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Abstract This paper proposes the use of assimilation of phytoplankton functional types (PFTs) surface
chlorophyll for operational forecasting of biogeochemistry on the North-West European (NWE) Shelf.
We explicitly compare the 5-day forecasting skill of three runs of a physical-biogeochemical model:
(a) a free reference run, (b) a run with daily data assimilation (DA) of total surface chlorophyll (ChlTot),
and (c) a run with daily PFTs DA. We show that small total chlorophyll model bias hides comparatively
large biases in PFTs chlorophyll, which ChlTot DA fails to correct. This is because the ChlTot DA splits
the assimilated total chlorophyll into PFTs by preserving their simulated ratios, rather than taking
account of the observed PFT concentrations. Unlike ChlTot DA, PFTs DA substantially improves model
representation of PFTs chlorophyll. During forecasting the DA reanalysis skill in representing PFTs
chlorophyll degrades toward the free run skill; however, PFTs DA outperforms free run within the
whole 5-day forecasting period. We validated our results with in situ data, and we demonstrated
that (in both DA cases) the DA substantially improves the model representation of CO2 fugacity (PFTs DA
more than ChlTot DA). ChlTot DA has a positive impact on the representation of silicate, while the PFTs
DA seems to have a negative impact. The impact of DA on nitrate and phosphate is not significant. The
implications of using a univariate assimilation method, which preserves the phytoplankton stochiometry,
and the impact of model biases on the nonassimilated variables are discussed.

1. Introduction

Monitoring biogeochemistry in shelf seas is of great significance for the economy, ecosystems understand-
ing and climate studies. The shelf seas contain 90% of world’s fisheries and are responsible for 20% of marine
primary production and 20% of atmospheric carbon dioxide uptake (Borges et al., 2006; Jahnke, 2010; Pauly
et al., 2002). In the North-West European (NWE) Shelf ecosystem the need for more detailed information about
marine ecosystem indicators and processes was clearly pointed out by both users and policy makers (Blauw
et al., 2010; Brandsma et al., 2013; Chassot et al., 2007; Ford et al., 2017; Kurekin et al., 2014; Skogen et al.,
2014). Data assimilation (DA) maximizes the use of information about processes in the shelf seas by method-
ically combining the available information from Earth Observations (EOs; satellite data), model simulations,
and sometimes also in situ measurements. The DA methods applied in ecosystem modeling have been suc-
cessfully used in reanalysis simulations (i.e., assimilation of time series in past observations of the system,
e.g., Nerger & Gregg, 2007) as well as operational forecasting (i.e., the assimilation of recent observations to
initialize model predictions of the future biogeochemical state, e.g., Teruzzi et al., 2014).

DA has its most well-known application in numerical weather forecasting (Kalnay, 2003) and has also been
applied for a long time in physical oceanography (for an overview see Cummings et al., 2009; Edwards
et al., 2015). There are also a growing number of studies applying DA to ecosystem variables (Gehlen
et al., 2015). This is mostly focused on (ocean-color-derived) chlorophyll a (Ishizaka, 1990) using typically
Kalman Filter methods (Carmillet et al., 2001; Ciavatta et al., 2016, 2011; Fontana et al., 2010; Hoteit et al.,
2005; Natvik & Evensen, 2003; Nerger & Gregg, 2007, 2008; Simon & Bertino, 2012; Simon et al., 2015;
Torres et al., 2006) but also Optimal Interpolation (Gregg, 2008) and variational methods (Losa et al.,
2004). There are also studies on biogeochemical DA of some optical fields: phytoplankton light absorbtion
(Shulman et al., 2013), diffuse light attenuation coefficient (Ciavatta et al., 2014), reflectance data (Jones
et al., 2016), and absorbtion by colored dissolved organic carbon (Gregg & Rousseaux, 2017). The variable
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most commonly used for DA is ocean-color-derived total chlorophyll a. Total chlorophyll a relates to total
phytoplankton, which contains species that vary in size by 9 orders of magnitude (Finkel et al., 2009) and
play very different roles within the ecosystem dynamics (Quere et al., 2005). Many ecosystem models such
as the European Regional Seas Ecosystem Model (ERSEM; Baretta et al., 1995; Butenschön et al., 2016)
therefore split phytoplankton into functional types (PFTs), largely based on the characteristic size and eco-
logical niche of the functional group. It is acknowledged (Gehlen et al., 2015; Gregg, 2008; Teruzzi et al.,
2014) that while DA of total chlorophyll a improves the total chlorophyll representation, it often fails to
improve the representation of other model variables (such as nutrients). This often results from the lim-
itation imposed by univariate approaches (see Nerger & Gregg, 2007, for a discussion), which updates
nonassimilated variables only through the model dynamics. However, the problem exists also for multivari-
ate assimilation methods, which can have limited, or even negative impacts on nonassimilated variables,
in particular, when the model has severe biases for example because of the incomplete representation of
the ecosystem processes, or deficiencies in specifying internal model parameters (see discussion in, e.g.,
Ciavatta et al., 2018, 2016; Ford et al., 2012; Tsiaras et al., 2017). One might expect to improve the overall
biogeochemical simulation through improvement in simulation of the phytoplankton community, which is
the central component of the low trophic level models. The assimilation of total chlorophyll might not be
sufficient to this scope, because often this approach is not capable to correct the relative ratios of the PFTs
composing the community (Ciavatta et al., 2011). This issue can be avoided by directly assimilating PFTs
chlorophyll when the PFTs chlorophyll a data are available. Such an approach was taken in an early 1-D
study by Xiao and Friedrichs (2014) and recently by Ciavatta et al. (2018) in a 3-D model configuration of the
NWE Shelf.

In the NWE Shelf Brewin et al. (2017) developed a novel phytoplankton size-class chlorophyll data set for the
Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu) project Towards
Operational Size-Class Chlorophyll Assimilation (TOSCA), and this data set can be directly associated with the
PFTs used in ERSEM. These are (Butenschön et al., 2016) the following: picophytoplankton (<2 μm), nanophy-
toplankton ( 2–20 μm), and microphytoplankton (>20μm). Microphytoplankton is split into diatoms (having
silicate cell walls) and dinoflagellates. The chlorophyll a contained in the PFTs can be then directly assimilated
into the ERSEM (this will be called PFTs DA in what follows). It is expected that this would improve the rep-
resentation of ecosystem dynamics compared to assimilation of total chlorophyll a (ChlTot). The difference
the PFTs DA makes to total chlorophyll (ChlTot) DA was shown to be significant in a 6-year reanalysis that
assimilated monthly PFT data using ensemble Kalman filter (EnKF) and the preoperational model Proudman
Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS)-ERSEM (Ciavatta et al., 2018). In this
paper we focus on PFTs DA in the context of an operational system developed at the Met Office, based on
the coupled model Nucleus for European Modelling of the Ocean (NEMO)-ERSEM and the variational DA sys-
tem NEMOVAR (Mogensen et al., 2012, 2009; Waters et al., 2015). The differences to Ciavatta et al. (2018) is
that we use daily DA (as opposed to monthly DA) in a different model (NEMO-ERSEM at 7-km resolution, as
opposed to POLCOMS-ERSEM at 12-km resolution) with a different DA scheme (3DVAR, as opposed to EnKF).
Most importantly, unlike Ciavatta et al. (2018), our objective is to assess the impact of PFTs DA on forecasting.
This is because the NEMO-ERSEM used here is run operationally at the Met Office, delivering daily analysis and
forecast products to the CMEMS (http://marine.copernicus.eu) and is planned to implement the assimilation
scheme presented here as part of future upgrade (CMEMS TOSCA project). We compare PFTs DA forecasting
skill with the ChlTot DA forecast and a free reference run. As with Ciavatta et al. (2018), our analysis focuses on
the NWE Shelf.

2. Methods
2.1. The Physical Component: NEMO
The NEMO ocean physics component is a finite difference, hydrostatic, primitive equation ocean general cir-
culation model (Madec, 2015). The version used in this work is CO6, based on NEMOv3.6, a development of
the CO5 configuration described by O’Dea et al. (2017). The model configuration was similar to Ford et al.
(2017). The model used the 7-km resolution grid on the Atlantic Meridional Margin (AMM7) domain with 51
vertical levels and a terrain-following z∗ − 𝜎 coordinate system. The river inputs were set using a climatology
of daily discharge (Edwards et al., 2012). The lateral boundary conditions for physical variables at the Atlantic
boundary were taken from a reanalysis of the GloSea5 Seasonal Forecasting System (MacLachlan et al., 2015);
the Baltic boundary values were derived from a reanalysis produced by the Danish Meteorological Institute
for the CMEMS. The model was forced at the surface by atmospheric fluxes from the ERA-Interim reanalysis
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(Dee et al., 2011). The same reanalysis data were used to force our 5-day model forecast experiments because
suitable forecast fluxes were not available for the same period as the biogeochemical observation data used.

2.2. The Ecosystem Component: ERSEM
The ERSEM (Baretta et al., 1995; Butenschön et al., 2016) is an ecosystem model for marine biogeochemistry,
pelagic plankton, and benthic fauna (Blackford, 1997). It tracks carbon, chlorophyll, nitrate, phosphate, and sili-
cate separately, with variable stoichiometric ratios within the simulated plankton groups (Baretta-Bekker et al.,
1997; Geider et al., 1997). The model splits phytoplankton into four functional types largely based on their
size (Baretta et al., 1995): picophytoplankton, nanophytoplankton, diatoms, and dinoflagellates; only diatoms
use silicate. Phytoplankton are a prey for three zooplankton types (mesozooplankton, microzooplankton, and
heterotrophic nanoflagellates), and organic material is decomposed by one functional type of heterotrophic
bacteria (Butenschön et al., 2016). The inorganic component is described in the form of nutrients (nitrate,
phosphate, silicate, ammonium, and carbon) and dissolved oxygen. The carbonate system is also included in
the model (Artioli et al., 2012). The ERSEM has been validated in multiple different studies using both point-
wise and emergent skill metrics (Allen & Somerfield, 2009; De Mora et al., 2013; 2016; Edwards et al., 2012;
Saux Picart et al., 2012) and applied in many different contexts (e.g., Artioli et al., 2014; Blackford & Gilbert,
2007; Holt et al., 2012; Polimene et al., 2012; Wakelin et al., 2012).

We used in this study a recent ERSEM parametrization described in Butenschön et al. (2016). At the Atlantic
boundary values for nitrate, phosphate, and silicate were taken from World Ocean Atlas (Garcia et al., 2014)
and dissolved inorganic carbon from the Global Ocean Data Analysis Project gridded data set (Key et al., 2015;
Lauvset et al., 2016).

2.3. The Data
The original data set of total chlorophyll a was obtained from the Ocean Colour-Climate Change Initiative
(OC-CCI) project of the European Space Agency, Version 3.0 (Melin et al., 2017). This total chlorophyll prod-
uct was turned into a PFTs chlorophyll data set by Brewin et al. (2017) using a simple, conceptual model
(Brewin et al. 2010, 2015) designed to estimate the chlorophyll concentrations of three phytoplankton size
classes (microphytoplankton, nanophytoplankton, and picophytoplankton) as a continuous function of the
total chlorophyll provided from the OC-CCI data. In the implementation, the parameters of the model are var-
ied according to the sea surface temperature (OISST version from Reynolds et al., 2007), which is also used to
split microphytoplankton chlorophyll concentration into the contributions from diatoms and dinoflagellates.
The product of Brewin et al. (2017) is daily and has 4-km spatial resolution. The EO data validate well against
in situ data (i.e., Pearson correlation coefficient 0.46–0.86; see Brewin et al., 2017). The PFT EO errors were
estimated in log-space (since chlorophyll is typically log-normally distributed, i.e., Campbell, 1995). The PFT
EO errors and biases were determined using both in situ and satellite data matchups following the approach
from Jackson and Sathyendranath (2017) and fuzzy logic statistics (Moore et al., 2009). The data (for both total
chlorophyll and PFTs) were bias corrected, and per-pixel errors of the unbiased data were computed follow-
ing the method of Ciavatta et al. (2016). Because bias-corrected EOs are supposed to be better products than
the original ones, it is reasonable to assimilate bias-corrected data. However, the sum of bias-corrected PFTs
chlorophyll does not have to be precisely equal to bias-corrected total chlorophyll (for details see Brewin et al.,
2017). In fact the mean (from 2010 data on NWE Shelf ) sum of bias-corrected PFTs chlorophyll was approx-
imately 0.07 mg/m3 lower than the mean value for bias-corrected total chlorophyll. The bias-corrected EO
data were upscaled to the model grid (wherever there were multiple EO datapoints mapped to the nearest
model grid point, the mean value of those datapoints was taken). We also compared the 2010 OC-CCI chloro-
phyll data with the OC-CCI satellite data monthly climatology which was composed from bias-corrected OC
CCI products from 1998-2009.

The DA outputs were compared on the NWE Shelf with three in situ data sets: The first was the
Ecosystem Data Online Warehouse of the International Council for the Exploration of the Sea (ICES,
http://-www.ices.dk/-marine-data/-data-portals/-Pages/) that contains measurements of three nutrients of
specific interest: nitrate, phosphate, silicate, and also data for total chlorophyll. The ICES data set contains
measurements at a range of depths. We considered only ICES data from the section of NWE Shelf not in the
immediate vicinity of the coastline (bathymetry within the interval 10–200 m). ICES data were collected all
over the North Sea and Irish Sea, however, with a clear spatial bias toward nutrients and chlorophyll rich
areas close to the coast of Netherlands and (the western coast of ) Denmark. The median depth of the mea-
surement was around 10 m but could vary from month to month. Also, numbers of measurements varied
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from month to month between 20 and 300. The total number of ICES datapoints for 2010 was for each nutri-
ent and total chlorophyll well over 1,000. The second data set was the Centre for Environment, Fisheries and
Aquaculture Science (Cefas, https://-www.cefas.co.uk/) phytoplankton pigment (nanophytoplankton, pico-
phytoplankton, and microphytoplankton) data collected on International Bottom Trawl Surveys (Ford et al.,
2017, http://-doi.org/10.14466/-CefasDataHub.33) for years 2010 and 2011. The Cefas data set contained far
less data than the ICES data set (for year 2010 and the relevant area only around 60 datapoints) but is one
of the few available in situ data sets that can be used to perform an independent validation of PFT distribu-
tions. The third in situ comparison was for CO2 fugacity (fCO2) using the Surface Ocean CO2 Atlas (SOCAT,
https://-www.socat.info/, Bakker et al., 2014). From the used in situ data sets the SOCAT data are the most
statistically robust with around 10,000 datapoints. We also did a comparison for PFTs/total chlorophyll and
nutrients (nitrate, silicate, and phosphate) at the specific location L4 in the western English Channel, with data
obtained from the high-performance liquid chromatography Western Channel Observatory pigments and
nutrients data set (Airs & Martinez-Vicente, 2014, https://-www.bodc.ac.uk/-data/). The in situ chlorophyll con-
centrations for the 4 PFTs at L4 (diatoms, dinoflagellates, nanophytoplankton, and picophytoplankton) were
estimated from high-performance liquid chromatography pigment data following Brewin et al. (2017). This
essentially involves using accessory pigments as markers of the specific groups to help partition total chloro-
phyll into the chlorophyll concentrations of the 4 groups (see section 2.3.1 of Brewin et al., 2017, for additional
details). All the in situ data were matched with the model outputs by finding the model grid point nearest to
the in situ measurement.

2.4. The DA Setup
We used the NEMOVAR (Mogensen et al., 2012, 2009; Waters et al., 2015) 3D-VAR variational DA system used
for operational physical ocean DA at the Met Office. NEMOVAR is a computationally efficient DA system specif-
ically adapted for the NEMO model, supporting both 4D-VAR and 3D-VAR algorithms. The 3D-VAR version
applied in this study minimizes the cost function using the conjugate gradient method (Mogensen et al.,
2012). DA of chlorophyll into NEMO-ERSEM using NEMOVAR has been implemented at the Met Office for use
in reanalysis and forecasting.

The PFTs and total chlorophyll DA has been adapted from the method used to assimilate total chlorophyll
into the global NEMO-HadOCC model (Ford & Barciela, 2017; Ford et al., 2012). The DA was run on a daily
cycle, assimilating the daily merged OC-CCI chlorophyll products. Since chlorophyll is typically lognormally
distributed (Campbell, 1995), log10(chlorophyll) was assimilated rather than chlorophyll. For total chlorophyll
the procedure can be described as follows:

First, the model was run for the day in order to create innovations (observation minus background differ-
ences) using the NEMO observation operator, which employs a First Guess at Appropriate Time technique. As
in Ford et al. (2012), the model surface total log10(chlorophyll; the sum of the four PFTs in ERSEM) is bilinearly
interpolated to each observation location at the nearest model time step to the validity time of the observa-
tion, providing background values in observation space. Since daily merged products were assimilated, with
no per-pixel time information provided, all observations were assumed to be valid at 12:00 UTC. As the ocean
color satellites used by OC-CCI are all heliosynchronous, this is a reasonable assumption for the AMM7 domain.

Second, these innovations were used by NEMOVAR to create a set of surface total log10(chlorophyll) incre-
ments, similarly to the DA of sea ice concentration described by Waters et al. (2015). The diagonal elements
of the background error covariance matrix were a monthly climatology of log-transformed error variances
obtained from the 100-member EnKF POLCOMS-ERSEM reanalysis of Ciavatta et al. (2018). These variances
were regularized and smoothed using the moving averages algorithm and rescaled to the range 0.02–1.5
log10(mg/m3), so that the average ratio of background error to obervation error was similar to that calculated
in the region when assimilating OC-CCI data into NEMO-HadOCC (Ford & Barciela, 2017). Experiments using
different ratios demonstrated the results to be relatively insensitive to the average ratio. The off-diagonal ele-
ments of the background error covariance matrix were parametrised using correlation length scales set equal
to the Rossby radius, as in Waters et al. (2015). The diagonal elements of the observation error covariance
matrix were set equal to the per-pixel observation uncertainties from the OC-CCI products (Ciavatta et al.,
2016), plus a constant of 0.01 log10(mg/m3; Ford & Barciela, 2017), to take account of the remaining represen-
tation error (Janjić et al., 2017) not included in the OC-CCI uncertainties, whilst maintaining the average ratios
suggested by Ford and Barciela (2017). The off-diagonal elements of the observation error covariance matrix
were set to 0.
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Third, the model background was used to convert the total log10(chlorophyll) increments to total chlorophyll
increments and divide them into a set of chlorophyll increments for each PFT. At each grid point the total
chlorophyll increments were split into PFT chlorophyll increments according to the ratios of the PFTs in the
model background, so that the assimilation did not directly alter the phytoplankton community structure.
Up to this stage the DA scheme updated only PFTs chlorophyll. The DA setup was tested with this simplis-
tic scheme (only updating PFTs chlorophyll), and the results are presented in the supporting information
Figure S1. However, it is important to maintain the phytoplankton physiological state adapted to the environ-
mental conditions. To do this, we used (in the main body of the paper) another scheme, where all the other
phytoplankton cell variables (carbon, nitrogen, phosphorus, and for diatoms silicon) were updated to pre-
serve the existing stochiometric ratios. This means that DA altered only concentrations of phytoplankton but
preserved its model physiology. Our approach is similar to the one used in Teruzzi et al. (2014).

Fourth, the model was run again for the day to create the reanalysis state, with the increments applied
using the incremental analysis update technique (Bloom et al., 1996) in which in an equal proportion of the
increments is applied at each time step, in order to minimize initialization shocks. The surface PFT (chloro-
phyll, carbon, nitrogen, phosphorus, and silicon) increments were applied throughout the mixed layer. The
reanalysis state was then used to initialize a 5-day free forecasting run.

The total chlorophyll assimilation has then been extended in this study to PFT chlorophyll assimilation, by
considering each PFT separately at each step in the process. The observation operator step directly compared
the satellite PFT data to the corresponding model PFTs, to create a set of innovations for each PFT. The back-
ground error variances used by NEMOVAR were calculated using the same method as for total chlorophyll DA
from ensemble variances for the individual PFTs in the reanalysis of Ciavatta et al. (2018). The observational
errors were obtained from the pixel errors provided by Brewin et al. (2017) with bias removed as per Ciavatta
et al. (2016) and the representation error added as in case of total chlorophyll DA. NEMOVAR was then used
to separately calculate a set of log10(chlorophyll) increments for each PFT, which could be applied directly to
the model, thereby directly updating the phytoplankton community structure.

2.5. The Runs and the Analysis
We performed three 1-year-long simulations for 2010 on the Met Office and Natural Environment Research
Council Supercomputing Node (MONSooN). The first simulation was a free reference run (abbreviated
as noDA), the second run was daily total chlorophyll DA (abbreviated as ChlTot DA), and the third run
PFTs chlorophyll daily DA (abbreviated as PFTs DA). In each DA run the assimilation step was followed by
a 5-day forecast.

It is important to assess how DA impacts on the model representation of the true state of the simulated ecosys-
tem (Gregg et al., 2009). The DA (both reanalysis and forecasting) skill has to be evaluated using data sets
that are both statistically robust and at the same time reasonably independent of the assimilated EO data set.
For the 5-day chlorophyll forecasting skill we used the satellite CCI data set, since its robustness (number of
data) seems to outweigh its interday correlation (dependence on the assimilated data). Although the dynam-
ics of the satellite fields is slow (significant interday correlations between the same-pixel values), the rapid
movement of atmospheric clouds means that the regions seen by the satellite in the successive days overlap
by only 30% (we calculated this from the 2010 satellite data). We therefore considered the forecast validation
EO data set to be sufficiently independent of the assimilated data set. The in situ observations are largely inde-
pendent of the assimilated CCI satellite data but relatively sparse. The in situ chlorophyll measurements were
used to evaluate the DA reanalysis skill (which is where the CCI data set cannot be used for validation, but just
for verifying a correct implementation of the assimilation algorithm). This is relevant for the spatiotemporal
regions with missing satellite EO data (such as cloudy regions or regions in the depth below the∼10-m surface
layer measured by the satellite). Similarly to chlorophyll, we used in situ data to evaluate the DA reanalysis skill
to represent some of the relevant nonassimilated variables (such as nutrients, fCO2). The DA reanalysis skill
was considered sufficient for nutrients and fCO2, because the impact of DA on the nutrient (or fCO2) concen-
trations is slow compared to the short forecasting window. Consequently, for nonassimilated variables there
will be very little difference between DA reanalysis skill and DA forecasting skill. We confirmed this at the in
situ locations by comparing the nutrient fifth forecasting day outputs with the reanalysis for the same day.
The median difference for PFTs DA was for silicate and phosphate of the order of 10−3 mmol/m3 and for the
nitrate the absolute value of the median difference was approximately 0.1 mmol/m3.
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To evaluate model skill, we chose in situ and EO data only from NWE Shelf. We matched both the EO and
in situ spatiotemporal locations with the corresponding model data (data closest in space and time). Both
the EO and in situ data have for different months different number of datapoints. Furthermore, the in situ
(ICES and SOCAT data) spatial locations (geographic locations and depths) can substantially vary between
months. We used two skill metrics: model bias and bias-corrected median absolute difference. Under bias we
mean median difference in model and EO (model minus EO) values. The biases were calculated for monthly
binned data and the 2010 year bias was then taken to be the median of the monthly biases. The reason
for binning data monthly was to correct for some of the spatiotemporal biases of the EO and in situ data.
By bias-corrected median absolute difference we mean median of absolute values of differences between
model and EO, after subtracting the bias from the model outputs. This was again calculated for the monthly
data (we subtracted from absolute differences monthly biases) with the annual value being the median
of monthly values.

Both model and EO raw data can be (by definition) represented as a sum of climatology and anomalies from
climatology. The model forecasting skill for both raw data and anomalies was also compared using a metric
analogous to Ryan et al. (2015):

FS = 1 − AD
ADR

. (1)

Here AD∕ADR is the ratio between the annual median from monthly medians (as before) of absolute dif-
ferences of the forecast and the reference outputs (both compared to the EO data). The positive values of
FS mean that forecast outperforms reference and vice versa. We considered here as reference the free run
and persistence. (Here persistence means fixing the biogeochemical variables equal to the output of the
reanalysis and using these constant values to forecast the biogeochemistry in the subsequent 1–5 days.)
AD from equation (1) is for raw data defined as ADraw = Med(|Modraw − EOraw|) and for anomalies as
ADan = Med(|Modan − EOan|), (Med means median, Mod means Model, and subscripts describe the type of
data, with an standing for anomaly). Anomalies can be calculated by subtracting field climatology from the
raw data. Twelve-year climatology was available only for the CCI EO data set. If we define the climatological
model bias B(x, t) as the difference between the model climatology (Modclim) and the climatology of the EO
(EOclim), the model climatology can be obtained as:

Modclim(x, t) = EOclim(x, t) + B(x, t). (2)

The bias B(x; t) was estimated from the 2010 data as:

B(x, t) =
BA(x) + BD(t)

2
, (3)

where BA(x) is annual median bias at the location x and BD(t) is spatial median bias on the NWE Shelf at the
time t. The BA(x) and BD(t) functions were then calculated from the model and the EO 2010 data. The raw data
and model bias are sufficient to calculate the ADan value:

ADan = Med(|Modraw − B − EOraw|), (4)

and therefore, they are sufficient to compute the anomaly forecast skill FS.

Interpreting skill metrics (such as the one in equation (1) needs some caution. The purpose of these skill met-
rics is merely to indicate (1) whether reanalysis is closer to EO data than the reference run and (2) how rapidly
forecast changes the matchups between model outputs and EO data. The definition of these skill metrics
assumes that the EO data represent the true state. However, the EO data might also contain relatively large
errors, although typically these errors are lower than the model errors. Therefore, if DA moves the reference
run outputs closer to the EO data, it typically moves it closer to the true state as well, but it can happen that
a very close match with the EO data is not a very close match with the true state. These metrics are therefore
typically informative, but one has to keep in mind that there are situations in which they are misleading.

SKÁKALA ET AL. 6



Journal of Geophysical Research: Oceans 10.1029/2018JC014153

Figure 1. The figure shows the 2010 annual median spatial distributions for the four PFTs chlorophyll (in mg/m3) for the free run (first row), total chlorophyll DA
(second row), PFTs DA (third row), and satellite EO data (fourth row). The shelf boundary (bathymetry <200 m) is marked by the black line. The model data were
masked whenever the EO data were missing. DA = data assimilation; PFT = phytoplankton functional type; EO = Earth Observation.

3. Results
3.1. Reanalysis
DA had a substantial impact on both PFTs and total chlorophyll distributions. ChlTot DA does not improve
(with respect to the reference run) the spatial matchups with the EO PFTs chlorophyll. It does, however, sub-
stantially improve the matchups with EO total chlorophyll. This can be seen in Figure 1 showing the annual
median chlorophyll distributions of the four PFTs and in Figure 2, which shows the same for the total chloro-
phyll. It is evident that the PFTs DA produced PFTs and total chlorophyll distributions that look very similar to
the EO satellite products (Figures 1 and 2). The DA impact is largest in the Southern North Sea, which is the
area with the largest chlorophyll concentrations. Figure 1 demonstrates the major impact of PFTs DA espe-
cially on dinoflagellates where the difference between model and EO data is most significant. The improved
matchup between the model output and the EO data (as one moves from the free run to DA in Figures 1 and 2)
can be understood as a basic self-consistency test for the DA algorithms.

Figure 3 displays a daily time series for 2010 of spatial median PFT chlorophyll values (for the NWE Shelf ).
Figure 3 shows that bias between free run and EO data depends largely on the season. The model tends to
underestimate PFTs chlorophyll in the autumn and winter and greatly overestimate PFTs chlorophyll during
spring bloom and summer (especially diatoms in spring). This implies that the model has much larger seasonal
variability than the EO data. Consistently with Figures 1 and 2, Figure 3 shows that (1) the PFTs DA moves
the annual time series very close to the EO data. The same is true for ChlTot DA and total chlorophyll time
series. (2) The largest impact of PFTs DA is on dinoflagellates, where there is the poorest match between the
model free run and the EO data. (3) ChlTot DA slightly improves the time series of nanophytoplankton and
diatoms; however, in winter it considerably degrades dinoflagellates. (4) The model shows a dominant PFTs
bloom in spring (with huge concentrations of diatoms), whereas the EO PFTs data (and PFTs in PFT DA run)
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Figure 2. The figure shows the 2010 annual median spatial distributions for the total chlorophyll (in mg/m3) for the free
run, total chlorophyll DA, PFTs DA, and satellite EO data. The model data were masked whenever the EO data were
missing. DA = data assimilation; PFT = phytoplankton functional type; EO = Earth Observation.

have an autumn peak in chlorophyll concentrations. (5) Satellite EO data anomalies are relatively small when
compared to the satellite monthly climatology.

The PFT chlorophyll-to-total chlorophyll ratios represent the composition of the phytoplankton community
structure, which can be seen as an emergent property of the ecosystem model and it can be used as a tool
for model skill assessment (De Mora et al., 2016). Figure 4 shows that PFTs DA improved the model represen-
tation of the plankton community structure (as represented by the assimilated data of Brewin et al., 2017), if
compared to both the model free run and the assimilation of total chlorophyll.

3.2. Forecasting
Figure 5 demonstrates model skill to predict the satellite EO observations for each PFT and total chlorophyll.
For all PFTs, PFTs DA substantially outperforms both ChlTot DA and the free run over the whole 5-day fore-
casting period. The PFTs DA and ChlTot DA total chlorophyll have biases with opposite signs (except for the
last forecasting day). The reason that there is difference between PFT and ChlTot DA total chlorophyll distri-
butions is that (as previously mentioned) the bias-corrected EO total chlorophyll concentrations assimilated
in ChlTot DA are approximately 0.07 mg/m3 larger than the sum of bias-corrected PFT chlorophyll EO assimi-
lated in PFTs DA. Figure 5 further shows that the model (free run) represents accurately total chlorophyll levels
(bias close to 0); however, this hides large biases in PFTs concentrations (except for diatoms).

Figure 6 compares ChlTot DA and PFTs DA forecasting skill using the metric from equation (1), with the free
run and the persistence as references. The upper row (plots a and b) shows model skill to predict the total and
PFTs chlorophyll raw values (sum of climatology and anomaly). The bottom row (plots c and d) shows model
skill to predict anomalies. In both cases (plots a and c) PFTs DA substantially outperforms on the 5-day time
scale the free run (this is consistent with Figure 5). In case of raw values (plot a) PFTs DA substantially outper-
forms ChlTot DA in PFTs chlorophyll and performs similarly than ChlTot DA in total chlorophyll forecasting.
However, it is interesting that persistence outperforms the dynamical forecast from the PFTs DA on the 5-day
forecasting time scale, which suggests that (PFTs) reanalysis plays an essential role in forecasting skill. The fact

SKÁKALA ET AL. 8



Journal of Geophysical Research: Oceans 10.1029/2018JC014153

Figure 3. The figure compares daily time series of PFTs chlorophyll and total chlorophyll spatial median values (in
mg/m3, for the northwest European Shelf ) for free run (noDA), ChlTot DA, PFTs DA, satellite EO data (EO), and satellite
EO data climatology (EO clim). The time series were smoothed on a 10-day time scale using moving averages. The
model data were masked wherever the EO data were missing. DA = data assimilation; PFT = phytoplankton functional
type; EO = Earth Observation.

that persistence outperforms model forecast simulation implies that model degrades chlorophyll faster than
is the chlorophyll dynamics observed in the EO data.

3.3. Validation Using In Situ Data
The validation using in situ data is summarized in Tables 1 and 2. The two tables present annual values of the
bias and the bias-corrected absolute difference. Table 1 shows that for most of the year the model overesti-
mates observed nitrate (the biases are almost 200% of in situ nitrate values). This is moderately improved by
DA, where the bias decreases by 5% (of its value). The model overestimates observed silicate by approximately
50%, and the bias can be reduced (ChlTot) or increased (PFTs) by the DA quite substantially (by about 40%).
Unlike nitrate and silicate, the model has very low (positive) phosphate bias and even though this is to some
extent degraded by the DA, the bias is always between 1% and 3.5% of the observed value. Table 1 demon-
strates that DA has substantial positive impact on the fCO2 representation reducing (PFTs DA more than ChlTot
DA) the model negative bias by 50%. This reduces model relative error from 11.3% to 5.6% (PFTs DA).

The DA increases negative bias of total chlorophyll with respect to the in situ data (Table 1). This can be
explained by the larger (relative to free run) negative bias of satellite data with respect to the in situ data
(the satellite data are on average 0.45 mg/m3 lower than the in situ data). This suggests that the ICES and
CCI data sets are not entirely consistent and the DA drives chlorophyll away from the in situ distributions.
The evaluation of the impact of DA on the three phytoplankton size classes (microphytoplankton, which is
the sum of diatoms and dinoflagellates, further nanophytoplankton and picophytoplankton) using the in situ
observations from the Cefas data set is ambiguous (see Tables 1 and 2). In this case DA seems to improve
the representation of both nanophytoplankton and picophytoplankton (in general ChlTot DA more than PFTs
DA), but it increases the bias of microphytoplankton.

The L4 data (see Figure 7) demonstrate a very good total chlorophyll match between satellite and in situ
data in spring-summer season (the annual mean absolute difference between in situ and satellite data was
0.4 mg/m3, compared to the larger 0.7 mg/m3 mean absolute difference between PFTs DA and the in situ data).
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Figure 4. The figure compares the 2010 PFTs to total chlorophyll ratios. The x axis shows the total chlorophyll concentrations (in mg/m3), and the y axis shows
PFT to total chlorophyll ratio. The EO data ratios are split based on the model of Brewin et al. (2010, 2015). The shades of the red color mark the number of
overlapping datapoints. DA = data assimilation; PFT = phytoplankton functional type; EO = Earth Observation.

In the same season there is a good match between satellite and in situ nanophytoplankton and dinoflagellates
but not a good consistency in diatoms and picophytoplankton (Figure 7). From Figure 7 one can draw similar
conclusions as from Figure 3 (showing time evolution on the whole NWE Shelf ): (1) The model overestimates
spring blooms and underestimates autumn blooms of the PFTs. (2) There is less seasonal variability in the in
situ data than in the model data. (3) PFTs DA drives the model PFTs chlorophyll a toward the EO data. Since
the EO data are much closer to the in situ data than the model, DA also improves the matchup with the PFT
and total chlorophyll in situ data. It is interesting that there are large similarities between the annual patterns
of the satellite data time series on the whole NWE Shelf (Figure 3) and in situ data time series at L4, except that
(1) satellite data have the bloom peak in autumn slightly (1 month) later. This discrepancy between EO and in
situ data has been observed for the L4 site by Smyth et al. (2009) but is not clearly visible for 2010 (Figure 7).
It can be potentially explained by the L4 satellite data errors caused by terrestrial colored dissolved organic
matter and sediments (Groom et al., 2009; Smyth et al., 2009). (2) The autumn peak is more dominant in L4 for
the situ data (see especially picophytoplankton in Figure 7). There is a good match between the model and
the in situ nutrients at L4 (Figure 7), where the main difference seems to be that the nitrate and phosphate
minima are phase-shifted in the model by roughly 1 month. The 2010 chlorophyll and nutrients in situ data
have seasonal behavior similar to the L4 2004–2008 time series analysis from Widdicombe et al. (2010). The
L4 data also suggest that PFTs DA degrade silicate with respect to the reference run (the last panel in Figure 7).

4. Summary and Discussion

This work demonstrates that both PFTs DA and ChlTot DA have substantial impact on the simulation
of phytoplankton size-class chlorophyll, as well as of total chlorophyll distributions (Figures 1–4) when
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Figure 5. The figure compares the reanalysis and forecasting of the assimilative
runs with the reference for the data of the four PFTs (diatoms, dinoflagellates,
nanophytoplankton, and picophytoplankton and of total chlorophyll). The
bullet point is the free run, for the DA runs the first point on each line (with
larger marker size) is reanalysis, and the other five points are the five forecasting
days. The x axis shows bias (in mg/m3), and the y axis shows bias-corrected
median absolute difference (mg/m3). The figure shows that PFTs DA
outperforms on the 5-day forecasting scale both free run and ChlTot DA in how
it represents PFTs concentrations. From the lines on the plot one can see (for
each PFT as well as total chlorophyll) that in the forecasting run model skill
moves from the reanalysis skill toward the free run skill. DA = data assimilation;
PFT = phytoplankton functional type; EO = Earth Observation.

applied with an operational model in 5 day forecasting. Figures 1–3
demonstrate that the DA assimilated variables are very close to the
EO satellite data. This is not because of large model-to-observational
error ratio. The model errors used were typically around 3 times higher
than observational errors, which is similar to the NEMO-HadOCC DA
setup (Ford et al., 2012), and our own tests showed that the DA results
have been relatively insensitive to the errors. We ran the same DA
setup (with the same background and observational errors) but with-
out keeping the phytoplankton internal stochiometric ratios fixed (only
phytoplankton chlorophyll was updated). The scheme still substan-
tially improved the assimilated fields; however, the final distributions
were much further from the assimilated satellite data (see supporting
information Figure S1). For example, the total chlorophyll bias (with
respect to the EO) was for ChlTot DA nearly 5 times higher when DA
changed the stochiometric ratios than when it did not. This is because
the changed stochiometric ratios create internal imbalances and in
the period between two assimilation steps these imbalances drive the
assimilated state away from the EO. By preserving the model back-
ground stochiometry during the analysis update we stabilize the model
dynamics and the DA gradually drives the analysis state close to the
EO data.

Figure 3 shows that the model chlorophyll has distinctive maxima dur-
ing spring bloom, whereas the EO data (and similarly the DA outputs)
have lower seasonal variability with the maxima in the autumn. The

model bias has a seasonal signature (Figure 3), with the model underestimating EO chlorophyll values in the
autumn and winter and overestimating them in the spring-summer period. We have shown that the EO satel-
lite data seasonality is largely consistent with the in situ data seasonality in the L4 region (Figure 7, see also
Smyth et al. 2009). The DA impact on PFTs and total chlorophyll values is spatially most substantial in the
Southern North Sea (Figures 1 and 2).

The model (free run) has a very small negative total chlorophyll bias, which hides much larger biases in PFTs
concentrations (see Figure 5). This immediately points out the need to correct PFTs chlorophyll. ChlTot DA
has impact on PFTs chlorophyll, but it fails to improve the model skill in PFTs (Figure 5). This is because
ChlTot DA redistributes the total chlorophyll a increments into functional types using the model functional
type-to-total chlorophyll ratio at a specific spatiotemporal point. Unlike ChlTot DA, PFTs DA substantially
improves the model representation of PFTs chlorophyll. The forecasting run degrades the PFTs DA reanalysis
bias and absolute differences by moving their values towards the values of the free run. However within the
5-day forecasting period PFTs DA always outperforms the free run (see Figure 5). PFTs DA increases the total
chlorophyll negative bias of the free run (Figure 5). This is because the sum of bias-corrected EO PFTs chloro-
phyll a gives smaller values of total chlorophyll (for 2010 on average by 0.073 mg/m3) than the bias-corrected
EO total chlorophyll (which is assimilated by ChlTot DA). The most substantial impact of PFTs DA is the large
decrease in dinoflagellates concentrations. This is a consequence of a large mismatch between the EO and
the model concentrations of dinoflagellates, mentioned already in Ciavatta et al. (2018). Improving dinoflag-
ellate estimates, their representation and their associated errors by both model and the satellite algorithms
(Brewin et al., 2017), is a major challenge which needs to be addressed in the future.

Similarly to Figure 5, Figure 6 shows that the PFTs DA improves substantially the model 5-day forecasting skill
(on the NWE Shelf ) for all the PFTs, as well as for the total phytoplankton chlorophyll a. Figure 6a shows that
PFTs DA outperforms both ChlTot DA and the free run in forecasting the raw data (sum of climatology and
anomaly) of all the PFTs chlorophyll within the 5-day forecasting period. The PFTs DA and ChlTot DA total
chlorophyll forecasting skills are comparable. Surface chlorophyll has relatively small anomalies compared to
the chlorophyll monthly climatology (see Figure 3). This means that most of the model skill in forecasting the
raw data (see Figure 6a) depends on its skill to represent the PFTs chlorophyll climatology. However, PFTs DA
also outperforms the free run (for all the assimilated variables) in forecasting the anomalies (see Figure 6c).
The comparison with the skill of the persistence has negative values (see Figures 6b and 6d) for both raw
data and anomalies, which means that the PFTs DA forecast skill mostly originates from the persistence of the
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Figure 6. The figure compares the reanalysis and 5-day forecasting skill (the first point on the line is reanalysis and the
other five are the five forecasting days) using the skill metrics defined in equation (1). The left plots (a and c) use as
reference the free run, and the right plots (b and d) use persistence. The upper plots (a and b) are predictions of raw
data (sum of climatology and anomalies), and the bottom plots (c and d) are only predictions of anomalies. Positive
values mean that the evaluated model forecast outperforms the reference, whereas negative values mean that reference
outperforms the model forecast. DA = data assimilation; PFT = phytoplankton functional type; EO = Earth Observation.

reanalysis. Negative persistence skill means that it is more useful to predict future chlorophyll distributions
by assuming the status quo (based on reanalysis) than running the model. This might be a consequence of
the fact that the univariate DA scheme changes phytoplankton concentrations while keeping the other vari-
ables (especially nutrients) intact. The model is therefore off-balance, and the forecasting simulation moves
away from the reanalysis state faster than the chlorophyll dynamics. The model simulation degrades fields
slowly compared to the reference run skill (as discussed before); however, it still degrades them faster than
the observed field dynamics (at least within the 5-day forecasting period). To conclude the reanalysis can be a
better predictor of the 5-day future state than the reinitialized model simulation. However, both the reanaly-
sis and the 5-day forecast substantially outperform the skill of the reference simulation. This proves that using
PFTs DA for operational applications is of substantial value.

The most regularly distributed validation in situ data with the largest statistical significance were fCO2 SOCAT
data (around 10,000 datapoints). The comparison with the SOCAT data has shown that the model underes-
timates CO2 fugacity (having 11.3% lower value than in situ data). The DA has large positive impact on CO2

fugacity and improves the CO2 fugacity bias by more than 50% (more PFTs DA than ChlTot DA). It is possible
that this is because correcting phytoplankton biomass has an impact on the primary production and conse-
quently affects the model representation of the carbon cycle (e.g., Ciavatta et al., 2018). Based on the ICES
data, it was shown (see Table 1) that the model typically overestimates nutrients (especially it overestimates
nitrate by almost 200%). The DA moderately lowers nitrate bias by 5%. Given the spatiotemporal biases of the
in situ data, it is hard to estimate the confidence intervals, but a simplified analysis based on calculating 95%
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Table 1
The Annual Bias (Model Minus In Situ Data) for the Three Nutrients (Nitrate, Phosphate, and Silicate) in mmol/m3, CO2 Fugacity
(fCO2) in μbars (SOCAT Data), Total Chlorophyll (ICES Data), and Three Phytoplankton Size Classes (Cefas Data) in mg/m3

Variable noDA ChlTot PFTs

Nitrate 8.82 8.4 8.65

Phosphate 0.007 0.012 0.019

Silicate 2.47 1.87 3.41

fCO2 −45.3 −28.7 −22.4

Total chlorophyll −0.2 −0.23 −0.35

Microphytoplankton −0.15 −0.14 −0.16

Nanophytoplankton −0.19 −0.14 −0.15

Picophytoplankton −0.06 −0.04 −0.05

Note. The columns show free run, ChlTot DA, and PFTs DA. DA = data assimilation; PFT = phytoplankton functional
type; ICES = International Council for the Exploration of the Sea; SOCAT = Surface Ocean CO2 Atlas; Cefas = Centre for
Environment, Fisheries and Aquaculture Science.

confidence interval for a representative sample of the same size (than the size of the nitrate ICES data set)
suggested that the effect of DA on nitrate is not statistically significant. The same is true for phosphate, where
the model bias fluctuates between 1.3% and 3.5% of the phosphate value. This means that model represents
phosphate levels with a very good accuracy, possibly within the systematic error of the measurements. (Note
that Table 2 suggests that the model does not represent equally well phosphate spatiotemporal distributions.)
Interestingly, the ChlTot DA and PFTs DA have very different impact on silicate. The model free run overesti-
mates silicate values by roughly 50%. The bias is substantially improved by ChlTot DA (lowered by 25%) but
degraded by PFTs DA (increased by 40%). Since diatoms are silicate users, the impact of DA on silicate is mainly
related to how DA changes the concentrations of diatoms. We calculated the differences in diatoms concentra-
tions between each of the assimilative runs (i.e PFTs DA and ChlTot DA) and the free run at the in situ data loca-
tions. At the same locations we calculated the same differences in silicate concentrations. The impact of DA
(at the in situ locations) on diatoms was anticorrelated with its impact on silicate with Spearman coefficients
equal to −0.44 (Pfts DA) and −0.27 (ChlTot DA). Since there were around 1300 in situ data-points the result is
statistically significant, with p values less than 10−20. The silicate and diatoms are anticorrelated (this is also
shown in Figure 8) because diatoms are controlling the concentration of silicate (top-down control). Figure 8
shows that ChlTot DA substantially increases concentrations of diatoms (see also Figure 5) and the increased
concentrations of diatoms then take up more silicate and lower its concentrations. The model dynamics in
response to PFTs DA increased the silicate bias at the in situ locations because it lowered diatoms concentra-
tions on those sites (-0.44 Spearman coefficient). However, Figures 5 and 8 show that overall PFTs DA did not

Table 2
The Bias-Corrected Median Absolute Difference for the Three Nutrients (Nitrate, Phosphate, and Silicate) in mmol/m3, CO2
Fugacity (fCO2) in μbars (SOCAT Data), Total Chlorophyll (ICES Data), and Three Phytoplankton Size Classes (Cefas Data) in
mg/m3

Variable noDA ChlTot PFTs

Nitrate 3.61 3.63 4.24

Phosphate 0.13 0.13 0.13

Silicate 2.27 2.19 1.97

fCO2 21.3 23.5 23.1

Total chlorophyll 0.94 0.81 0.9

Microphytoplankton 0.39 0.33 0.32

Nanophytoplankton 0.18 0.16 0.17

Picophytoplankton 0.07 0.06 0.05

Note. The columns show free run, ChlTot DA and PFTs DA. DA = data assimilation; PFT = phytoplankton functional
type; ICES = International Council for the Exploration of the Sea; SOCAT = Surface Ocean CO2 Atlas; Cefas = Centre for
Environment, Fisheries and Aquaculture Science.
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Figure 7. The figure shows PFTs chlorophyll a and nutrients (nitrate, phosphate, and silicate) annual time series (noDA, ChlTot DA, PFTs DA, and in situ data) at
the L4 location in 2010. The nutrient concentrations are in mmol/m3, and the chlorophyll concentrations in mg/m3. DA = data assimilation; PFT = phytoplankton
functional type; EO = Earth Observation.

lower the diatoms concentrations on the NWE shelf. This suggests that the increase in silicate bias by PFTs DA
could be specific to the in situ spatiotemporal locations. However, this still points out an issue of the model. The
model is overestimating silicate (Table 1), while it is representing accurately the levels of diatoms (see Figure 5).
Under such conditions the model representation of silicate cannot be improved by correcting diatoms.
There is a reason other than diatoms for why the model overestimates silicate and the problem needs to be
better understood in the future.

Perhaps unexpectedly the in situ ICES data showed that DA increases the total chlorophyll bias (more sub-
stantial for PFTs DA than for ChlTot DA). The effective overlap between the in situ total chlorophyll data and
the CCI EO data (considered up to the optical depth of 10 m) was roughly 20% (however, over 50% in situ
measurements were from less than 10 m deep). The observed matchups (Table 1) between satellite and in
situ total chlorophyll have shown that the satellite data have negative bias with respect to the in situ data; in
situ data are larger by 0.45 mg/m3. This suggests that the two total chlorophyll data sets are not entirely con-
sistent. This is quite possibly a consequence of the spatiotemporal difference between the highly localized in
situ measurements and the 7-km resolution of the EO composites. The larger EO negative bias toward in situ
data (−0.45 mg/m3) then possibly degraded the smaller model bias (−0.2 mg/m3) toward in situ data.

The comparison of model PFTs pigments with Cefas (in situ) data set was inconclusive (Tables 1 and 2).
The model concentrations showed negative biases with respect to in situ data (consistent with the total

SKÁKALA ET AL. 14



Journal of Geophysical Research: Oceans 10.1029/2018JC014153

Figure 8. The DA updates to the diatom (mg/m3) and silicate (mmol/m3) concentrations. The Figure shows (upper
panels) the annual spatial median concentration of the PFTs DA minus the free run, and the same differences between
ChlTot DA and the free run (bottom panels). In most of the regions the updates to silicate are visibly anti-correlated with
the updates to diatoms. DA = data assimilation; PFT = phytoplankton functional type; EO = Earth Observation.

chlorophyll ICES data set), but no clear impact of DA on model skill was observed. However, it needs to
be emphasized that the Cefas in situ data set had only a small number of 56 relevant datapoints and it
only contained relevant data from August 2010. The analysis is therefore too limited to justify any broader
conclusions.

We also analyzed DA skill in the specific L4 location. There was a good match during spring-summer period
between in situ data and the EO for total chlorophyll, chlorophyll in nanophytoplankton, and dinoflagellates
(see Figure 7). The comparison with satellite data showed a worse match for chlorophyll in picophytoplankton
and diatoms. The 2010 in situ time series presented in Figure 7 have more similarity with the entire NWE Shelf
EO time series (see Figure 3) than with the L4 satellite data. This could be explained by large satellite errors at
the L4 location (especially in the autumn-winter season). Interestingly, Figure 7 shows that in the L4 location
the model represents nutrients with no significant biases. The main difference between model and in situ
nutrient data is a 1-month shift in the seasonal dynamics (for nitrate and phosphate). This is probably linked to
the large spring bloom in the model time series. Interestingly, also L4 data suggest that the PFTs DA degrades
to some degree silicate (the bottom left panel of Figure 7).

5. Concluding Remarks

This work shows that assimilating PFTs chlorophyll substantially improves operational model forecasting
on the NWE Shelf. The model represents accurately the total chlorophyll levels. However, the small total
chlorophyll bias hides large biases in PFTs chlorophyll, which cannot be corrected through ChlTot DA. The rep-
resentation of PFTs chlorophyll is substantially improved by PFTs DA. The PFTs DA reanalysis skill is degraded
by the forecasting run, but it remains much better than the skill of the free run within the 5-day forecast
period. DA substantially improves representation of in situ pCO2. It does not have significant impact on nutri-
ents, but work is being carried out on developing a suitable multivariate balancing algorithm between PFTs

SKÁKALA ET AL. 15



Journal of Geophysical Research: Oceans 10.1029/2018JC014153

and the ERSEM variables of interest. Such a balancing scheme is expected to improve the coherence between
phytoplankton biomass and dissolved nutrient concentrations to further slow down the model skill deterio-
ration in the forecasting run.

Despite the advantages of the method, we stress that further research is needed to improve the understand-
ing and representation of PFTs and related biogeochemical process in marine models (Shimoda & Arhonditsis,
2016). For example, our application does not account for calcification within the nanoplankton group (e.g.,
coccolitophores) or mixotrophy by dinoflagellates, which are certainly relevant processes in the North Atlantic
(e.g., Gregg & Casey, 2004) but remain open challenges in current operational models (e.g., Anderson, 2005;
Aumont et al., 2015; Flynn et al., 2012; Yool et al., 2013).
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