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The benthic environment is a crucial component of marine systems in the provision

of ecosystem services, sustaining biodiversity and in climate regulation, and therefore

important to human society. With the contemporary increase in computational power,

model resolution and technological improvements in quality and quantity of benthic

data, it is necessary to ensure that benthic systems are appropriately represented in

coupled benthic-pelagic biogeochemical and ecological modelling studies. In this paper

we focus on five topical challenges related to various aspects of modelling benthic

environments: organic matter reactivity, dynamics of benthic-pelagic boundary layer,

microphytobenthos, biological transport and small-scale heterogeneity, and impacts of

episodic events. We discuss current gaps in their understanding and indicate plausible

ways ahead. Further, we propose a three-pronged approach for the advancement

of benthic and benthic-pelagic modelling, essential for improved understanding,

management and prediction of the marine environment. This includes: (A) development

of a traceable and hierarchical framework for benthic-pelagic models, which will facilitate

integration among models, reduce risk of bias, and clarify model limitations; (B) extended

cross-disciplinary approach to promote effective collaboration between modelling and

empirical scientists of various backgrounds and better involvement of stakeholders and

end-users; (C) a common vocabulary for terminology used in benthic modelling, to

promotemodel development and integration, and also to enhancemutual understanding.

Keywords: benthic modelling, sediment biogeochemistry, benthic-pelagic coupling, organic matter, recovery,

spatial heterogeneity, microphytobenthos, bottom boundary layer
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INTRODUCTION

The benthic environment is a key component of marine systems:
it represents the transfer zone between the biosphere and
geosphere; it provides a habitat for organisms from all domains
of life; and it modulates biogeochemical cycles of carbon, macro-
and micronutrients and trace elements. The benthos can be a
source of material for the water column (e.g., releasing nutrients
from mineralisation of organic matter) as well as a temporary
or permanent sink (e.g., C-sequestration). Furthermore, from
an ecological point of view, benthic systems play a major role
in sustaining biodiversity both directly, with large number of
species/orders/phyla, and indirectly, by providing a large number
of diverse habitats via ecosystem engineering (Meysman et al.,
2006).

Despite this, benthic systems are generally under-represented
in marine ecosystem models, in both regional and global
applications, and are mostly present as a simple closure term
for mass conservation (Soetaert et al., 2000; Hülse et al., 2017).
Historically, the parallel development of marine hydrodynamic
models and pelagic biogeochemical or plankton models, starting
with NPZ formulations (Steele and Henderson, 1981; Fasham
et al., 1990), coalesced because their spatial and temporal scales
were compatible. Benthic modelling, however, often started from
a different conceptual basis such as biodiversity (Hughes, 1984)
or diagenesis (Berner, 1980; Boudreau, 1997; Paraska et al., 2014)
considering different spatial and temporal scales, sometimes
different currencies, and different mechanisms of particle and
solute transport, which in sediments is enhanced by biological
activity. Consequently, this divergence in development has led to
marked differences in the characteristics of the two modelling
approaches. Benthic models tend to be applied over smaller
spatial scales (e.g., mm to m), typically in 1D (vertical), and
solved under steady-state assumptions, while pelagic models
usually operate over larger (m to km) scales in 2D or 3D, and
are generally dynamic. Additionally, computational constraints
have historically limited the ability to dynamically solve advective
and diffusive transport in pore waters at large spatial scales;
benthic data are relatively sparse and communication between
the benthic and the pelagic scientific community has often
been hindered by a lack of common vocabulary and objectives
(Queirós et al., 2015). Nevertheless, fully coupled regional 3D
pelagic-benthic models have been successfully developed and
applied (Baretta et al., 1995; Wakelin et al., 2012) illustrating that
there is no fundamental barrier between the two domains.

With the contemporary increase in computational power,
model resolution and technology-led improvements in benthic
data availability and synthesis, many of these constraints are now
surmountable. Improved understanding of system complexity
and feedbacks are providing renewed impetus for a holistic
approach. For instance, understanding long-term evolution of
the climate system requires a consideration of feedbacks from
the sediments (Soetaert et al., 2000; Hülse et al., 2017); similarly,
assessments of the impact of policies on marine environmental
status can be worthless without accounting for the sediments that
act as the memory of the system (Artioli et al., 2008; Soetaert
and Middelburg, 2009). Conversely, investigating the evolution

of benthic systems without considering pelagic dynamics may
lead to imperfect answers.

Here, we present five priorities for further developing benthic
process models that, due to their relevance and intrinsic inter-
disciplinary value, would ensure that the benthic system is
given an appropriate consideration in coupled pelagic-benthic
biogeochemical and ecological modelling studies (Figure 1).

REACTIVITY OF ORGANIC MATERIAL

One of the most important yet enigmatic aspects of benthic
biogeochemistry is the reactivity of the particulate organic
material (POM) degraded within the sediment (Berner, 1980).
Constraining reactivity rates is crucial as it determines the
sediment burial and recycling efficiencies (Martin and Bender,
1988; Soetaert et al., 1996), which allow the quantification of
benthic-pelagic solute fluxes and, ultimately, feedbacks on ocean
chemistry. Organic matter reactivity controls the nature and
magnitude of the electron acceptor sinks from the water column:
close to the sediment surface underlying oxic waters POM
will be mainly respired aerobically and through denitrification,
whereas deeper within the sediment it will mainly be mineralised
through anaerobic pathways such as sulphate-reduction and
methanogenesis (Regnier et al., 2011).

Parameterisation of POM reactivity in models requires
information on external (environmental) and internal (intrinsic
to the POM composition) regulating factors. The role each of
these factors play in POM mineralisation is still very poorly
understood (Burdige, 2007; Arndt et al., 2013). Attempts have
been made to mathematically describe the vertical distribution of
degradation by compartmentalising POM into discrete reactive
fractions. Yet, in areas of limited data availability different
empirical relationships are used to constrain first-order rate
constants as a function of a master variable such as the POM
rain rate or the sedimentation rate (Toth and Lerman, 1977;
Middelburg et al., 1997; Martin and Sayles, 2006; Thullner
et al., 2009). However, their large-scale spatial patterns remain
poorly known, and POM reactivity constants do not strongly
correlate with these global master variables (Arndt et al., 2013).
Nonetheless, POM rain rate may be used for predicting its
reactivity when export production is reasonably well described
(Dunne et al., 2007).

Less common approaches, in particular the power
(Middelburg, 1989) and reactive continuum (Boudreau and
Ruddick, 1991) models, assume a continuous distribution
of reactive types that capture the full range of degradation
time scales. They require less parameterisation than discrete
models, but are difficult to apply to bioturbated sediments
where age and reactivity of organic matter depend on the
burial velocity and bioturbation rate (Meile and Van Cappellen,
2005). Parameterisation of the continuum model to bioturbated
sediments better captures the degradation of labile material
within the top few millimetres of sediment, and more accurately
predicts the drawdown of oxygen and nitrate from the water
column (Stolpovsky et al., 2015). Continuum models can also be
used to define the reactivity of discrete POM fractions, which can

Frontiers in Marine Science | www.frontiersin.org 2 February 2018 | Volume 5 | Article 19

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Lessin et al. Modelling Marine Sediment Biogeochemistry

FIGURE 1 | Traditional view of benthic-pelagic coupling and approach to its representation in models (Left), the five cross-disciplinary research priorities that

challenge this traditional approach (Middle), and lead to the new paradigm (Right), which is crucial for the improvement of biogeochemical and ecological modelling

studies of the marine environment.

then be coupled to the total rain of POM to the seafloor (Dale
et al., 2015). However, such approaches are generally not well
suited to coastal areas and seas where seasonality is especially
important. A better understanding of the spatiotemporal
variability of lifetime and composition of POM is crucial for
an improved representation of the benthic-pelagic coupling at
regional to global scales.

THE CONTINUUM OF THE
BENTHIC-PELAGIC BOUNDARY LAYER

The benthic-pelagic boundary is often simplistically regarded as a
discontinuity, the interface between a completely fluid, dynamic
water column and a rigid, porous benthic system. The reality
is a spatially and temporally varying dynamic bottom boundary
layer (BBL), characterised by strong physico-chemical gradients.
While the importance of this layer on the mediation and
transformation of biogeochemical fluxes, the transfer of organic
material and sustaining heterogeneity of benthic habitats has
been widely recognised, many uncertainties remain (Boudreau
and Jorgensen, 2001).

The benthic-pelagic transition is often blurred by the presence
of easily resuspendable unconsolidated “fluff” and fluid muds,
which can form layers extending from a few centimetres
to several meters into the pelagic. The flocculent “fluff”
usually consists of newly deposited POM, and can sustain rich

microbial communities, also being a valuable food resource
for benthic fauna (Laima et al., 2002). Fluid muds containing
high concentrations of fine particular material are distinctive
for the major delta-forming rivers, but also common in other
coastal systems (McAnally et al., 2007). They may be subject to
repetitive redox successions and mixing of refractory riverine
material with more labile estuarine organic matter (Aller, 1998;
Aller and Blair, 2006). To better account for the fate of organic
material within the BBL, better knowledge of its composition,
degradation and consumption as well as transport dynamics, is
necessary. Supporting this development requires data collected
with equipment that preserves the sediment-water interface
structure.

At the opposite side of benthic-pelagic continuum, properties
of pore water in non-cohesive sandy sediments are similar
to the water column due to enhanced exchange of solutes,
dominated by advective rather than diffusive transport driven
by physical forcing, and enhanced by burrowing organisms
(Huettel and Webster, 2001; Volkenborn et al., 2012). This
affects redox structure, biological activity and ultimately the
potential for carbon sequestration (Reckhardt et al., 2015). Better
characterisation of sediment types and their regional distribution
is necessary to more accurately quantify material fluxes and
transformations in coupled models (Almroth Rosell, 2011).

Representation of a continuous benthic-pelagic interface
in models requires adequate resolution: layers of few
millimetres in thickness can be important for the bulk of
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biogeochemical transformations. A compromise usually lies
between implementing high vertical resolution within the BBL
and consolidated sediments (Yakushev et al., 2017) or choosing
implicit parameterisations of vertical distributions (Ruardij and
Van Raaphorst, 1995). To account for smooth benthic-pelagic
transition in models, decreasing turbulent diffusivity with depth
can be prescribed in the BBL, or potentially parameterised based
on gradients of organic matter concentration and properties.

MICROPHYTOBENTHIC PRIMARY
PRODUCTION

A large area of the coastal sediment receives enough light to
support photosynthesis and sustain benthic primary production
(Gattuso et al., 2006), whether seagrasses, macroalgae or
microphytobenthos (MPB), which are generally not yet
considered in holistic model systems. For example the
MPB—typically dominated by pennate diatoms—can be
biogeochemically significant, particularly in oligotrophic
settings, supported by nutrients regenerated during benthic
mineralisation (Glud et al., 2009b). Their diel rhythm of
respiration and photosynthesis has implications for benthic
redox conditions and affects the availability of oxygen and
labile organic material in the upper centimetres of the sediment
(Cook et al., 2007). This dynamic directly affects key processes
in the nitrogen cycle (nitrification, denitrification, DNRA), the
redox cycling of metal-oxides and metal-sulphides and thereby
the mobility of metals, trace-metals, phosphorus, sulphur,
and pollutants (Risgaard-Petersen et al., 1993; Fenchel and
Glud, 2000; Dalsgaard, 2003). Recent investigations suggest
that MPB metabolism also may directly influence nitrogen
turnover through DNRA and intracellular storage of nitrate
(Kamp et al., 2011). Furthermore, extensive production of
exopolymeric substances by MPB can affect the permeability
and erosion thresholds of sediments (Hanlon et al., 2006; Pierre
et al., 2014). However, only a few theoretical models on element
cycling, food web structure or biogeochemistry in the coastal
zone illustrate the potential of MPB (Blackford, 2002; Baird
et al., 2016). Inclusion of MPB in biogeochemical and trophic
models requires high quality data on distribution and processes
mediated by MPB. New field approaches for mapping biomass
(Glud et al., 2002; Kazemipour et al., 2012), trophic coupling
(Evrard et al., 2008; Oakes et al., 2012) and performance of MPB
(Berg et al., 2013; Attard et al., 2014) may better facilitate model
parameterisation, although basic understanding of in situ growth
and grazing on MPB communities is still rudimentary. However,
to fully appreciate the importance of MPB, field efforts have to
be closely linked to investigations on physiology, metabolism
and behaviour of MPB-dominated communities by, for instance,
taking advantage of new imaging approaches (Grunwald and
Kühl, 2004; Ralph et al., 2005; Hancke et al., 2014).

BIOLOGICAL TRANSPORT AND
SMALL-SCALE HETEROGENEITY

Benthic systems are characterised by spatial heterogeneity
at all scales, making sediments a complex mosaic of redox

conditions and habitat niches, often not sufficiently represented
by average rates or attributes (Glud et al., 2009a). Without
understanding this variability, benthic systems may exhibit
apparently paradoxical behaviour. For instance, nitrification in
deep nominally anoxic sediment layers (Satoh et al., 2007),
occurring as a consequence of burrowing fauna pumping
oxygenated waters into the deeper sediment, locally modifying
redox conditions (Wenzhöfer and Glud, 2004; Volkenborn et al.,
2010). Biogeochemical models mostly consider bio-irrigation
(biological enhancement of solute transfer) as a factor enhancing
the diffusion coefficient (Blackford, 1997; Reed et al., 2011),
resulting in a thicker oxic layer near the sediment surface.
However, the transport of oxygen (and other solutes) will
likely not occur homogenously, rather being concentrated along
the network of burrows (Glud et al., 2016), which become
an extension of the oxic-anoxic interface. It has been shown
that burrowing activity of benthic macrofauna can lead to as
much as 400% increase in denitrification rates (Gilbert et al.,
1998; Webb and Eyre, 2004), mostly due to the high rates of
nitrification occurring within the burrows (Howe et al., 2004).
Burrows thus offer an ideal environment for diverse microbial
communities to work very closely and efficiently: indeed, genetic
analysis has shown that in-burrow bacterial communities are
more similar to the surface sediment community than the
ambient sediment community at similar depth (Satoh et al., 2007;
Laverock et al., 2010). Conversely, anaerobic microniches may
be formed in surface aerobic sediments when the consumption
rate due to the mineralisation of POM by bacteria is higher
than the oxygen diffusion into the particle. Under these
conditions, anaerobic processes such as sulphate reduction and
denitrification (Jørgensen, 1977; Lehto et al., 2014) may occur at
the sediment surface.

Recently, sulphide oxidation has been observed even within
anoxic sediments, at the expense of the free oxygen in the distant
oxic layer, thanks to the presence of filamentous cable bacteria
that physically connect the two layers and act as micro-cables
transferring electrons (Nielsen et al., 2010; Pfeffer et al., 2012).
In a seasonally hypoxic basin in the North Sea, cable bacteria are
very abundant and active during winter when they build a large
buffer of iron (hydro-)oxides before the onset of summer hypoxia
that is able to prevent the formation of euxinic toxic waters
by chemically oxidising the sulphides formed during summer
(Seitaj et al., 2015). Sharp discontinuities in the redox structure
of the benthic environment are rarely represented in models
despite their potential significance. Explicit representation of
these processes would require a significant increase in the
vertical resolution of benthic models, which may be incompatible
with operational modelling. In order to properly upscale these
processes, detailed models implemented at a small scale, or
a sub-grid scale approach could be used to derive optimal
parameterisations.

EPISODIC EVENTS AND RECOVERY

Seasonal variability is an important driver of benthic–pelagic
coupling in themarine environment (Martens, 1976; Aller, 1994).
While it is relatively well described in current models, the role
of episodic events has been long neglected because of the lack
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of observations and their unpredictability (Durrieu de Madron
et al., 2011). Along the continental slope, earthquakes may
generate landslides that affect deposition and, consequently, the
benthic ecosystem (Oguri et al., 2013). Other events such as
storms and river floods have been shown to dominate particle
transport in key areas of the coastal zone which implies a large
effect on community structuration and biogeochemical function.
In the North-Western Mediterranean, for example, the Rhône
River shows very large floods that represent 70-80% of the
annual particulate delivery (Antonelli et al., 2008) including
POM. These very large deposition rates generate disturbances
of the benthic communities and their functions, and recovery
is often terminated by another event (Cathalot et al., 2010). At
the same time, river floods deliver large amounts of nutrients
that induce phytoplankton blooms which feed the pelagic and
benthic biota (Auger et al., 2011). Waves and storm-induced
currents can resuspend fine particulates from centimetres in
the sediment (Toussaint et al., 2014; Bourrin et al., 2015) and
transport them away from the nearshore coastal zone, thus
feeding deeper benthic communities spread on the shelf and
deep slope (Jahnke et al., 1990). Export from the shelf to the
deep-sea is also dominated by intense events (Sanchez-Vidal
et al., 2008) through cascading or downwelling in canyons. In
the North-Western Mediterranean, cascading arises from a peak
of cold winds which generate cold and dense waters on the
shelf that are transported to the shelf break and sink, whereas
downwelling events are linked to storms and cyclonic circulation.
Both these phenomena contribute to major export of particles
(Ulses et al., 2008) which impoverish the shelf and have profound
impacts on the deep-sea ecosystem (Sanchez-Vidal et al., 2012)
including beneficial feeding of the shrimp populations (Canals
et al., 2009). Post-disturbance recovery dynamics of benthic
systems will differ depending on nature of disturbance: hypoxia
(Rosenberg et al., 2002), benthic trawling (Collie et al., 2000),
dredge dumping (Bolam et al., 2006) or deep sea mining (Jones
et al., 2017) will have different impacts and dynamics of recovery.
One of the modelling challenges is the representation of lateral
recolonization in benthic communities (Dittmann et al., 1999;
Fowler, 2002), since microbial functions such as denitrification
only return fully after recovery of deep-digging fauna (Van
Colen et al., 2012). Modelling the impacts of intense events
on benthic systems requires consideration of both the physical
reorganisation of the sediments and the associated response of
flora and fauna. Synthesis of current understanding of effects of
these events on organisms’ physiology and ecology will facilitate
better parameterisation of their impacts.

CONCLUSIONS

Benthic environments are a crucial component in the functioning
of marine systems and their services, particularly under
the increasing pressure from anthropogenic activities and
climate change. Therefore, development and application of
numerical models that integrate our understanding of benthic
systems is essential. However, benthic models often require
complex, specific structures and scales, very different from

faster-developing pelagic counterparts. In this paper, we have
discussed some topical challenges related to different aspects of
benthic environments, gaps in their understanding, and research
priorities that will lead to tackling these gaps using a modelling
approach (Figure 1).

We believe that these challenges can be addressed properly
with a different and broader approach than has been used in the
past, one that maximises the utility of benthic modelling within a
whole systems approach. In particular:

• Building on (Soetaert et al., 2000) approach, a framework
of traceable and hierarchical complexity for benthic-pelagic
models should be developed. Benthic systems exert different
effects and functions depending on the spatial and temporal
scale being considered. Depending on the scientific question,
some aspects can be neglected, others can be simplified. The
function of the framework would be to assure that these
choices are fully transparent both to scientists and end-users.
This approach will facilitate integration amongmodels, reduce
risk of bias, and clarify any model limitations.

• A cross-disciplinary approach is needed: the complexity of
benthic systems requires an integrated approach toward
research, which necessitates effective communication and
collaboration between modelling and empirical scientists of
various backgrounds, involving stakeholders and end-users
(Queirós et al., 2015). This approach has to be fully integrated
rather than sequential or in parallel, including the design of
the conceptual framework of the modelling and experimental
approach.

• A common vocabulary for terminology used in benthic
modelling community needs to be developed. With many
strains and flavours of benthic models developed to date,
an effective interdisciplinary dialogue requires a common
language not only to promote model development and
integration, but also to enhance mutual understanding and
avoid ambiguity.

These three pillars form the foundation for a robust advancement
in multi-disciplinary collaborations in benthic and benthic-
pelagic research necessary to better understand, manage and
predict the marine environment.
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