 

2.7.1 Phytoplankton phenological indices 

Several phenological indices have been applied to synthesize phytoplankton phenology 

patterns (see Platt and Sathyendranath, 2008; Platt et al., 2009, 2010), and multiple strategies 

have also been used to derive specific metrics (see Brody et al., 2013; Ferreira et al., 2014 and 

references therein; Land et al., 2014; Friedman et al., 2018). Ideally, “a phenology metric 

should be accurate, precise, and simultaneously sensitive to the underlying environmental 

processes” (Ferreira et al., 2014). However, several observation-related and analysis-related 

issues (e.g., missing data, observational noise, temporal resolution, preprocessing, bloom 

amplitude, phenology metric), introduce errors in the estimates of phytoplankton phenology 

(Ferreira et al., 2014). These errors or uncertainties associated with phenology metrics usually 

exhibit a spatial pattern, with smaller values for the latitudes over the study area (Cole et al., 

2012; Ferreira et al., 2014; Racault et al., 2014b).  

In this study, bloom events were defined as occurrences when Chl-a surpassed the threshold 

criterion of 5% above the annual local median value (Siegel et al., 2002), at least during two 

consecutive weeks (Cole et al., 2012; Brody et al., 2013). This biomass-based threshold 

approach is considered a robust and precise strategy (Ferreira et al., 2014), and widely applied 

in studies of phytoplankton phenology (e.g., Henson et al., 2009; Racault et al., 2012, 2017; 

Sapiano et al., 2012; Lavigne et al., 2013). The following phenological indices were estimated 

on a pixel-by-pixel basis and for each phenoregion, using all detected bloom events (principal 

and secondary), for each annual cycle, (i) number of bloom events; (ii) total duration of all 
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bloom events per year; (iii) average duration of bloom events; and (iv) Chl-a peak value. Taking 

into consideration the principal annual bloom for each pixel or phenoregion (i.e., the events 

associated with Chl-a maxima for each year), the following phenological indices were also 

estimated: (v) timing of bloom initiation (first week when Chl-a surpassed the threshold 

criteria); (vi) bloom peak timing (week of Chl-a peak value within each bloom event); (vii) 

timing of bloom termination (last week of Chl-a above the threshold criteria); and (viii) bloom 

duration (time elapsed between bloom initiation and termination) (see Fig. 2). In addition to 

these eight indices, two other phenological metrics were also derived for each delineated 

SWIP phenoregion, considering the principal bloom during each year: (ix) duration of the 

bloom accumulation phase, i.e., time elapsed between bloom initiation and bloom peak; and 

(x) duration of the bloom deceleration phase, i.e., time elapsed between bloom peak and 

termination.  

 

2.7.2 Delineation of phenology-based regions off SW Iberia 

The climatological average values (18-year period) of six relevant phenological indices, derived 

for each year on a pixel-by-pixel basis, were tested as potential SWIP partitioning variables: 

number of bloom events per year, average duration of the bloom events, total yearly duration 

of the bloom events, timing of the initiation of the main bloom, bloom peak timing, and Chl-a 

peak value. The value of each index was normalized by subtracting its mean value (18-year) 

and dividing by its standard deviation. Spearman rank correlation coefficient (rS) was used to 

evaluate the strength of monotonic relationships between these phytoplankton phenological 

metrics (Hauke and Kossowski, 2011), and correlation values (1-rs) were used to build a 

dissimilarity hierarchical cluster tree (Wilks, 2006). A dissimilarity value of 0.10 was used as a 

threshold to eliminate strongly correlated, redundant phenological indices. For groups of 

redundant indices (similarity above 0.90), a single index was selected as a SWIP partitioning 

variable. 
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Different delineation methods, based on OCRS, can be applied for ocean surface partition. 

However, unsupervised learning approaches provide a less biased delineation and more 

accurate representation of phytoplankton variability (see review by Krug et al., 2017a). In this 

study, Hierarchical Agglomerative Clustering (HAC) analysis was used to classify SWIP into 

regions with similar phenological properties (phenoregions). HAC associates objects that are 

close to each other in an n-dimensional space into the same cluster, using a division that 

simultaneously minimizes differences between objects of a given cluster and maximizes 

differences between objects of different clusters, based on Euclidian distance and Ward’s 

linkage (Ward, 1963), respectively (Wilks, 2006). As the number of clusters (i.e., phenoregions) 

must be defined in advance, HAC analysis was applied multiple times, using a cluster number 

that varied between 2 and 20. The original data were divided into a training (90%) and a 

validation (10%) dataset, and used for cross-validation. At each round of the 10-fold cross-

validation, HAC was applied to the training dataset and pixels from both training and validation 

datasets were assigned to a cluster based on the lowest distance from the centroid values. The 

cross-validation error was computed as the sum of the root mean square deviation between 

individual pixels of the validation dataset and their respective cluster mean values (centroids). 

The final cluster number error, calculated as the average error of the 10 cross-validations, was 

used to determine the optimal number of clusters (phenoregions), defined as the first of three 

consecutive final error reductions below < 5%, after addition of a further cluster (Fendereski et 

al., 2014; Oliver et al., 2004). 

 

2.7.3 Region-specific phenological properties, interannual variability patterns and 

environmental determinants  

Phytoplankton phenological metrics for each delineated SWIP phenoregion, and their 

interannual variability patterns, were investigated during the 18-year study period (1997 - 
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2015). Region-specific Chl-a time series, based on average Chl-a values and annual Chl-a 

threshold criteria (5% above the yearly median; Siegel et al., 2002) for each phenoregion, were 

used to compute the regional phenological metrics (see section 2.7.1). Differences in 

phenological indices across SWIP phenoregions were tested using the non-parametric Kruskal-

Wallis test, an one-way analyses of variance on ranks, and pair-wise comparisons using the 

Dunn’s test (Statistica software, version 10.0). Spearman correlation coefficients (rs) were used 

to evaluate the strength of monotonic relationships between phenological indices over each 

phenoregion. All statistical tests were considered at a 0.05 significance level.  

To investigate the environmental drivers underlying phytoplankton phenology over each SWIP 

phenoregion, the following variables were considered: ocean optical variables (PAR, and Im), 

ocean physical variables and related indicators (SST, MLD, MDL:Zeu, timing of MLD shoaling and 

deepening onsets, W and its components U and V, and W3), ocean chemical variables (NO3, 

PO4 and Fe), local hydrodynamic variables (CSET, Gdn and Gdq), and large-scale climate indices 

(MEI, NAO, EA, AMO, WeMO and WEPA). The relationships between phytoplankton 

phenological indices and environmental variables, for each phenoregion, were evaluated using 

values of the environmental variables acquired during the conditions preceding the time of 

bloom initiation (pre-bloom stage) or averaged during specific periods (e.g., winter: December 

to March; upwelling-favourable period: May to September) or the whole annual cycle 

(September to August).  

Generalized Additive Modelling (GAM) techniques (Wood, 2006) were used to evaluate the 

linkages between environmental determinants and phenological indices over each SWIP 

phenoregion. GAMs are a flexible class of statistical models that accommodate linear as well as 

complex non-linear relationships between a dependent response variable and multiple 

predictors (for further details see Krug et al., 2017b). The basic GAM model structure is 

represented by the following equation, where Y represents the response variable,   is the 
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intercept, sj are nonparametric smoothing functions specifying the partial additive effect of 

each predictor (Xj), and   represents a random error term.  

                  

 

   

  

 

Response variables, i.e., region-specific phenological indices, and environmental determinants 

were modelled as cubic spline smoother smoother functions (s). Prior to the analysis, 

colinearity among environmental determinants was tested using rS, and variables significantly 

correlated at |rS|>0.70 were not used as covariates for the same model run (Dormann et al., 

2013). Underlying statistical assumptions (homoscedasticity, residuals normality, residual serial 

dependency) of the GAMs were tested using graphical residual diagnostics and autocorrelation 

function. Criteria used to select the best-performing models included minimizing the 

generalized cross-validation (GCV) score, a measure of the predictive error of the model and its 

complexity related to Akaike’s Information Criterion (AIC), and maximizing the level of 

deviance explained (Wood, 2006; see Krug et al., 2017b for details).  

GAMs were also used to decompose temporal variability patterns of phenological indices, Chl-

a and environmental variables, over each SWIP phenoregion, into seasonal and interannual 

components. Due to serial temporal autocorrelation, GAMs were extended to Generalized 

Additive Mixed Models (GAMM) by including a first order autoregressive correlation structure. 

Response variables were modelled as a cyclic spline smoother function of time of the year 

(year-week) and a cubic spline smoother function of time (Wood, 2006; for further details see 

Krug et al., 2017b). GAM and GAMM analyses were conducted with the “mgcv” library, in R 

statistical software, version 2.5.1 (R Core Team, 2016). Due to the relatively short time series 

(18-year), significance at the p-level < 0.10 were also considered. However, the analysis of 

interannual variability in region-specific phenological indices and underlying environmental 

drivers, namely climate-related variables, should be interpreted with caution due the 
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uncertainties associated with the estimates of phenological indices (Cole et al., 2012; Ferreira 

et al., 2014) and the length of the time series (e.g., typical AMO period: 60-80 years; see 

Henson et al., 2010, 2016, 2017).  

 

3 – Results 

3.1 Phytoplankton phenology off SW Iberia: a pixel-based assessment 

Basic statistical information on selected phytoplankton phenological indices over SWIP, 

extracted on a pixel-by-pixel basis for an 18-year period (1997 - 2015), is summarized in Table 

1. Mean spatial distribution of the phenological indices exhibited a substantial spatial 

variability over the SWIP area, with remarkable cross-shelf gradients, organised with a strong 

spatial coherency (see Fig. 3). For most indices, maximum variability areas followed 

approximately the 500 m isobath within most of the GoC area, spreading towards the 1000 m 

isobath in the vicinity of CSM, and towards the 2500 m isobath near CSV and over the west 

Portuguese coast (Fig. 3A-E). However, in case of bloom peak timing, cross-shelf gradients 

were less pronounced over most of the GoC margin (Fig. 3F). For most phenological indices 

(Fig. 3A, 3B, 3D, 3E), latitudinal gradients were also detected over the oceanic SWIP domains, 

with a latitudinal discontinuity located at ca. 36.5oN (Fig. 3). 

Table 1 – Descriptive statistics of phytoplankton phenological indices over the southwest 
area off the Iberian Peninsula, estimated for each annual cycle, on a pixel-by-pixel basis, 
during the period September 1997 - August 2015 (n= 18 years x 8,570 pixels = 154,260). 
Information includes minimum (Min), maximum (Max) and mean values and standard 
deviation (SD). *refers to primary blooms, and considers the year starting in January (week 
of the year 1) and ending in December (week of the year 46). 

Phenological index Min - Max Mean ± SD 

Number of bloom events per year  
(bloom events.year-1) 

1 - 9 2.48 ±0.07 

Total duration of all bloom  
events per year (weeks.year-1) 

5 - 23 18.93 ±0.10 

Average duration of bloom events  
(weeks.bloom-1) 

2 - 23 11.21 ±0.20 
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Chlorophyll-a peak value (µg L-1) 0.19 - 18.48 0.86 ±0.23 

Timing of the bloom initiation* 
(week of the year) 

33 - 29 46.33 ±0.54 

Chl-a peak timing* (week of the 
year) 

33 - 30 8.27 ±0.57 

Timing of the bloom termination* 
(week of the year) 

34 - 30 13.25 ±0.55 

 

 
Figure 3 – Distribution of annual mean values of selected phytoplankton phenological indices over the 
southwest area off the Iberian Peninsula, estimated for each annual cycle, on a pixel-by-pixel basis, 
during a 18-year period (September 1997 - August 2015): (A) Number of bloom events per year; (B) 
Average duration of the bloom events; (C) Total duration of all bloom events per year; (D) Chlorophyll-a 
peak value; (E) Timing of the initiation of the primary bloom; and (F) Chlorophyll-a peak timing. Black 
lines represent the 200m, 500m 1000m and 2500m isobathymetric contours. For a colour version of this 
figure, the reader is referred to the web version of this article. 

 

The number of bloom events per year varied from one to two in most of the oceanic SWIP 

domain, and increased up to six over the Portuguese west coast, CSM and CT area (Fig. 3A). 

The average duration of phytoplankton blooms showed an opposite pattern, with more 
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prolonged events over the oceanic domain, average duration varying from eight to 20 weeks, 

and increasingly greater bloom duration from northern to southern open ocean areas. Over 

slope and coastal areas, bloom events lasted, on average, two to six weeks (Fig. 3B). The 

distribution of the total duration of all bloom events during each annual cycle (Fig. 3C) 

revealed a distinct intermediate area, located along the shelf edge to upper slope (ca. 200 m – 

500 m isobaths), with lower values (15 to 16 weeks.year-1), compared with coastal and oceanic 

SWIP (> 18 weeks.year-1). Chl-a peak values varied, on average, between 0.33 µg L-1 and 8.86 

µg L-1, with highest values over the continental shelf, especially for the northeastern GoC areas 

impacted by the freshwater outflow of Guadiana and Guadalquivir estuaries (Fig. 3D). Over the 

oceanic SWIP area, a latitudinal gradient was also observed, with higher Chl-a peak values 

north of ca. 36.5oN. 

Timings of principal blooms were expressed in week of the year (WOY), considering the year 

starts in January (WOY 1) and ends in December (WOY 46). The timing of the principal bloom 

initiation generally showed a northward progression for the open ocean domain (Fig. 3E). 

Principal blooms initiated earlier, between November and January (WOY: 41-4), for most of 

the oceanic domain and a narrow coastal fringe area, over the northeastern and southeastern 

GoC (Fig. 3E). Over most of the shelf and slope areas within GoC, and spreading towards the 

2500 m isobath over the Portuguese west coast, the main phytoplankton blooms started, in 

general, later, between February and March (WOY: 5-9). The area over the west coast and 

shelf-edge around CSV presented a relatively delayed bloom initiation, usually occurring 

between April and May (WOY: 13-20). Chl-a peak timing over SWIP showed a more 

homogeneous spatial distribution, occurring during February-March (WOY: 5-12) for most of 

SWIP oceanic and coastal domains (Fig. 3F). However, a narrow coastal sector along 

northeastern and southeastern GoC displayed an anticipated bloom peak (January-February, 

WOY 1-6), whereas the western Portuguese margin, including the CSV area, displayed a 

delayed bloom peak (April-May, WOY: 12-19; Fig. 3F).  
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3.2 Phenology-based partition off SW Iberia 

The selection of relevant partition variables to be included in HAC analyses was based on a 

dissimilarity dendrogram, generated by the inversion of the correlation matrix of the six 

normalized phenological indices (see section 2.7.2). The indices Chl-a peak timing and total 

duration of all bloom events per annual cycle presented dissimilarity values above the defined 

threshold (0.10), whereas the remaining phenological indices showed dissimilarity values 

below this threshold. As consequence, a single index representative of this group of redundant 

variables was selected as a partition variable (Fig. S1A). HAC analysis was run several times, 

each including one of these highly correlated redundant indices, in tandem with the two 

dissimilar indices. Based on a higher spatial coherence of the resulting SWIP classifications 

(data not shown), the index number of bloom events per annual cycle was selected. The input 

dataset, representative of phytoplankton phenology over the SWIP area was, therefore, based 

on three phenological indices: Chl-a peak timing, total duration of all bloom events per year, 

and number of bloom events per year. Cross-validation errors associated with HAC analyses, 

estimated using a number of clusters (i.e, phenoregions) varying between 2 and 20, indicated 

that phytoplankton phenology over the SWIP area was optimally represented by five distinct 

phenoregions, with similar phytoplankton phenology patterns (Fig. S1B).  

The five delineated phenoregions over SWIP were organized coherently over the study area 

(Fig. 4A). The open ocean SWIP domain was predominantly associated with two regions: the 

SW Oceanic phenoregion, located over the southwestern SWIP oceanic domain, and the 

Oceanic phenoregion, covering most of the open ocean area over the GoC (depth > 500m) and 

the northwestern SWIP area (depth > 2500m). A single region was delineated over the SWIP 

continental margin, the Coastal-Slope phenoregion, which covered most of the coastal and 

slope areas. Notable exceptions were the west Portuguese coast and CSV area, covered by the 
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Upwelling-influenced phenoregion, and the nearshore areas over the northeastern and 

southeastern GoC, covered by the River-influenced phenoregion (Fig. 4A).  

 
Figure 4 – Partition of the southwest area off the Iberian Peninsula (SWIP) into phenoregions based on 
phytoplankton phenological indices (number of bloom events per year, Chl-a peak timing and total 
duration of all bloom events per year), for the period between September 1997 and August 2015. (A) 
Spatial distribution of the five SWIP phenoregions. (B-F) Weekly-based phytoplankton climatological 
seasonal cycles, with mean chlorophyll-a (Chl-a) values (coloured lines) ± 1 standard deviation (shaded 
coloured areas) for each phenoregion: (B) SW Oceanic, (C) Oceanic, (D) Coastal-Slope, (E) Upwelling-
influenced and (F) River-influenced regions. Thick, black horizontal lines (B-F) represent the average 
annual Chl-a threshold criteria (5% above the yearly median) used to define a phytoplankton bloom for 
each phenoregion. Note different y-scales used for panels B to F. For a colour version of this figure, the 
reader is referred to the web version of this article. 

 

3.3 Phytoplankton phenology off SW Iberia: a phenoregion-based assessment 

Chl-a variability patterns during the 18-year study period (see complete Chl-a time series for 

each phenoregion in Figs. S2-S3) and weekly-based annual climatologies (Fig. 4B-F) varied 

across SWIP phenoregions. Both the SW Oceanic and Oceanic phenoregions presented low 

amplitude unimodal annual cycles.  
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Phytoplankton bloom period occurred between November and May, for both oceanic 

phenoregions, with Chl-a maxima (0.34 - 0.41 µg L-1) during February-March (Fig. 4B-C). The 

three coastal phenoregions presented higher Chl-a variability, longer periods with Chl-a above 

the threshold criteria, and blooms occurred during different periods of the year (Figs. 4D-F, S2-

S3). The Coastal-Slope phenoregion (Fig. 4D) showed a unimodal annual cycle, with Chl-a 

above the threshold between November and June, and Chl-a peak values (0.71 µg L-1) during 

March. The Upwelling-influenced phenoregion presented a quasi-bimodal annual cycle, with 

two distinct periods of Chl-a above the threshold criterion, February-June and June-September 

(Fig. 4E), and Chl-a peak values occurred during March (0.71 µg L-1) and July (0.65 µg L-1). The 

River-influenced phenoregion (Fig. 4F) presented a unimodal annual cycle, with Chl-a above 

the threshold between October-May, and Chl-a peak values between December and February 

(ca. 1.45 µg L-1). At the interannual scale, Chl-a showed significant patterns only over the open 

ocean phenoregions, with strong linear increasing tendencies for both SW Oceanic and 

Oceanic regions (p<0.001; data not shown).  

A total of 245 phytoplankton bloom events were identified over the five SWIP phenoregions 

during the 18-year study period, including 90 principal blooms and 155 secondary blooms 

mostly detected over the coastal phenoregions (Fig. 5A; see complete Chl-a time series, with 

identification of each bloom event, in Fig. S3). Secondary blooms represented between 70% 

and 77% of the bloom events detected over the River- and Upwelling-influenced regions, 

respectively. In respect of phytoplankton phenology, a significant distinction between open 

ocean (SW Oceanic and Oceanic) and coastal (Coastal-Slope, Upwelling- and River-influenced) 

phenoregions was detected for all phenological indicators (Fig. 5), except the total duration of 

all bloom events per year (20-24 weeks; Fig. 5B) and timing of bloom termination (Figs. 5I,5L). 

Chl-a peak values increased along the ocean-coastal gradient (Fig. 5C), with mean values 

ranging between 0.35 and 2.00 µg L-1 for the SW Oceanic and River-influenced phenoregions, 

respectively.  
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SW Oceanic and Oceanic phenoregions usually showed a single prolonged (20-21 weeks) 

bloom event per year (Figs. 5A and 5D). Over the coastal phenoregions, bloom frequency was 

higher but highly variable, with from one up to seven events per year (Figs. 5A), and principal 

bloom duration varied from four to 25 weeks (Fig. 5D). Additionally, the duration of bloom 

accumulation phase (Figs. 5E) was significantly longer over the open ocean (ca. 15 weeks) in 

comparison with coastal phenoregions (ca. four to eight weeks). However, the duration of the 

bloom deceleration phase was similar among all phenoregions (ca. 5 to 8 weeks), except for 

the Upwelling-influenced region, which exhibited a shorter duration (ca. 2-3 weeks; Fig. 5F). 

Interestingly, the principal bloom event over open ocean phenoregions showed an 

accumulation phase significantly longer than the deceleration phase (p<0.01), whereas over 

coastal phenoregions the durations of these bloom phases were similar (Fig. 5E-F).  
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Figure 5 – Phytoplankton phenological metrics for the five phenoregions delineated off SW Iberia, 
estimated for each annual cycle during the period 1997 to 2015 (See Fig. 4 for region location and colour 
code). (A) Number of bloom events per year; (B) Total duration of all bloom events per year; and (C) 
Chlorophyll-a peak value. Considering only the principal blooms: (D) Duration of the bloom event, (E) 
duration of the bloom accumulation phase, (F) duration of the bloom deceleration phase, (G) Timing of 
bloom initiation; (H) bloom peak timing; and (I) Timing of bloom termination. Considering the average 
values for all bloom events (principal and secondary): (J) timing of bloom initiation; (K) bloom peak 
timing; and (L) timing of bloom termination. Median values are represented by the lines within the 
boxes, 25

th
 to 75

th
 percentiles are denoted by box edges and non-outlier limits are denoted by whiskers. 

For each phenological index, different lowercase letters over the bars represent significant differences 
across phenoregions (p<0.05). The number of blooms events identified during the study period for each 
phenoregion (n) is shown, in italics, in panel A. For a colour version of this figure, the reader is referred 
to the web version of this article. 

 

The timings of initiation, peak and termination of the principal bloom over the open ocean and 

Coastal-Slope phenoregions were less variable than over the Upwelling- and River-influenced 
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phenoregions (Figs. 5G-I). For SW Oceanic and Oceanic phenoregions, the principal bloom 

initiated around November (WOY: 42-43), during the MLD deepening phase (4.2±3.2 weeks 

after the onset of MLD deepening), peaked during March (WOY 9), 2.8±3.2 weeks after the 

onset of MLD shoaling, and terminated during April (WOY 13). Only a minor proportion of the 

principal oceanic blooms, 11 to 17% for SW Oceanic and Oceanic regions, respectively, 

effectively terminated during the MLD deepening stage. In comparison with open ocean, over 

the River-influenced phenoregion principal bloom timings were statistically similar, but more 

variable (Fig. 5G-I). In fact, 17% of the principal bloom events initiated before the onset of MLD 

deepening, and 17% of the events initiated during the MLD shoaling phase. For Coastal-Slope 

and Upwelling-influenced phenoregions, principal blooms initiated (average: February, WOY 8; 

15.6±9.4 weeks after MLD deepening onset) and peaked (average: April, WOY 12; 6.9±9.1 

weeks after MLD shoaling onset) significantly later than in River-influenced region, and no 

differences were detected in termination timing across phenoregions. Over the Coastal-Slope 

phenoregion, 38.9% of the principal bloom events (seven) initiated during the MLD shoaling, 

mostly before April. For the Upweling-influenced region, a higher proportion of principal 

bloom events were initiated during the MLD shoaling stage (13 events, 72.2%), with around 

half (six) of these events initiated during the upwelling favourable period (May – September).  

The phenological indices derived using all phytoplankton bloom events occurring each year, 

including principal and secondary blooms, also revealed a higher variability over the coastal 

phenoregions (Figs. 5J-L; see full Chl-a time series and bloom events in Fig. S3). Over the 

Upwelling-influenced phenoregion, 59.0% of the secondary bloom events (36 events) were 

initiated during the upwelling-favourable period, whereas this value was significantly lower for 

the Coastal-Slope region (44.4%, 20 events). 

Several significant relationships among the phenological indices were detected for the SWIP 

phenoregions. During the 18-year study period, the number of bloom events per year was 
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negatively correlated with the duration of principal blooms over all three coastal phenoregions 

(-0.84 ≤ rs ≤ -0.66, p<0.01). Principal bloom duration was also positively correlated with the 

duration of both accumulation and deceleration phases over all coastal phenoregions (0.53 ≤ rs 

≤ 0.86, p< 0.01). Further, over the Coastal-Slope phenoregion, the timing of bloom initiation 

was negatively correlated with bloom duration (rs=-0.78, p<0.001) and Chl-a peak value (rs=-

0.47, p<0.05). Over the oceanic phenoregions, the durations of the bloom accumulation and 

deceleration phases were inversely correlated (rs = -0.72, p<0.01).  

Interannual variability of the phytoplankton phenological indices was inspected using GAMM 

analysis. Marginally significant (p<0.10) and/or significant (p<0.05) interannual trends were 

detected for all SWIP phenoregions, with the exception of the Oceanic region (Fig. S4; Table 

S1). Over SW Oceanic phenoregion, the duration of the principal bloom (p<0.10) and its 

accumulation phase (p<0.001), and Chl-a peak timing (p<0.001) showed significant non-linear 

trends, with two periods of increasingly prolonged bloom accumulation and delayed bloom 

peaks before 2003 and after 2007. For the Coastal-Slope phenoregion, both the total duration 

of all bloom events per year and the duration of the principal bloom displayed weak linearly-

increasing trends (p<0.10). Over the Upwelling-influenced phenoregion, the duration of the 

bloom deceleration phase showed a strongly significant linear increase during the study 

period. For the River-influenced phenoregion, the total duration of all bloom events per year 

displayed a marginally significant non-linear trend (p<0.10), increasing linearly after ca. 2007. 

Moreover, the timings of the principal bloom initiation and termination exhibited a marginally 

significant linear increasing delay during the study period (p<0.10), whereas Chl-a peak timing 

showed a significant non-linear increase (p<0.05), with a generalized increasing delay until ca. 

2007, and a subsequent stabilization (see Fig. S4, Table S1). 
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3.4 Region-specific drivers of bloom phenology off SW Iberia  

The study period encompassed a high variability in large-scale climate and local hydrodynamic 

forcings (see complete time series in Figs. S5-S6). All physical, optical and chemical ocean 

variables showed highly significant seasonal patterns, over all phenoregions (p<0.001; data not 

shown). In respect to interannual patterns, CSET exhibited a linear declining trend (p<0.05), i.e. 

an upwelling intensification. Further, increasing trends in W, mostly linear, were detected over 

all phenoregions (Oceanic and SW Oceanic, p<0.05; Coastal-Slope and River-influenced, 

p<0.01; Upwelling-influenced, p<0.001). V showed a linear declining trend over open ocean 

(p<0.05) and Upwelling-influenced (p<0.01) phenoregions but a non-linear increasing tendency 

over the River-influenced phenoregion (p<0.01). No significant interannual tendencies were 

detected in case of U or SST. Linear increasing trends in MLD were detected over Coastal-Slope 

(p<0.001) and Upwelling-influenced regions (p<0.01). Moreover, significant interannual linear 

increasingly delays in the onset timing of MLD deepening (SW Oceanic region, p<0.05; Oceanic 

region, p<0.001) and MLD shoaling (Upwelling-influenced region, p<0.05; River-influenced and 

Coastal-Slope regions, p<0.01; Oceanic region, p<0.001) were also observed (data not shown). 

PAR exhibited non-linear monotonic increasing trends for all phenoregions (p<0.01), and Im 

interannual patterns ranged from a significant linear decline over the Coastal-Slope (p<0.01) 

and Upwelling-influenced regions (p<0.001), to non-linear increases (SW Oceanic, p<0.05) or 

declines (River-influenced region, p<0.001). In case of nutrients, a consistent linear increasing 

trend in NO3 was observed for most phenoregions (p<0.01), except the Upwelling-influenced 

region.  

The physical conditions observed at the time of the principal bloom initiation, specifically MLD 

and Im, were less variable over the open ocean regions. Mean (± 1SD) MLD values at the week 

of the principal bloom initiation ranged between 31.1±16.0 and 77.5±45.1 m, for River-

influenced and Coastal-Slope phenoregions, respectively, and was significantly lower for the 
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former region (p<0.05). Mean Im values at the week of the principal bloom initiation fluctuated 

between 27.0±8.1 and 69.1±72.2 µmol photons m-2 s-1, over the Oceanic and the Upwelling-

influenced phenoregions, respectively, and no differences were detected across phenoregions. 

SST (17.5±1.9 – 19.2±2.5 oC), U (0.8±3.7 – 2.7±2.5 m s-1), and W (7.8±1.6 – 8.7±1.3 m s-1) 

conditions observed at the time of bloom initiation were similar across phenoregions. V, 

however, was significantly higher over the Upwelling-influenced phenoregion (-5.0±2.8 m s-1) 

in comparison with other regions. Mean concentrations of NO3, PO4, and Fe at the time of the 

principal bloom initiation ranged between 0.027±0.024 - 1.069±0.872 µM, 0.014±0.005 – 

0.087±0.056 µM and 0.449±0.050 – 1.419±0.151 nM, respectively, and higher values were 

detected over coastal phenoregions (p<0.05). 

GAM analysis was used to explore region-specific linkages between environmental 

determinants and selected phenological indices associated with principal blooms (Chl-a peak 

value, duration, timing of initiation and peak timing) and, in case of non-oceanic phenoregions, 

with the number of bloom events per year. Statistical information for the best performing 

models is detailed in Table S2, the partial effects of each predictor on the anomaly of selected 

phenological indices are depicted, for each phenoregion, in Figs. 6-10, and a summary of all 

models, including relevant predictors and model predictive power, is presented in Table 2. 

Models predicting the phenological indices over each SWIP phenoregion showed a relatively 

high predictive skill, explaining between 50 and 90% of the variance of all indices except bloom 

initiation timing, but the significance and partial effects of each predictor varied across indices 

and phenoregions (see Tables 2 and S2, Figs. 6-10). Globally, EA, AMO and NO3 were more 

influential predictors over the oceanic phenoregions, NAO and W were more relevant over the 

Coastal-Slope region, CSET and MLDY showed stronger partial effects over the Upwelling-

influenced region, and riverine discharge was more influential over the Riverine-influenced 

region (see Table 2).  
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Table 2 – Summary of best performing generalized additive models (GAMs) used to predict phenological 
indices for specific phenoregions off SW Iberia, during the period 1997-2015, with indication of model 
explanatory power (MEP, as % variance explained) and environmental predictors, shown in descending 
order of relevance. Symbols ‘, *, **, *** indicate p-value <0.10, <0.05, <0.01 and <0.001, respectively. 
Environmental variables include large-scale climate indices (AMO – Atlantic Multidecadal Oscillation; EA 
– Eastern Atlantic Pattern; MEI – Multivariate ENSO Index; NAO – North Atlantic Oscillation; WeMO – 
Western Mediterranean Oscillation), local hydrodynamic variables (CSET - cross shore Ekman transport 
off the western Portuguese coast; Gdn – Guadiana river discharge; Gdq – Guadalquivir river discharge), 
MLDY – annual average of mixed layer depth; MLDMax – maximum annual value of mixed layer depth, 
and average environmental conditions preceding the initiation of the principal bloom for MLD – mixed 
layer depth; PAR – surface photosynthetically available radiation; NO3 – nitrate concentration averaged 
within the first layer; SST – sea surface temperature; W – wind speed; V – meridional wind speed. 
Subscripts Y, W and S associated to predictors indicate annual, winter and upwelling-favourable season 
(May-September) averages, respectively. See Fig. 4 for region location, Figs. 6-10 for partial effects of 
individual predictors and Table S2 for detailed statistics. 

Phenoregion/Phenological index MEP (%) Predictors 

SW Oceanic phenoregion   

Chl-a peak value  90 EAW
**

, NO3
*
, MLDMax

*
,V’ 

Principal bloom duration  63 AMOY
**, MEIY

*, NO3
* 

Principal bloom timing of initiation  37 PAR* 

Principal bloom peak timing  70 SST**, W* 

Oceanic phenoregion   

Chl-a peak value  86 EAW
**, NO3

* 

Principal bloom duration  95 NO3
**, MLD’ 

Principal bloom timing of initiation  98 NO3
***, MLD**, EAW

* 

Principal bloom peak timing  77 MLDW
** 

Coastal-Slope phenoregion   

Number of blooms per year  58 W**, NAOW
* 

Chl-a peak value  73 NAOY
**, GdnW

**, W’ 

Principal bloom duration  65 M1 – SST**, W**; M2 – Initiation*** 

Principal bloom timing of initiation  47 NAOY
*, W* 

Principal bloom peak timing  86 W*** 

Upwelling-influenced phenoregion   

Number of blooms per year  83 MLDY
**, V**, SST** 

Chl-a peak value  73 MLDY
***, SST**, CSETS

** 

Principal bloom duration  57 CSETY
*, SST* 

Principal bloom timing of initiation  30 CSETY
*
 

Principal bloom peak timing  50 CSETY
* 

River-influenced phenoregion   

Number of blooms per year  79 NAOW
***, GdnY

*, MLDY
*, WeMOW

’ 

Chl-a peak value  71 GdqW
**, PAR* 

Principal bloom duration  83 GdqW
***

, MLDY
**

 

 

Over the SW Oceanic phenoregion, large scale climate indices (EA, AMO, MEI), MLDMax and 

pre-bloom conditions were identified as predictors of the phenological indices (Fig. 6). The 

combined partial effects of EAW, NO3, MLDMax and V explained 90% of the variance in Chl-a 

peak value, and EAW and NO3 represented the most influential predictors, showing negative 



  

 
 

33 
 

quasi-linear and positive linear influences, respectively. Maximum Chl-a peak values were 

associated with years of (high) negative EAW, high NO3 periods preceding the bloom onset 

stage, intermediate MLDMax (ca. 160-200 m) and strong northerly winds (Fig. 6). AMOY was the 

most relevant predictor of bloom duration, showing a linear negative partial effect, and MEI 

represented a minor predictor with non-linear influences and a positive partial effect at 

intermediate levels (ca. -0.5 and 0.5). PAR was the only predictor of the timing of bloom 

initiation, showing a moderate non-linear influence and reduced predictive power. In case of 

bloom peak timing, SST preceding bloom initiation was the most influential predictor, showing 

complex non-linear effects and values below ca. 18.3 oC associated with positive anomalies in 

bloom peak timing (delayed Chl-a peak). W represented a minor predictor of bloom peak 

timing, with linear positive influences (Fig. 6).  

 

 
Figure 6 – Partial effects of individual environmental predictors on phenological indices over the SW 
Oceanic phenoregion, derived from the best performing generalized additive model (GAM). For each 
phenological index (model), the model explanatory power (as % of the variance explained) is shown in 
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brackets (after index designation); individual predictor plots are organized in descending order of their 
explanatory power, and the significance level (p-value) of each predictor is denoted by asterisk symbols 
(top right), where ‘, *, **, *** indicate p-value <0.10, <0.05, <0.01 and <0.001, respectively. For each 
plot, predictor values are represented on the x-axis, and short vertical lines indicate the exact predictor 
observations. Values on the y-axis represent the partial effects that the specific predictor has on the 
anomaly of the phenological index, holding the remaining predictors constant. On the y-axis, numbers in 
parentheses represent the effective degrees of freedom (edf), indicative of the smoothness of each 
function. Values of edf equal to 1 represent a linear effect of the predictor and values higher than 1 
indicate progressively stronger non-linear effects. Solid lines indicate the smoothed non-parametric 
trends, and grey shaded areas designate the point-wise 95% confidence intervals. Regions where the 
95% CI bands enclose the x-axis line indicate no significant effects of the predictor. At each stage, the 
value of the dependent variable (phenological index) is given by the sum of the partial effects of all 
predictors plus a constant. (See Table 2 for environmental variables abbreviations and S2 for detailed 
statistics).  

 

Over the Oceanic region, EAW and NO3 preceding bloom onset were also the most relevant 

predictors of Chl-a peak value. In contrast with the SW Oceanic region, NO3 effects were non-

linear, and positive for NO3 below ca. 0.4 µM. Higher Chl-a peak values were therefore 

associated with years of high negative EAW and intermediate NO3 values (Fig. 7). NO3 and MLD 

conditions preceding bloom onset were significant predictors of bloom duration. NO3 partial 

effects were significant and negative above a threshold of ca. 0.4 µM (shorter blooms) and 

MLD effects, less significant, were positive during periods of MLD higher than ca. 60 m. For the 

timing of bloom initiation, NO3 and MLD preceding bloom onset were the most influential 

predictors. The former showed highly significant non-linear effects, positive (delayed bloom 

initiation) for NO3 higher than 0.4 µM, and MLD and EAY presented minor linear positive 

influences on bloom initiation. MLDW was the single predictor of bloom peak timing over this 

phenoregion, showing complex non-linear influences, mostly positive for years of MLDW higher 

than ca. 100 m (Fig. 7).  
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Figure 7 – Partial effects of individual environmental predictors on phenological indices over the Oceanic 
phenoregion, derived from the best performing generalized additive model (GAM). See caption of Figure 
6 for further details. 

 

Over the Coastal-Slope phenoregion, NAO and W preceding bloom initiation were the most 

influential predictors affecting all (W) or most (NAO) phenological indices (Fig. 8). W showed a 

negative linear influence on the number of blooms per year, and NAOW presented positive 

effects during negative NAO years. For Chl-a peak value, NAOY and GdnW were the most 

relevant predictors, exerting linear negative and positive effects, respectively; high Chl-a peak 

values were therefore associated with years of high negative NAO and high riverine discharge. 

W showed minor influences, with positive effects under W < ca. 7.5 m s-1. SST and W preceding 
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bloom initiation were significant predictors of bloom duration, both showing linear to quasi-

linear positive effects on this index (see Bloom duration M1, Fig. 8). However, over the 

Coastal-Slope phenoregion, timing of bloom initiation was a best predictor of bloom duration 

(see Bloom duration M2, Fig.8). For the timing of bloom initiation, NAOY and W were 

significant predictors, showing moderate linear positive and negative influences, respectively. 

W was the single predictor of bloom peak timing over this phenoregion, showing complex non-

linear influences; negative anomalies in this index were mostly associated with years of 

extreme values of W preceding principal bloom initiation (Fig. 8). 

 
Figure 8 – Partial effects of individual environmental predictors on phenological indices over the Coastal-
Slope phenoregion, derived from the best performing generalized additive model (GAM). See caption of 
Figure 6 for further details. 
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Over the Upwelling-influenced region, the number of bloom events per year was predicted 

using a combination of MLDY, V and SST (Fig. 9). MLDY and V showed linear opposing 

influences, negative and positive, respectively, while SST showed a positive influence below ca. 

19.5 oC. For Chl-a peak value, SST and CSETS showed linear to quasi-linear negative effects 

while MLDY, the most influential predictor, presented mostly positive influences for MLD 

higher than ca. 43 m. Higher Chl-a peak values were associated with years of high MLDY, strong 

upwelling intensity during the upwelling favourable period (negative CSETS), and low SST 

values preceding the initiation of the principal bloom. In case of bloom duration, CSETY and SST 

were the most relevant predictors; SST showed negative linear effects and CSETY exhibited 

non-linear effects, negative for CSETY higher than ca. -400 m3 s-1 km-1 coastline. CSETY was also 

the single predictor of bloom initiation and peak timings, showing non-linear effects on these 

indices. Years with intermediate annual average upwelling intensities (-400 < CSETY <-300 m3 s-

1 km-1 coastline) were generally associated with a moderate delay in bloom initiation and peak 

timing, and extreme upwelling intensities (CSETY < ca. -500 m3 s-1 km-1 coastline) were related 

with earlier Chl-a peak values (Fig. 9).  
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Figure 9 – Partial effects of individual environmental predictors on phenological indices over the 
Upwelling-influenced phenoregion, derived from the best performing generalized additive model 
(GAM). See caption of Figure 6 for further details.  

 

Over the River-influenced phenoregion, riverine discharge was a significant predictor of most 

phenological indices. NAOW was the most influential predictor of the number of blooms per 

year over this region, showing a linear positive effect. Partial effects of GdnY and MLDY on this 

index were minor and non-linear, positive for GdnY above ca. 75 m3 s-1 and MLDY below ca. 

23m (Fig. 10). For Chl-a peak value, GdqW was the most significant predictor, with a non-linear 

positive influence, and PAR showed minor negative linear effects on this index. In case of 

bloom duration, GdqW and MLDY were identified as the most influential predictors, showing 
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non-monotonic effects. GdqW values lower than ca. 750 m3 s-1 showed positive effects on 

bloom duration (negative effects for higher values), and MLDy values lower than ca. 25 m 

showed negative effects on this index (Fig. 10). No significant predictive models were derived 

in case of bloom initiation and peak timings over the River-influenced phenoregion. 

 

 
Figure 10 – Partial effects of individual environmental predictors on phenological indices over the River-
influenced phenoregion, derived from the best performing generalized additive model (GAM). See 
caption of Figure 6 for further details.  

 

4 - Discussion 

An 18-year time series of OCRS Chl-a was used to evaluate phytoplankton phenological 

patterns over the SWIP area, and subsequently applied as the basis for an unsupervised, 

objective partition of the study area. In addition to the multiple potential applications 

associated with the delineation of ecosystem partitions (e.g., biogeochemical modelling, 
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marine spatial planning, ecosystem-based management; see review by Krug et al., 2017a), this 

SWIP partition was specifically used as a framework for discriminating the environmental 

drivers of phytoplankton phenology over a complex marine domain. Most phytoplankton 

global and regional phenology studies have addressed indices related to the principal annual 

bloom event (e.g., spring bloom), including bloom magnitude, timing and duration (e.g., 

Henson et al., 2006, 2010, 2018; Racault et al., 2012; Sapiano et al., 2012; Soppa et al., 2016; 

Kostadinov et al., 2017; see Friedland et al., 2016, 2018). The number of studies evaluating 

multiple bloom events per year, usually two (e.g., spring and autumn blooms; Winder and 

Cloern, 2010; Martinez et al., 2011; Sapiano et al., 2012; Chiswell et al., 2013; González 

Taboada and Anadón, 2014; Land et al., 2014; Racault et al., 2015, 2017; Friedland et al., 2016) 

is, in fact, limited. Over complex coastal marine domains, such as upwelling-influenced areas 

with multiple bloom events per year (Foukal and Thomas, 2014), a more penetrating analysis 

of phytoplankton phenology is required. In the present study, in addition to the indices 

associated to principal blooms, other indices were used, including the number of bloom events 

and the total duration of all events per year, as a way to enhance the comprehensive 

understanding of the processes shaping phytoplankton phenology, and their responses to 

environmental variability and change (Vargas et al., 2009). Our strategy delineated 

phenoregions over the SWIP domain, with distinct phenological indices and variable 

interannual trends and interactions with environmental variables, enhancing the advantage of 

a partition-based strategy to investigate phytoplankton phenology over heterogeneous regions 

(Zhao et al., 2013; Foukal and Thomas, 2014; Henson et al., 2018). Morever, the use of GAM 

analyses allowed the identification of relevant predictors of phytoplankton phenology, 

incorporating multiple, linear and complex non-linear, linkages between phenological indices 

and environmental determinants.  
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4.1 Phenology-based partition of the marine domain off SW Iberia 

Our phenology-based static partition objectively delineated five regions over the SWIP area, 

including two over the oceanic domain and three phenoregions over the coastal and 

continental slope areas. This partition contrasts with global scale partitions, which subjectively 

imposed pre-defined rectilinear boundaries over the study region (e.g., Sherman, 1994; 

Longhurst, 2007; Spalding et al., 2007, 2012; see review by Krug et al., 2017a). The phenology-

based partition showed a remarkable spatial coherency, with clear coastal-offshore and 

latitudinal gradients. These gradients were also visible in previous unsupervised partitions, 

including the macroscale dynamic classification of the European seas (Hoepffner and Dowell, 

2005), and the static (Krug et al., 2017b) and dynamic mesoscale SWIP partitions (Krug et al., 

2018). The number of phenoregions was lower than the number of dynamic abiotic-based 

environmental provinces (up to 12; Krug et al., 2018), and static regions based on EOF 

dominant modes of Chl-a variability (nine; Krug et al., 2017b), previously reported for the 

study area. Likewise, compared with the results of our study, a higher number of coastal 

regions (four) was identified in partition studies addressing the GoC (Navarro and Ruiz, 2006; 

Muñoz et al., 2015).  

Our phenology-based partition clearly delimited the SWIP region with strongest upwelling 

intensity (Relvas et al., 2007), the Upwelling-influenced phenoregion, where upwelling 

patterns strongly modulate abiotic variables, phytoplankton biomass and annual cycles 

(Navarro and Ruiz, 2006; Goela et al., 2014; Krug et al., 2017b, 2018). The SWIP region with 

strongest influence of riverine discharges (Vargas et al., 2003; García-Lafuente et al., 2006; 

Caballero et al., 2014) was also differentiated, as the River-influenced phenoregion. Previous 

unsupervised partitions of the SWIP area also reflected the influence of coastal upwelling and 

riverine discharges (Navarro and Ruiz, 2006; Muñoz et al., 2015; Krug et al., 2017b, 2018). Over 

the ocean domain, our unsupervised objective partition differentiated the southwesternmost 
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area (SW Oceanic) from the other oceanic areas (Oceanic phenoregion) (Fig. 4). These open 

ocean sectors were also differentiated in previous SWIP partitions, based on Chl-a (Krug et al., 

2017b) and abiotic variables (Krug et al., 2018). The former sector was previously associated 

with “low to very low Chl-a” (Hoepffner and Dowell, 2005), consistent with the oligotrophic 

nature of the eastern North Atlantic Subtropical Gyre province (Longhurst, 2007; Teira et al., 

2005). 

 

4.2 Phytoplankton phenological patterns off SW Iberia 

During this 18-year study period, phytoplankton phenology patterns showed striking 

differences between open ocean and coastal phenoregions (see Fig. 3), with increasing 

variability over the latter (Figs. 4 and 5). Despite the significant differences in the number of 

bloom events per year and bloom duration between open ocean and coastal phenoregions 

(Figs. 5A and 5D), the duration of all blooms events per year was similar across phenoregions 

(Fig. 5B). This similarity indicates that the environmental conditions that promote positive 

phytoplankton net growth rates (i.e., biomass accumulation) are more sustained over the open 

ocean and more intermittent over coastal areas. Indeed, coastal areas are highly-

heterogeneous transition zones (Cloern and Jassby, 2008; Winder and Cloern, 2010), with 

strong physical and chemical variability at short temporal scales, naturally imposed by the 

proximity with terrestrial sources and topographic irregularities, including riverine plumes, 

coastal upwelling events, and mesoscale circulation features (García-Lafuente and Ruiz, 2007; 

Relvas et al., 2007; Criado-Aldeanueva et al., 2009; Caballero et al., 2014).  

Over the open ocean SWIP phenoregions, phytoplankton presented a unimodal annual cycle, 

and bloom events (ca. 1 year-1) were prolonged (ca. 18-23 weeks), typically initiated around 

November, peaking in March and terminating in April. These phenological properties, including 
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the absence of secondary autumn blooms, were consistent with those usually reported in 

global (Kahru et al., 2010; Cole et al., 2012; D’Ortenzio et al., 2012; Racault et al., 2012; 

Sapiano et al., 2012; Cabré et al., 2016) and basin-scale phenological studies which included 

the SWIP area (Siegel et al., 2002; Ueyema and Monger, 2005; Henson et al., 2009; Brody et 

al., 2013; Ferreira et al., 2014; Land et al., 2014; González Taboada and Anadón, 2014). Yet, 

some studies reported delayed bloom initiation and shorter primary blooms for the oceanic 

SWIP area (Friedland et al., 2016, 2018). Over open ocean phenoregions, blooms mostly 

initiated during the MLD deepening stage (ca. one month after MLD deepening onset timing), 

some blooms even terminated during this period, and mostly peaked during the MLD shoaling 

phase. Im values at the time of bloom initiation (2.33±0.70 mol photons m-2 d-1), usually 

interpreted as phytoplankton compensation irradiance, were consistent with published values 

of community compensation irradiance (ca. 1.0 - 3.6 mol photons m-2 d-1; Siegel et al., 2002; 

Henson et al., 2006; Zhao et al., 2013). Despite decreasing PAR, photoperiod and Im values 

during the MLD deepening stage, light conditions during this period were sufficient for 

exploitation by phytoplankton of the new supply of nutrients entrained into the euphotic zone, 

leading to late winter-spring blooms. These events have been typically reported for subtropical 

regions, and interpreted as a sign of nutrient limitation (Follows and Dutkiewicz, 2002; Siegel 

et al., 2002; Longhurst, 2007). Conversely, over temperate and sub-polar regions (Henson et 

al., 2009; Lacour et al., 2015; Martinez et al., 2011; González Taboada and Anadón, 2014; 

Sallée et al., 2015), delayed spring blooms, usually initiated during the MLD shoaling phase, are 

interpreted as a sign of light limitation, in accordance with the critical depth hypothesis 

(Sverdrup, 1953).  

Even if, from a bottom-up perspective, MLD deepening could effectively increase nutrient 

availability promoting bloom initiation, our data set does not allow the rejection of other 

alternative bloom initiation hypothesis (see reviews by Fischer et al., 2014; Franks, 2014; 

Chiswell et al., 2015; Cole et al., 2015 and references therein), including the critical turbulence 
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hypothesis (Huisman et al., 1999), eddy-driven stratification hypothesis (Mahadevan et al., 

2012) and the disturbance-recovery hypothesis (Behrenfeld, 2010; Boss and Behrenfeld, 2010; 

Behrenfeld et al., 2013). The loss-driven hypothesis could support the initiation of 

phytoplankton blooms over these phenoregions (see Navarro et al., 2012; Krug et al., 2017b). 

Subsequent Chl-a increase and peak-values during the MLD shoaling phase probably reflect the 

effects of light-stimulation on phytoplankton instantaneous growth rates (e.g., Sverdrup, 1953; 

Behrenfeld and Boss, 2014; Itoh et al., 2015). However, thoroughly testing the different 

hypotheses underlying bloom initiation, including the critical depth hypothesis (Sverdrup, 

1953), would effectively require the measurement of short-term variability in vertical gradients 

of turbulence, which could allow the differentiation between the thoroughly mixed top layer 

(surface turbulent layer) and MLD derived from hydrographic data (see Franks, 2014), and in 

situ growth and mortality rates of phytoplankton.  

Over the Coastal-Slope phenoregion, Chl-a also presented a unimodal annual cycle but bloom 

duration (2-25 weeks), number of bloom events per year (1-7 events year-1) and timing of 

bloom initiation were highly variable. Compared with open ocean phenoregions, bloom 

initiation was delayed over the Coastal-Slope region, as also reported for other marine 

domains (e.g., Liu et al., 2014). Further, a relatively large proportion of bloom events were 

initiated during the MLD shoaling phase (39% principal blooms and 60% all events), sometimes 

specifically during the upwelling-favourable period (May-September; Relvas et al., 2007; 14% 

principal blooms and 35% all events). These results are probably a reflection of reduced Im 

values, due to higher turbidity (see Krug et al., 2017b, 2018), and increased nutrient availability 

due to the influence of continental sources (e.g., riverine discharge: Caballero et al., 2014; Krug 

et al., 2018; submarine groundwater discharges: Piló et al., 2018 and references therein) and 

upwelling events (Krug et al., 2017b, 2018).  
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In contrast to previous phenoregions, over the Upwelling-influenced region, Chl-a presented a 

bimodal annual cycle (Fig. 4E) and this region showed the highest mean number of bloom 

events per year (4.4 events year-1). Frequent phytoplankton blooms, associated with enhanced 

nutrient availability driven by upwelling, have also been reported for western Iberia (e.g., 

Moita, 2001; Picado et al., 2014; Bode et al., 2015; Krug et al., 2017b) and other coastal 

upwelling systems (e.g., Carr and Kearns, 2003; Foukal and Thomas, 2014; Corredor-Acosta et 

al., 2015). In contrast to classic sustained phytoplankton blooms, in coastal upwelling systems, 

diatom blooms usually occur as a series of separate, recurrent short blooms, separated by 

upwelling-relaxation periods, when dinoflagellates often bloom (Pitcher et al., 2010; Smayda 

and Trainer, 2010). Over the Upwelling-influenced phenoregion, a large fraction of bloom 

events were initiated during the MLD shoaling phase (72% principal blooms and 80% all 

events), specifically during the upwelling-favourable period (33% principal blooms and 61% all 

events). Phenological studies addressing coastal upwelling systems have also reported a close 

linkage between phytoplankton phenology and upwelling intensity and patterns, with blooms 

mostly initiating during the upwelling active period (Henson and Thomas, 2007; Foukal and 

Thomas, 2014; see next section).  

Over the River-influenced phenoregion, phytoplankton presented a unimodal annual cycle 

and, as for the other coastal phenoregions, multiple short bloom events along the year (up to 6 

bloom events year-1). This phenoregion receives multiple freshwater discharges, from the 

Guadiana and Guadalquivir rivers, coastal wetlands and lagoons (Ria Formosa and Doñana 

park), and small estuarine systems and rivers, including Piedras, Tinto-Odiel (northeastern 

GoC), Oued Loukkos and Sebou (southeastern GoC). Over this turbid Case-II water masses, 

satellite-derived Chl-a retrievals could represent an overestimate, especially during high 

discharge periods (IOCCG, 2000; Caballero et al., 2014; Picado et al., 2014). However a direct 

relationship between river discharge and Chl-a was previously reported for this area (coastal 

northeastern GoC), using both OCRS (Navarro and Ruiz, 2006; Caballero et al., 2014; Krug et 
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al., 2017b; Sala et al., 2018) and in situ collected data (Prieto et al., 2009; Huertas et al., 2006). 

In comparison with the other coastal phenoregions, most bloom events initiated earlier, during 

the MLD deepening phase (as for open ocean regions), and a smaller fraction initiated during 

the MLD shoaling phase (33% principal blooms and 54% all events). Mechanisms underlying 

the positive effects of riverine discharge include its influence as a nutrient source (Cravo et al., 

2006; Reul et al., 2006), and its role as a promoter of water column stratification. Despite high 

turbidity (Caballero et al., 2014), due to salinity stratification, MLD shoaling could be 

anticipated within the area of influence of riverine plumes (Barbosa and Chícharo, 2011), 

thereby enabling earlier bloom initiation, in respect with the Coastal-Slope phenoregion. 

 

4.3 Phytoplankton phenology off SW Iberia: interannual patterns and environmental drivers 

During the 18-year study period, significant interannual trends in putative phytoplankton 

drivers, previously reported by others, included a linear intensification of wind speed over all 

regions (see Fig. S21 in González Taboada and Anadón, 2014), an increase in northerly winds 

and upwelling intensity over the Upwelling-influenced region, a complex non-linear pattern in 

riverine discharge and an increase in MLD over the coastal phenoregions (see Krug et al., 

2017b and references therein). Despite the generalized ocean warming observed and 

anticipated for the study area (Krug et al., 2017b; Baptista et al., 2017), no significant trends in 

SST were detected during our study period. Furthermore, unreported trends over the SWIP 

area were also detected, including linearly increasing delays in MLD deepening (over open 

ocean phenoregions) and shoaling onsets (except SW Oceanic), monotonic increases in PAR 

over all phenoregions, and linear increases in NO3 over all except the Upwelling-influenced 

region. Notwithstanding the significant trends identified in individual environmental variables, 

strong interannual variability patterns in phenological indices were not detected. This could be 

associated with the resilience of phytoplankton to environmental variability. Moreover, 
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phytoplankton act as an integrator of alterations in multiple drivers, some with opposing 

effects, potentially showing slower rates of change than their drivers (Henson et al., 2017). 

Taking into consideration the region-specific linkages between Chl-a and these environmental 

variables over SWIP (see Krug et al., 2017b and references therein), alterations in 

phytoplankton phenological indices are expected to occur during the study period, and vary 

among phenoregions. Indeed, GAM analyses revealed across-region differences in interannual 

patterns of phenological indices and their linkages with large-scale climate indices, local-scale 

hydrological processes and ocean abiotic variables. Yet, as pointed by Krug et al. (2017b), 

significant associations between phenological indices and environmental variables (predictors) 

may not necessarily represent causation, and should be interpreted with caution, even when 

plausible mechanistic relationships are proposed. The inclusion of other potential drivers of 

phytoplankton phenology, such as abiotic environmental variables (e.g., heat fluxes, eddy 

kinetic energy; Yamada and Ishizaka, 2006; Song et al., 2010, 2011; Zhao et al., 2013; Cole et 

al., 2015; Lacour et al., 2015), as well as top-down controls (e.g., grazing, viral lyses, 

sedimentation; e.g., Behrenfeld, 2014; Friedland et al., 2016; Martinez et al., 2016; Zarubin et 

al., 2017), would likely promote a more robust understanding of phytoplankton phenology and 

controls over the SWIP region.  

 

4.3.1 Open Ocean phenoregions 

GAMM analysis identified complex non-linear interannual patterns in bloom peak timing and 

duration, more notable for the duration of the accumulation phase, over the SW Oceanic 

region, and no significant trends over the Oceanic region (Fig. S4). Previous studies, based on 

linear analysis, a stiffer approach, reported no significant trends in spring bloom duration, 

magnitude and initiation timing over the SWIP region (Racault et al., 2012; Land et al., 2014). 
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Yet, Kahru et al. (2010) detected a linearly increasing delay in bloom peak timing over this 

region. Further, other studies (González Taboada and Anadón, 2014; Zhang et al., 2017; 

Friedland et al., 2018) also reported significant but spatially variable, in some cases 

contrasting, linear trends, for both bloom magnitude, timing and duration over the SWIP area, 

thus supporting the relevance of a phenoregion-based analysis. Over the oceanic regions, 

timing of bloom initiation and bloom duration were not correlated, in contrast with previous 

studies referring that early blooms tend to last longer (e.g., Racault et al., 2012; González 

Taboada and Anadón, 2014; Friedland et al., 2016, 2018). 

Phenological variability over the oceanic phenoregions was related with multiple large-scale 

climate indices, MLD values, and pre-bloom conditions. The interpretation of phenology-

climate linkages is not simple since climate indices can affect, directly and indirectly, multiple 

phytoplankton drivers including bottom-up and top-down controls (e.g., Friedland et al., 2016; 

Martinez et al., 2016). Further, their effects on specific drivers can vary, depending on season, 

geographic location and local atmospheric forcing, and interact (see Krug et al., 2017b). Over 

the two oceanic phenoregions, high magnitude blooms were strongly associated with high 

negative EAW years. EA represents the second prominent mode of inter-annual variability over 

the North Atlantic/Europe. This index, particularly important over southern Europe and 

correlated with SST off west Iberia (Santos et al., 2011), was previously associated with Chl-a 

variability over SWIP coast and slope regions (Krug et al., 2017b). The stimulation of bloom 

magnitude (i.e., Chl-a peak value) under negative EAW years could probably reflect an indirect 

beneficial effect of increased mixing intensity, during low SST years.  

Over the SW Oceanic region, prolonged blooms were detected during high negative AMOY and 

low MEI (-0.5 < MEIY < 0.5) years. High negative AMO periods are usually associated with a 

reduction in water column stratification and SST over the North Atlantic (Martinez et al., 

2009), also off Iberia (Santos et al., 2011). Therefore, enhanced vertical advection of nutrients 



  

 
 

49 
 

into the euphotic zone during these years probably supported longer bloom events over this 

relatively oligotrophic nutrient-limited phenoregion (Krug et al., 2018). AMO variability was 

also negatively associated with Chl-a over the SWIP open ocean domain (see Krug et al., 

2017b), and considered a relevant driver of phytoplankton biomass (Martinez et al., 2009) and 

phenology over the North Atlantic basin (D’Ortenzio et al., 2012; Martinez et al., 2016). The 

SW Oceanic phenoregion was the only region depicting significant relationships between MEI 

and phytoplankton phenology. ENSO patterns and MEI have been referred as strong 

determinants of interannual variability in phytoplankton biomass and phenology over tropical 

regions, namely in the Pacific Ocean (Yoo et al., 2008; Boyce et al., 2010; D’Ortenzio et al., 

2012; Racault et al., 2012; Foukal and Thomas, 2014; Corredor-Acosta et al., 2015). However, 

recent studies also reported significant MEI effects, at a global scale, on Chl-a (von 

Schuckmann et al., 2017) and phytoplankton phenology (Racault et al., 2017), sometimes with 

opposing regional effects. For non-tropical sectors of North Atlantic, positive MEI periods were 

associated with intensified winds, decreased light availability, and reduced and delayed 

phytoplankton growth. Yet, weaker and spatially variable linkages between MEI and 

phytoplankton phenology were detected over the SWIP area (Racault et al., 2017). 

In contrast to previous studies, no significant relationships between phenological indices and 

NAO variability were detected over the oceanic regions. For most of the eastern-central North 

Atlantic, shorter blooms (Racault et al., 2012), with earlier initiation (Ueyama and Monger, 

2005; Friedland et al., 2016) have been observed during high negative NAO periods, and 

usually associated with decreased (western) wind-induced vertical mixing and higher Im. 

However, over the SWIP oceanic phenoregions, this NAO effect does not necessarily apply due 

to a relatively stronger nutrient limitation (see Krug et al., 2017b, 2018). In fact, the lack of 

significant relationships between NAO and bloom initiation timing was also reported for the 

the subtropical North Atlantic (Henson et al., 2009).  
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Environmental conditions preceding bloom initiation and MLD annual maximum (MLDMax), 

mean annual (MLDY) and mean winter (MLDW) values were also significant predictors of 

phytoplankton phenology over the SWIP oceanic phenoregions, reinforcing the relevance of 

vertical mixing and nutrient limitation over these regions (Krug et al., 2017b, 2018). NO3 

conditions preceding bloom initiation were generally related with phenology over both oceanic 

regions. Over SW Oceanic phenoregion, high NO3 values were positively and linearly associated 

with bloom magnitude (i.e., Chl-a peak value), a signature of intensified oligotrophic conditions 

over this oceanic region (Krug et al., 2018). Over the SW Oceanic region, MLDMax higher than 

ca. 200 m showed a negative influence on bloom magnitude, probably a result of dilution 

caused by the entrainment of phytoplankton-free deep water; yet, values between 160 m and 

200 m showed a positive influence on bloom magnitude. For the Oceanic region, high MLD 

values prior to bloom initiation were related with longer bloom events. These influences of 

MLD on phenological indices can be probably explained by increased nutrient fluxes into the 

euphotic zone, under higher mixing conditions, but also by a decline in phytoplankton grazing-

induced mortality (see Behrenfeld and Boss, 2014). Previous studies have also reported strong 

linkages between phytoplankton phenology and MLD or its timing metrics (e.g., initiation of 

mixed layer shoaling), in some cases mediated by wind forcing (Ueyama and Monger, 2005; 

Yamada and Ishizaka, 2006; Henson et al., 2006; Martinez et al., 2011; González Taboada and 

Anadón, 2014). These linkages were detected over North Atlantic (e.g., Follows and 

Dutkiewicz, 2002; Siegel et al., 2002; Henson et al., 2009; Martinez et al., 2011; Zhai et al., 

2011; Lavigne et al., 2013; Zhao et al., 2013; Ferreira et al., 2015; Lacour et al., 2015) and other 

marine domains (e.g., Yamada and Ishizaka, 2006; Yoo et al., 2008; Chiswell et al., 2013; 

Lavigne et al., 2013; Shiozaki et al., 2014), with usually positive effects in subtropical (nutrient 

limited) and negative effects in temperate-polar (light limited) areas.  
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4.3.2 Coastal phenoregions 

Interannual patterns in phenological indices varied across the three coastal phenoregions, 

reflecting the higher complexity of environmental forces driving phytoplankton biomass and 

phenology over SWIP coastal areas (see Krug et al., 2017b, and references therein). GAMM 

analysis identified an increasingly delay in the timings of bloom initiation and termination for 

the River-influenced region, and linear increases in bloom duration and its deceleration phase 

for the Coastal-Slope and Upwelling-influenced regions, respectively (see Fig. S4). Phenological 

studies addressing the SWIP region generally used global or large scale spatial coverages 

(Kahru et al., 2010; Racault et al., 2012; González Taboada and Anadón, 2014; Land et al., 

2014; Zhang et al., 2017), thus not allowing the inspection of trends in phenology over specific 

SWIP coastal domains. The interannual variability patterns in phytoplankton phenology and 

underlying environmental drivers reported for other coastal systems are extremely variable, 

depending on ecosystem properties, environmental alterations and phytoplankton controls, 

being further affected by variable methodological approaches (e.g., North Sea: Edwards and 

Richmond, 2004; Wiltshire and Manly, 2004; Wiltshire et al., 2008; Kromkamp and van 

Engeland, 2010; Baltic Sea: Groetsch et al., 2016; Kahru et al., 2015; Northwest Atlantic 

shelves: Song et al., 2010; Zhao et al., 2013). As example, variable interannual patterns in 

phenological indices and multiple environmental drivers have been reported for different 

areas within the upwelling-influenced California Current System (Kim et al., 2009; Henson and 

Thomas, 2007; Foukal and Thomas, 2014), supporting the need for region-oriented analyses of 

phytoplankton phenology over coastal domains (Foukal and Thomas, 2014). 

Over the Coastal-Slope SWIP phenoregion, NAO and/or wind speed (W) prior to bloom 

initiation, not influential over the oceanic regions, were the most significant predictors of all 

phenological indices. High negative NAO years were associated with a reduction in bloom 

frequency per year, higher Chl-a peak values and antecipated bloom initiation. NAO variability 
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has been associated with changes in several coastal variables and processes over SWIP and 

adjacent areas, and is positively correlated with SST and upwelling intensity over the west 

Iberia (deCastro et al., 2006; Santos et al., 2011; Pardo et al., 2011; Krug et al., 2017b), and 

negatively related to zonal westerly winds, wave height (Kumar et al., 2016), storminess 

(Plomaritis et al., 2015), precipitation (Martin-Vide and Lopez-Bustins, 2006), and riverine 

discharge over the SWIP area (Krug et al., 2017b). Thus, during negative NAO periods, 

increased availability of nutrients derived from intensified wind-induced mixing and riverine 

discharges, could partially support high magnitude blooms and earlier bloom initiation.  

For the Coastal-Slope phenoregion, high W values prior to principal bloom initiation were 

associated with a reduction in the number of bloom events per year, but stronger, earlier and 

longer principal blooms. These positive influences of wind speed could represent their effects 

on water column mixing and nutrient availability, potentially more effective over this relatively 

shallower SWIP domain, in comparison with oceanic phenoregions. Longer blooms could be 

associated with a relative depletion in nutrient availability and increase in predator density, 

pre-conditioning the success of subsequent phytoplankton blooms and, therefore, reducing 

bloom frequency. Over this phenoregion, bloom initiation timing and duration were 

significantly related, as reported in previous studies (Racault et al., 2012; González Taboada 

and Anadón, 2014; Friedland et al., 2016, 2018), and blooms that initiated earlier lasted longer 

(p<0.001). This relationship has been explained by decreased phytoplankton mortality during 

anticipated bloom events (Racault et al., 2012; Friedland et al., 2016, 2018). Prolonged periods 

of high nutrient availability for earlier blooms, which initiated mostly during the MLD 

deepening phase, could further explain the negative association between bloom initiation and 

duration. Over this phenoregion, riverine discharge was also an influential predictor of bloom 

magnitude, with high Chl-a peak values associated with high GdnW years. High Gdq discharge 

periods are associated with extended turbid river plumes, thus affecting adjacent coastal areas 

(Caballero et al., 2014) within this phenoregion (Fig. 4A), and potentially increasing nutrient 
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availability (see Krug et al., 2018). Yet, these optically complex Case-II water masses could be 

associated with an overestimation of Chl-a (e.g., Caballero et al., 2014; IOCCG, 2000; Picado et 

al., 2014), partially affecting our estimates of bloom magnitude. 

Over the River-influenced phenoregion, GAM analysis identified riverine discharge as an 

influential predictor of bloom frequency, intensity and duration. High river discharge years 

were generally associated with high magnitude blooms, and a high number of blooms per year. 

GdqW values up to ca. 750 m3 s-1 showed also positive effects on bloom duration. Despite 

increased turbidity (Caballero et al., 2014), riverine-driven inputs in dissolved inorganic 

nutrients (Cravo et al., 2006; Reul et al., 2006) possibly sustained multiple events and 

intensified principal blooms, during high discharge years (see Krug et al., 2017b).  

Over the Upwelling-influenced region, high mean annual MLD values were associated with 

fewer but stronger blooms per year, probably reflecting the stimulatory effects of increased 

nutrient availability on primary blooms (Krug et al., 2018). Moreover, upwelling intensity was 

also an influential predictor of other phenological indices. High upwelling intensities (i.e., high 

negative CSETS) and low SST values prior to the principal bloom initiation were associated with 

high magnitude principal blooms, and intermediate CSETY and low SST were also related with 

prolonged blooms. Indeed, the longest bloom event detected over this phenoregion (18 

weeks; May 2002 – Sep 2003; see Fig. S3) was associated with a period of persistently strong 

upwelling intensity over the west Portuguese coast (Fig. S6). These results probably reflected 

the effects of increased nutrient availability, associated with intense upwelling events (see 

Krug et al., 2017b, 2018). Positive effects of upwelling patterns and intensity on bloom timing 

and magnitude were reported for other coastal upwelling systems (Henson and Thomas, 2007; 

Foukal and Thomas, 2014; Corredor-Acosta et al., 2015). However, no significant relationships 

between upwelling-associated abiotic variables (e.g., SST, wind, upwelling intensity) and 

phytoplankton phenology were detected in some systems (Kim et al., 2009). In our study, 
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interestingly, no apparent additional positive effects of upwelling on phenological indices were 

detected for very high annual mean upwelling intensities (CSETY < ca. -500 m3 s-1 km-1 

coastline). This could be partially explained by the increased offshore horizontal advection of 

coastal phytoplankton during very strong upwelling events (e.g., Pitcher et al., 2010; Foukal 

and Thomas, 2014; Palma et al., 2010). Under these conditions, Chl-a rich mesoscale upwelling 

filaments, eddies and meanders could be advected beyond the 1000 m isobath (Souza and 

Bricaud, 1992; Peliz et al., 2004; Sánchez et al., 2008; Krug et al., 2017b, 2018). In fact, 

increased advection of phytoplankton could also explain the reduction in bloom frequency 

under strong northerly winds (negative V) and low SST, both indicators of strong upwelling 

intensity. Furthermore, higher nutrient availability could also sustain prolonged blooms, 

resulting progressively in fewer events per year.  

 

5 - Conclusions 

An 18-year time series of satellite-derived Chl-a was used to explore phytoplankton phenology, 

and phenological indices were directly used for objectively partitioning the heterogeneous 

SWIP area. Our analysis identified five spatially coeherent phenoregions, including two open 

ocean and three coastal regions, with similar phenological patterns. Over the open ocean 

phenoregions, a single, long, low magnitude bloom per year typically initiated around 

November. Bloom initiation occurred during the MLD deepening phase, reflecting the 

relevance of nutrient limitation over these regions. Coastal phenoregions presented multiple 

(up to six), short bloom events throughout the year, higher intra-annual variability, and more 

complex linkages with environmental drivers. A significant proportion of the blooms over the 

Coastal-Slope phenoregion initiated during the early-MLD shoaling phase, indicating the 

increased relevance of light limitation, whereas over the Upwelling-influenced region, a higher 

fraction of blooms initiated later, during the upwelling favourable period.  
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Interannual patterns in phenological indices and the underlying effects of physical-chemical, 

coastal hydrodynamic variables, and regional and basin-scale climate indices varied across 

phenoregions. Despite significant interannual trends detected for multiple environmental 

variables, phenological indices did not exhibit strong interannual variability patterns. This 

could be associated with the resilience of phytoplankton to environmental variability and/or 

the neutralization of opposing effects of individual drivers, acting simultaneously on 

phytoplankton. 

Overall, for the SW Oceanic and Oceanic phenoregions, large-scale climate indices (EA, AMO), 

along with MLD and NO3 values preceding primary bloom events, were relevant predictors of 

phytoplankton phenological indices (bloom magnitude, duration and timing), supporting the 

relevance of nutrient limitation. Over the Coastal-Slope phenoregion, NAO and W were the 

most relevant predictors of phenology (bloom frequency, magnitude, duration and timing). 

Further, primary bloom duration was best predicted by bloom onset timing, earlier blooms 

lasted longer, and bloom magnitude was also positively influenced by riverine discharge. The 

later was the most influential predictor of phenology over the River-influenced phenoregion, 

affecting bloom frequency, magnitude and duration. For the Upwelling-influenced region, 

upwelling intensity and mean annual MLD showed stronger partial effects on phytoplankton 

phenology, affecting all indices. 

Our results reinforce the advantage of a proper geographic partition for the analysis of 

phytoplankton dynamics and phenology, namely over coastal areas. The occurrence of 

complex, non-linear interannual patterns and linkages between environmental drivers and 

phenological indices, highlight the need for flexible statistical approaches, not limited to linear 

analyses. Globally, our phenology-based unsupervised approach promoted a biologically-

relevant partition, which improved our current knowledge of phytoplankton variability 

patterns and controls over a complex marine domain, potentially supporting the prediction of 

phytoplankton responses to future environmental changes.  
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Highlights:  

- Phytoplankton phenology is derived from ocean colour remote sensing imagery 

- Phenological indices are used for an unsupervised partition of the surface ocean 

- Region-specific phenology patterns and environmental drivers are evaluated 
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Table S1- Summary of results from the generalized additive mixed models (GAMM) used to model interannual variability for SW 
Oceanic, Oceanic, Coastal-Slope and River-influenced phenoregions off South West Iberia Peninsula (1997 - 2015). Information 
includes model adjusted coefficient of determination (R2

a), equivalent to total explained deviance, parametric coefficients 
(intercept ± 1 Standard Error), estimated degrees of freedom (edf) and approximate significance level (p-value) for the model 
covariates. Smoothing functions are referred to as s(Month/Time). Values of edf equal to 1 imply a linear effect and values 
higher than 1 indicate progressively stronger nonlinear effects. Symbols ‘, *, **, *** indicate p-value <0.10, <0.05, <0.01 and 
<0.001, respectively. 

SW Oceanic phenoregion 

Duration of principal bloom event 
 

Intercept SE p-value 
20.944 0.2167 <2e-16 *** 

 

      Smooth terms Edf p-value 
s (Year) 6.710 0.06’ 

 

R2
adj. = 0.54; n = 18 

  

Duration of principal bloom accumulation phase 
 

Intercept SE p-value 
14.678 0.2018 3.4e-16*** 

 

      Smooth terms Edf p-value 
s (Year) 5.927 9.34e-5 *** 

 

R2
adj. = 0.42; n = 18 

 

Principal bloom timing of peak 
 

Intercept SE p-value 
24.731 0.2477 <2e-16 *** 

 

      Smooth terms edf p-value 
s (Year) 5.091 7.75e-4*** 

 

R2
adj. = 0.41; n = 18 

  

Coastal-Slope phenoregion 

Total duration of bloom events 
 

Intercept SE p-value 
23.160 0.7017 3.8e-16*** 

 

      Smooth terms edf p-value 
s (Year) 1.000       0.09’ 

 

R2
adj. = 0.12; n = 18 

 

Duration of principal bloom event 
 

Intercept SE p-value 
13.708 1.021 3.95e-10*** 

 

      Smooth terms edf p-value 
s (Year) 1.000 0.06’ 

 

R2
adj. = 0.10; n = 18 

  

Upwelling-influenced phenoregion 

Duration of principal bloom deceleration phase 
 

Intercept SE p-value 
3.993 0.350 4.26e-9*** 

 

      Smooth terms edf p-value 
s (Year) 1.000       9.02e-4*** 

 

R2
adj. = 0.22; n = 18 

 

River-influenced phenoregion 

Total duration of bloom events 
 

Intercept SE p-value 
21.8910 0.5499 2.27e-16 *** 

 

      Smooth terms edf p-value 
s (Year) 2.317 0.07’ 

 

R2
adj. = 0.32; n =18 

 

Principal bloom timing of initiation 
 

Intercept SE p-value 
12.048 1.583 1.05e-6 *** 

 

      Smooth terms edf p-value 
s (Year) 1.000 0.09’ 

 

R2
adj. = 0.12; n = 18 

 

Principal bloom timing of peak 
 

Intercept SE p-value 
16.798 1.355 2.5e-9*** 

 

      Smooth terms Edf p-value 
s (Year) 1.872 0.03* 

 

R2
adj. = 0.26; n = 18 

 

Principal bloom timing of termination 
 

Intercept SE p-value 
23.445 1.705 2.78e-10 *** 

 

      Smooth terms Edf p-value 
s (Year) 1.00 0.06’ 

 

R2
adj. = 0.04; n = 18 

 

 
 
Table S2 – Summary results of the best-performing generalized additive models (GAM) used to model region-
specific phenological indices off SW Iberia (period: 1997 - 2015) as a function of multiple environmental 
covariates (predictors). Note that only statistically significant covariates were retained in the models. 
Information includes: model adjusted coefficient of determination (R2

adj), equivalent to total explained 
deviance; Akaike’s Information Criteria (AIC); parametric coefficients (intercept ± 1 Standard Error); and 
estimated degrees of freedom (edf) and approximate significance level (p-value) for the model covariates. 



Smoothing functions are referred to as s(i), where i indicates the covariates including large-scale climate indices 
(NAO – North Atlantic Oscillation; AMO – Atlantic Multidecadal Oscillation; EA – Eastern Atlantic Pattern; MEI – 
Multivariate ENSO Index; WeMO – Western Mediterranean Oscillation), local hydrodynamic variables (CSET - 
cross shore Ekman transport off the western Portuguese coast; Gdn – Guadiana river discharge; Gdq – 
Guadalquivir river discharge), MLDY – annual average of mixed layer depth; MLDMax – maximum annual value of 
mixed layer depth, and average environmental conditions preceding the initiation of the principal bloom for 
MLD – mixed layer depth; PAR – surface photosynthetically available radiation; NO3 – nitrate concentration 
averaged within the first layer; SST – sea surface temperature; W – wind speed;  V – meridional wind speed. 
Subscripts Y, W and S associated to predictors indicate annual, winter and upwelling-season (May-September) 
averages, respectively. Symbols ‘, *, **, *** indicate p-value <0.10, <0.05, <0.01 and <0.001, respectively. 

SW Oceanic phenoregion 

Ch-a peak value 
 

Intercept SE p-value 
0.4092 0.0117 3.55e-6*** 

 

      Smooth terms edf p-value 
s (EAW) 1.426 0.009** 

s (MLDMax) 2.528 0.036* 
s (NO3) 1.000 0.018* 

s (V) 3.000 0.078‘ 
 

R2
adj. = 0.90; AIC = -40.71; n = 13 

   

Principal bloom duration 
 

Intercept SE p-value 
20.9231 0.2003 6.03e-14*** 

 

      Smooth terms edf p-value 
s (AMOY) 1.000 0.004** 
s (MEIY) 1.916 0.031* 
s (NO3) 1.000 0.048* 

 

R2
adj. = 0.63; AIC = 34.08; n = 13 

   

Principal bloom timing of initiation 
 

Intercept SE p-value 
11.0556 0.1008 <2e-16*** 

 

      Smooth terms edf p-value 
s (PAR) 2.160 0.032* 

 

R2
adj. = 0.38; AIC =  25.36; n = 18 

   

Principal bloom peak timing 
 

Intercept SE p-value 
24.6667 0.3061 <2e-16*** 

 

      Smooth terms edf p-value 
s (SST) 2.902 0.002** 
s (W) 1.000 0.046* 

 

R2
adj. = 0.70; AIC = 66.58; n = 18 

   

Oceanic phenoregion 

Ch-a peak value 
 

Intercept SE p-value 
0.5623 0.020 7.14e-9*** 

 

      Smooth terms edf p-value 
s (EAW) 2.256 0.006** 
s (NO3) 2.053 0.011* 

 

R2
adj. = 0.86; AIC = -24.42; n = 13 

   

Principal bloom duration 
 

Intercept SE p-value 
19.7692 0.1648 5.74e-13*** 

 

      Smooth terms edf p-value 
s (NO3) 2.819 0.007** 
s (MLD) 2.107 0.062‘ 

 

R2
adj. = 0.95; AIC = 29.29; n = 13 

   

Principal bloom timing of initiation 
 

Intercept SE p-value 
12.7692 0.1667 5.81e-12*** 

 

      Smooth terms edf p-value 
s (NO3) 2.874 57.62e-9*** 
s (MLD) 1.000 0.007** 
s (EAY) 1.000 0.023* 

 

R2
adj. = 0.98; AIC =  29.54; n = 13 

   

Principal bloom peak timing  
 

Intercept SE p-value 
25.0000 0.2107 8.84e-15*** 

 

      Smooth terms edf p-value 
s (MLDW) 8.644 0.004** 

 

R2
adj. = 0.77; AIC = 54.52; n = 18 

 

Coastal-Slope phenoregion 

Number of blooms per year 
 

Intercept SE p-value 
3.500 0.2347 5.27e-10*** 

 

      Smooth terms edf p-value 
s (W) 1.000 0.006** 

s (NAOW) 1.956 0.045* 
 

R2
adj. = 0.58; AIC = 56.38; n = 18 

   

Ch-a peak value 
 

Intercept SE p-value 
0.8944 0.0235 5.56e-13*** 

 

      Smooth terms edf p-value 
s (NAOY) 1.000 0.006** 
s (GdnW) 1.000 0.009** 

s (W) 2.058 0.061‘ 
 

R2
adj. = 0.73; AIC =  -24.24; n = 16 

   

Principal bloom duration – M1 



 

Intercept SE p-value 
13.7778 0.7469 2.03e-11*** 

 

      Smooth terms edf p-value 
s (SST) 1.606 0.002** 
s (W) 1.000 0.004** 

 

R2
adj. = 0.65; AIC = 10.04; n = 18 

   

Principal bloom duration – M2 
 

Intercept SE p-value 
13.7778 0.6998 4e-12*** 

 

      Smooth terms edf p-value 
s (Initiation) 2.008 6.47e-5*** 

 

R2
adj. = 0.69; AIC = 94.98; n = 18 

   

Principal bloom timing of initiation 
 

Intercept SE p-value 
20.2780 1.391 2.89e-10*** 

 

      Smooth terms edf p-value 
s (NAOY) 1.000 0.031* 

s (W) 1.000 0.040* 
 

R2
adj. = 0.47; AIC =  119.70; n = 18 

   

Principal bloom peak timing  
 

Intercept SE p-value 
24.0556 0.5936 9.42e-11*** 

 

      Smooth terms Edf p-value 
s (W) 8.786 2e-4*** 

 

R2
adj. = 0.86; AIC = 91.78; n = 18 

   

Upwelling-influenced phenoregion 

Number of blooms per year 
 

Intercept SE p-value 
4.3889 0.1547 1.69e-12*** 

 

      Smooth terms Edf p-value 
s (MLDY) 1.000 0.001** 

s (V) 1.000 0.003** 
s (SST) 2.821 0.006** 

 

R2
adj. = 0.83; AIC = 42.52; n = 18 

   

Ch-a peak value 
 

Intercept SE p-value 
1.1550 0.0289 1.31e-13*** 

 

      Smooth terms Edf p-value 
s (MLDY) 2.823 7.86e-4*** 
s (SST) 1.765 0.003** 

s (CSETS) 1.000 0.009** 
 

R2
adj. = 0.73; AIC =  --17.34; n = 18 

   

Principal bloom duration 

 

Intercept SE p-value 
8.3333 0.6652 6.32e-9*** 

 

      Smooth terms edf p-value 
s (CSETY) 2.195 0.011* 
s (SST) 1.000 0.011* 

 

R2
adj. = 0.57; AIC = 94.05; n = 18 

   

Principal bloom timing of initiation 
 

Intercept SE p-value 
27.0000 1.753 1.2e-10*** 

 

      Smooth terms edf p-value 
s (CSETY) 1.892 0.037* 

 

R2
adj. = 0.30; AIC =  127.95; n = 18 

   

Principal bloom peak timing 
 

Intercept SE p-value 
31.389 1.669 1.74e-11*** 

 

      Smooth terms edf p-value 
s (CSETY) 2.702 0.015* 

 

R2
adj. = 0.50; AIC = 126.80; n = 18 

   

River-Influenced phenoregion 

Number of blooms per year 
 

Intercept SE p-value 
3.5294 0.1729 1.07e-8*** 

 

      Smooth terms edf p-value 
s (NAOW) 1.000 2.78e-4*** 
s (GdnY) 2.423 0.012* 
s (MLDY) 1.000 0.045* 

s (WeMOW) 1.000 0.072’ 
 

R2
adj. = 0.79; AIC = 43.9; n = 17 

   

Ch-a peak value 
 

Intercept SE p-value 
2.3824 0.1091 9.31e-12*** 

 

      Smooth terms edf p-value 
s (GdqW) 1.7870 0.006** 
s (PAR) 1.000 0.038* 

 

R2
adj. = 0.71; AIC =  26.4; n = 17 

   

Principal bloom duration 
 

Intercept SE p-value 
12.7647 0.5643 4.84e-10*** 

 

      Smooth terms edf p-value 
s (GdqW) 2.815 1.04e-4*** 
s (MLDY) 3.000 0.009** 

 

R2
adj. = 0.83; AIC = 83.88; n = 17 

   

 

 



 
Figure S1 – A) Dissimilarity analysis based on phenological indices averages off SW Iberia, during the 1997-2015 period. Red 
nodes indicate the group with dissimilarity values below the defined threshold (0.1), and the asterisk symbol denotes the 
index selected to represent it. B) Average error (red line) of cross-validations (grey lines) as a function of number of regions 
and the vertical dashed line indicate the threshold defining the optimal number of regions. 

 

 
Figure S2 – Weekly Chl-a values for each phenological region between 1997 and 2015. Black lines represent the annual 
threshold limit and periods delimited represent a bloom situation (see Fig. 4 for region location). 

 

 



 
Figure S3 - Time series of chlorophyll-a (Chl-a; black lines; note different y-scales) and bloom periods (coloured-shaded columns) 
for each phenoregion off SW Iberian Peninsula (see Fig. 4 for region location and colour code). Vertical dashed lines indicate the 
first week of September of the respective year. 

 

 



 
Figure S4 - Partial effects of significant interannual variability (expressed as year) of the SW Oceanic, Coastal-Slope, Upwelling 
and River-influenced phenoregions off Southwest Iberia Peninsula (period: 1997-2015; see Fig. 4 for region location), derived 
from generalized additive mixed models (GAMMs). Model explanatory power (as % explained variance) is shown on the top left 



with the significance level (p-value; in parenthesis) of the predictor (year), denoted by asterisk symbols, where ‘, *, **, *** 
indicate p-value <0.10, 0.05, <0.01 and <0.001, respectively. For each plot, years are represented on the x-axis, while values on 
the y-axis represent the partial effects of the specific predictor. Numbers in parentheses on the y-axis represent the effective 
degrees of freedom (edf), indicative of the smoothness of each function; values of edf equal to 1 represent a linear effect of the 
predictor, and values higher than 1 indicate progressively stronger non-linear effects.  Solid lines indicate the smoothed non-
parametric trends, and grey shaded areas designate the point-wise 95% confidence intervals. Regions where the 95% CI bands 
enclose the x-axis line indicate no significant effects of the prediction (see Table S1 for detailed statistics). 

 

 
Figure S5– Temporal variability of climate indices during the period 1997 to 2015 based on monthly values of North Atlantic 
Oscillation index (NAO); Atlantic Multidecadal Oscillation index (AMO); East Atlantic pattern index (EA); Multivariate ENSO 



Index (MEI); Western Mediterranean Oscillation index (WeMO) and winter-averaged (December-March) West Europe 
Pressure Anomaly (WEPA). Vertical dashed lines signalize the month of September of the respective year. 

 

 
Figure S6 - Temporal variability of upwelling intensity and river discharge over the southwest area off the Iberian Peninsula 
(SWIP), during the period 1997 to 2015. Cross-shore Ekman transport, a wind-based upwelling index, for the west Portuguese 
coast (CSET); negative (positive) values indicate upwelling-favourable (upwelling-unfavourable) conditions. Guadiana (Gdn) 
and Guadalquivir (Gdq) river discharge. Red lines represent monthly climatologies for the study period and grey vertical 
dashed lines signalize the month of September of the respective year 
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