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Abstract The formation and rapid drainage of supraglacial lakes (SGL) influences the mass balance and
dynamics of the Greenland Ice Sheet (GrIS). Although SGLs are expected to spread inland during the 21st
century due to atmospheric warming, less is known about their future spatial distribution and volume. We
use GrIS surface elevation model and regional climate model outputs to show that at the end of the 21st
century (2070–2099) approximately 9.8 ± 3.9 km3 (+113% compared to 1980-2009) and 12.6 ± 5 km3 (+174%)
of meltwater could be stored in SGLs under moderate and high representative concentration pathways (RCP
4.5 and 8.5), respectively. The largest increase is expected in the northeastern sector of the GrIS (191% in RCP
4.5 and 320% in RCP 8.5), whereas in west Greenland, where the most SGLs are currently observed, the future
increase will be relatively moderate (55% in RCP 4.5 and 68% in RCP 8.5).

1. Introduction

Supraglacial lakes (SGL) are formed by accumulation of meltwater in surface depressions on a glacier or ice
sheet above impermeable snow/ice layers. They predominantly occur on the Greenland Ice Sheet (GrIS)
below the Equilibrium Line Altitude (ELA) [Echelmeyer et al., 1991; Selmes et al., 2011; Howat et al., 2013;
Doyle et al., 2014; Leeson et al., 2015]. During amelt season SGLs are formed at progressively higher elevations
around the margins of the GrIS and may refreeze (particularly at higher altitudes) or drain over the surface or
to the bed of the ice sheet [McMillan et al., 2007; Sundal et al., 2009; Lampkin, 2011; Liang et al., 2012;
Johansson et al., 2013; Morriss et al., 2013; Selmes et al., 2013; Fitzpatrick et al., 2014]. SGLs tend to form in
the same positions from year to year, rather than migrating with the flow of ice [Echelmeyer et al., 1991;
Lampkin, 2011; Selmes et al., 2011], indicating that their locations are controlled by the transfer of bed
undulations to the surface of the ice sheet [Whillans and Johnsen, 1983; Gudmundsson, 2003; Lampkin and
Vanderberg, 2011; Sergienko, 2013].

SGLs influence ice sheet mass balance and dynamics in several ways. Their presence reduces the albedo of
the ice sheet thus increasing surface melt [Greuell et al., 2002; Lüthje et al., 2006; Tedesco et al., 2012]. The rapid
(<24 h) drainage of SGLs to the bed through hydrofracture [van der Veen, 2007; Das et al., 2008; Krawczynski
et al., 2009; Selmes et al., 2011] locally increases the water pressure in the subglacial hydrological system,
which reduces the basal friction and causes transient ice-flow speedups [Zwally et al., 2002; Das et al.,
2008; Shepherd et al., 2009; Bartholomew et al., 2010; Sole et al., 2011; Joughin et al., 2013]. However, the evo-
lution of an efficient subglacial drainage system, which is able to drain water from regions of the ice sheet
bed with high basal water pressure, has been shown to cause a net slowdown on annual and decadal time
scales in west Greenland within 100 km of the land terminating ice sheet margin [Schoof, 2010; Sole et al.,
2013; Tedstone et al., 2015]. Thus, the net ice sheet wide effect of SGL drainage on ice sheet dynamics is still
an open research question. Besides the direct effects on ice flow, the formation of surface-to-bed connections
and an efficient subglacial drainage system could (1) enable the rapid transfer of surface meltwater to the ice
sheet margin, thereby reducing the retention and refreezing of meltwater on the surface [Willis et al., 2015;
Smith et al., 2015]; (2) transfer heat into the ice sheet reducing ice viscosity and promoting faster ice flow
[Phillips et al., 2010; Doyle et al., 2014]; and (3) affect the magnitude and timing of freshwater and nutrient
delivery to the oceans [Irvine-Fynn et al., 2011; Hawkings et al., 2015].
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Although SGLs are known to be widespread across the GrIS and have expanded inland during the last two
decades [Sundal et al., 2009; Selmes et al., 2011, 2013; Howat et al., 2013], only Leeson et al. [2015] have mod-
eled their future distribution. Leeson et al. [2015] focused on a ~ 20,000 km2 area in southwest Greenland and,
using an SGL initiation and growth model [Leeson et al., 2012] forced by moderate and high climate change
scenarios, found that lakes form at higher elevations as temperature increases during the 21st century. Using
an empirically based extrapolation of these results to the whole ice sheet, they suggested a 48–53% increase
in the total area over which SGLs are distributed by 2060 [Leeson et al., 2015]. Here we expand upon these
findings and present a physically based inventory of contemporary and future SGLs across the entire ice
sheet. First, we present an ice sheet wide data set of closed surface depressions, which are potential
sites for SGL formation, and compare this with contemporary SGL surveys [Selmes et al., 2011; Leeson et al.,
2013] considering modeled surface mass balance (SMB) [Fettweis et al., 2013] and SGL volume estimations.
Then using the surface depression inventory and regional climate model outputs [Fettweis et al., 2013], we
study the changing distribution of SGLs during the 21st century.

2. Data and Methods
2.1. Surface Depression Survey

To estimate the large-scale future distribution of SGLs, we consider every closed surface depression as a poten-
tial SGL. This assumes that the location of depressions is controlled by bed topography [Lampkin, 2011;
Sergienko, 2013] and is therefore unlikely to change much during the next century. Closed depressions were
surveyedbyfilling the sinks in theGreenland IceMappingProject (GIMP) digital elevationmodel (DEM), posted
at 30m resolution [Howat et al., 2014]. Thedatawerefiltered to remove falsedepressions causedbynoise in the
DEM and depressions that are unlikely to host SGLs. Small (≤0.125 km2) [Yang et al., 2015], very shallow (mean
depth ≤1.5m), very deep (mean depth ≥ 50m) depressions and depressions located on thin (≤10m) and
ungrounded ice according to BedMachine v.2 data [Morlighem et al., 2014] were removed accordingly. To test
the reliability of the GIMP-DEMderived surface depression data set, it was compared against two independent
DEMs (see supporting information) [Hawley et al., 2009;Christie et al., 2016]. Depressionswerealsogrouped into
the eight main catchments of the GrIS as delineated by the Goddard Ice Altimetry Group [Zwally et al., 2012].

2.2. Comparison of Observed SGLs and Surface Depressions

To test the reliability of our surface depression inventory as an SGL proxy, it was compared with contempor-
ary ice sheet wide SGL surveys derived from satellite imagery. These were provided by Selmes et al. [2011] and
Leeson et al. [2013] for the period of 2003–2009. The spatial coincidence between depressions and SGLs was
assessed and expressed as recall (percentage of SGLs with matching depressions) and precision (percentage
of depressions hosting SGLs) values [Livingstone et al., 2013] for each catchment above and below the current
ELA. Most depressions are not filled to the lip with water [e.g.,McMillan et al., 2007; Leeson et al., 2012] due to
surface meltwater processes. To account for this, we compared the volume of depressions with the volume of
coinciding observed SGLs. A radiative transfer model (equation (1)) [Sneed and Hamilton, 2007] was used
to calculate water depths for the pixels of Moderate Resolution Imaging Spectroradiometer (MODIS) band
1 (620–670 nm) images from 2003, 2005, 2006, and 2007 in northern, northeastern, and southwestern
Greenland using a similar method to that employed by Langley et al. [2016]. MODIS Level-1B Calibrated
Radiances (MOD02) data were processed using the technique of Gumley et al. [2007].

z ¼ ln Ad � R∞ð Þ � ln Rw � R∞ð Þ
g

(1)

In the radiative transfer model (equation (1)) z is the water depth, Rw is the reflectance of the pixel of interest,
and R∞ is the reflectance of optically deep water, estimated from the open sea visible on each image. The
quantity g is best estimated as 2 Kd [Maritorena et al., 1994], where Kd is the diffuse attenuation coefficient
for downwelling light and found to be 0.30945 and 0.43045 for the wavelengths of 620 and 670 nm, respec-
tively [Smith and Baker, 1981]. Ad is the lake substrate albedo estimated for each image based on the pixels
directly adjacent to lakes delineated using MODIS band 3 to band 1 ratio of 1.2 [Box and Ski, 2007; Banwell
et al., 2014]. Best estimates for water depths were calculated using mean R∞ and Adwhere Kdwas the average

of K620
d and K670

d . Using the water depth data, which were extracted from 24 to 40 MODIS images per melt
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season, the maximal volume of each SGL in each melt season was recorded. The mean value of the 4 years
was calculated for each SGL and compared with the volume of the coinciding depression.

2.3. Surface Mass Balance and SGL Projections

The majority of SGLs form below the ELA, and their inland expansion correlates well with the rising ELA
[Howat et al., 2013]. Thus, in order to obtain robust estimations for the maximal total volume of SGLs on
the GrIS, only surface depressions located below the ELA were assumed to host SGLs when projecting into
the future or reconstructing the past. Past and future ELAs were obtained from modeled SMB, from 1980
to 2099. SMB was modeled at 25 km by the Modèle Atmosphérique Régional (MAR), which was forced by
European Centre for Medium Range Weather Forecast Reanalysis (ERA-Interim) outputs, from 1980 to 2009
to produce a reference for current climate [Fettweis et al., 2013]. MAR was also forced, from 1980 to 2099,
by the outputs of three general circulation models (GCMs): Canadian Earth System Model (CanESM2),
Norwegian Climate Center's Earth System Model (NorESM1), and Model for Interdisciplinary Research on
Climate (MIROC5). Mid- and high-range future greenhouse gas scenarios (representative concentration path-
way (RCP) 4.5 and 8.5 respectively) were used to force the three GCMs from 2006 to 2099 [Fettweis et al.,
2013]. Mean SMB data sets, per 5 year for the historical period of 1980–2009 and 10 year for the projected
period of 2010–2099, were calculated from the model outputs. The average ELA of 2000–2009 was consid-
ered as the current ELA in order to best match with the date of SGL observations and DEM surveys. To avoid
using average ELAs for large areas, SMB was investigated at each depression and observed SGL to determine
whether it fell above or below the ELA.

3. Results and Discussion
3.1. Comparison of Surface Depressions and Contemporary SGLs

The majority (81%) of observed SGLs are located below the current ELA which agrees well with previous
observations [e.g., Echelmeyer et al., 1991; Howat et al., 2013]. A recall (percentage of SGLs which fall within
a depression) of 75% indicates that surface depressions can be used to predict the sites of contemporary
SGLs below the ELA accurately (Table 1). The performance of the GIMP-DEM was similar to the two indepen-
dent DEMs (Text S1 in the supporting information). Catchment-specific values demonstrate that although the
accuracy of our data set is not homogenous, it performs well in all catchments of the GrIS (Table 1).
Combining the ratio of observed SGLs below the current ELA (81%) and the recall below the current ELA
(75%), the potential underestimation rate of our SGL projection technique is estimated to be less than 40%.

A precision (percentage of depressions hosting SGLs) of 19% indicates that even below the ELA a lot of
depressions currently do not host SGLs (Table 1). Independent DEMs performed similarly in this case too
(Text S1). Low precision is expected because a range of factors could hinder the formation of SGLs in depres-
sions, e.g., the presence of crevasses, moulins, narrow surface channels draining the lakes, and/or inadequate
meltwater supply. Surveys using satellite imagery could have also missed SGLs due to limited availability
of imagery and the short lifetime of some SGLs [e.g., Selmes et al., 2011; Leeson et al., 2013]. However,

Table 1. Comparison of Depressions and Observed Contemporary SGLs

Catchment N NE E SE S SW W NW Total

Area of catchments (103 km2) 252 311 261 153 58 193 225 268 1721
Total number of depressions 3342 6819 7555 987 541 2745 1107 2044 25140
Relative areal coverage of depressions (%) 0.5 2.3 1.3 0.5 0.4 1.2 0.7 0.6 1.1
Depressions below the ELAa (%) 56 31 12 24 54 92 76 85 42
Total number of SGLs 215 413 168 18 37 1347 363 415 2976
Relative areal coverage of SGLs (%) 0.14 0.26 0.11 0.01 0.07 1.25 0.33 0.26 0.31
SGLs below the ELAa (%) 95 84 61 78 78 80 79 84 81
Recall below the ELAa (%) 82 87 91 64 24 65 80 83 75
Precision below the ELAa (%) 11 19 13 4 2 29 29 18 19
Precision of volumes below the ELAab (%) 39 71 45 13 11 67 72 43 58

aOnly GIMP-DEM-derived depressions and observed SGLs below the current ELA, derived from ERA-Interim forced
MAR over 2000–2009, were considered.

bThe percentage of the volume of GIMP-DEM-derived depressions hosting SGLs from the total depression volume of
each catchment, only considering depressions below the ELA.
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depressions below the ELA where SGLs were not detected were significantly smaller than depressions where
SGLs were present, the latter accounts for only 19% of the total number but 58% of the total volume of the
depressions below the ELA (Table 1). Thus, the potential overestimation rate of our SGL projections due to the
presence of depressions without SGLs is expected to be less than 40%.

To further calibrate our SGL projections, we compare the volumes of spatially coincident GIMP-DEM-derived
depressions and MODIS-derived SGLs (Figure 1). Around 10% of the depressions in each of the three study
sites are almost completely full. We mainly attribute this to the presence of meltwater and/or frozen melt-
water in the depressions at the time of the DEM survey, making the depressions appear shallower. The
distribution of meltwater infill proportion, the ratio between the volumes of spatially coinciding SGLs and
depressions, is relatively similar in the northern and northeastern regions, with median values of 14% and
17%, respectively. However, in the southwestern region the infill proportions are somewhat higher, with a

Figure 1. Relative frequency histograms showing the ratio of the volumes of spatially coinciding depressions and SGLs as
percentages (meltwater infilling proportions), using a bin size of 5%. The three study areas, shown on the map inset,
were plotted separately. Median values of the meltwater infilling proportions were also plotted for each study area (dashed
black lines).
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Figure 2. The distribution of surface depressions on the GrIS. The bar plots show the volume of depressions derived from GIMP-DEM and sampled by their elevation
with a bin size of 100m for each catchment. The current ELAs, derived from ERA-Interim forced MAR over 2000–2009, are indicated by dashed vertical lines.
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median of 26% (Figure 1). The difference is likely to be caused by the longer melt season and higher amount
of available meltwater in the south [Sundal et al., 2009; Fettweis et al., 2013]. The maximal volume of melt-
water that could be contained in depressions assumed to host SGLs was calculated by considering a 20%
meltwater infill proportion (the mean of the three medians) of each depression. Along with the conservative
estimate of overall uncertainty, which is 40%, this provides a robust constraint on our estimations.

3.2. Distribution of Surface Depressions on the Greenland Ice Sheet

We have identified 25,140 closed surface depressions on the GrIS using the GIMP-DEM (Figure 2). The distri-
bution of depressions is similar using independent DEMs (Text S1 and Figure S1). Most depressions occur
close to the ice sheet margin: 73% are within 25 km and 90% are within 50 km, where thinner ice and rela-
tively large basal slip ratios could enable the transfer of short wavelength bedrock undulations to the surface
[Gudmundsson, 2003; Lampkin and Vanderberg, 2011; Sergienko, 2013]. The relatively steep ice surface, the
presence of crevasses, shallower snowpack, and firn, and higher effective resolution of the DEM [Howat
et al., 2014] could also contribute to this. At high elevations, shallow surface depressions may have been
missed due to infilling by snow and/or refrozen meltwater [Koenig et al., 2015]. However, there are certain
regions where surface depressions clearly occur in the far interior of the ice sheet. The most striking example
is on the Northeast Greenland Ice Stream (Figure 2), where the presence of thick ice and a high basal slip ratio
caused by anomalously high geothermal heat flux [Fahnestock et al., 2001; Joughin et al., 2000, 2001;
Rogozhina et al., 2016; MacGregor et al., 2016] could facilitate the transfer of longer basal wavelengths to
the surface, while filtering shorter wavelengths [Gudmundsson, 2003], causing a high concentration of large
depressions. However, further investigations are needed on the spectral composition of basal undulations
under the GrIS in order to confirm our assumptions.

The main catchments of the GrIS can be classified into three groups based on the distribution and spatial
density of depressions. In the southern and southeastern catchments, there are very few closed depressions
and their relative areal coverage is also low, 0.4% and 0.5%, respectively (Figure 2 and Table 1). This is in
agreement with previous studies which reported very few SGLs in these regions due to the high surface
slopes and the large mass balance gradient [Selmes et al., 2011; Howat et al., 2013]. In the northern, northeast-
ern, and eastern catchments, there are significantly more depressions, the majority of them (44%, 69%, and
88% respectively) are above the current ELA (Figure 2 and Table 1). In the northwestern, western, and south-
western catchments there are fewer depressions above the current ELA, 15%, 24%, and 8% respectively. This
implies that the current SGL distribution is close to the topographical limit of depressions in this region. Thus,
assuming that the relative change in ice thickness over most of the ice sheet will remain moderate during the
next century, the future advance of SGLs could be limited in west Greenland. This is important because
currently 71% of the observed SGLs in Greenland can be found in this region (Table 1).

3.3. SGL Projections

Total ice sheet, and catchment-specific, SGL volume reconstructions, and projections were obtained by sum-
ming the volume of every GIMP-DEM-derived depression below the relevant ELA and assuming that each
depression becomes 20% full of meltwater (Figure 3). Our reconstructions, from 1980 to 2009, are in good
agreement with earlier observations by Howat et al. [2013], who showed a strong increase in SGL coverage
after 2000, especially in the southwestern, western, and northwestern catchments. This agreement gives
us confidence in the ability of our method to capture ice sheet wide trends in future SGL coverage. Themajor-
ity of the projections show an increase in SGL volume with time which is consistent with a warming climate
(Figure 3). Taking the mean of the projection outputs the maximum volume of meltwater that could be con-
tained in SGLs by the end of the 21st century (2070–2099) is estimated to be 9.8 ± 3.9 km3 and 12.6 ± 5 km3

under moderate (RCP 4.5) and high (RCP 8.5) climate change scenarios, respectively. This is a 113% (RCP 4.5)
and 174% (RCP 8.5) increase relative to 1980–2009 (4.6 ± 1.8 km3).

Based on the projected volume of the SGLs and the rate of increase, we were able to classify the GrIS
into three distinctive regions (Figure 3). In the southeastern and southern catchments, we predict a large
relative increase in the volume of SGLs by 2070–2099, 262% (RCP 4.5) and 380% (RCP 8.5) relative to the per-
iod 1980–2009. However, the total volume will remain low, 0.43 ± 0.17 km3 (RCP 4.5) and 0.57 ± 0.23 km3 (RCP
8.5), due to fewer surface depressions (Figure 2). In the northwestern, western, and southwestern catch-
ments, where SGLs are currently most abundant [e.g., Selmes et al., 2011], the present lake coverage is quite
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close to the upper limit of available depressions and therefore possible SGL formation. Thus, the relative
increase in SGL volume will be modest during the 21st century, 55% (RCP 4.5) and 68% (RCP 8.5).
However, the projected total volume of SGLs in this region, 4.2 ± 1.7 km3 (RCP 4.5) and 4.5 ± 1.8 km3 (RCP
8.5), will remain significant. In the northern, northeastern, and eastern catchments, both the rate of increase,
191% (RCP 4.5) and 320% (RCP 8.5), and the projected total volume of SGLs, 5.2 ± 2.1 km3 (RCP 4.5) and
7.5 ± 3 km3 (RCP 8.5), are expected to be high (Figure 3). Thus, according to our analysis, the relative distribu-
tion of SGLs on the GrIS will shift dramatically during the 21st century, with the northeastern sector of the ice
sheet becoming increasingly important in terms of SGL formation and drainage. This could be further
enhanced by large-scale climatic effects, such as the recent poleward shift of low albedo and high runoff
on the GrIS [Tedesco et al., 2016].

The predicted expansion of SGL covered area during the 21st century is likely to impact on the dynamics and
mass balance of the GrIS. The former depends on basal water pressure variations controlled by the balance of
subglacial channel expansion, due to high water volumes supplied by draining SGLs, and closure by ice creep.
Below ~1500m in west Greenland lake drainage currently contributes to a negative feedback on ice flow, as
high meltwater volumes cause efficient subglacial drainage systems to develop [Sole et al., 2013; Tedstone
et al., 2015]. We expect that in a warming climate, with greater melt volumes and longer melt seasons, effi-
cient subglacial drainage will continue to act as the primary control on ice flow in west Greenland
[Tedstone et al., 2015]. Increased crevassing near the margins of the ice sheet [Colgan et al., 2011] could also
increase the frequency of rapid SGL drainage events, further enhancing subglacial drainage system evolu-
tion. Above the ELA in west Greenland, where less melt penetrates to the bed and creep closure rates are
greater under thick ice, a small year-on-year annual ice-flow increase, consistent with increased surface melt-
ing, has been observed [Doyle et al., 2014]. However, our results indicate only modest future expansion of
SGLs in this region which may limit the influence of lake drainage on future ice flow in this zone. The median
ice thickness below surface depressions in the northeast is 1036m and in the southwest is 640m, thus,
assuming uniform ice viscosity, closure of subglacial channels is expected to be faster in the former

Figure 3. SGL volume reconstructions and projections using the GIMP-DEM-derived depression data set for the period of 1980–2099, assuming 20% meltwater
infilling of the depressions below the respective ELAs. Note the different scale on the plot of the total projection and the northeastern catchment. The catch-
ments were grouped in the discussion and on the figure according to the rate andmagnitude of SGL volume growth: (1) southeast and south (2) northwest, west, and
southwest (3) north, northeast, and east.
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catchment [Chandler et al., 2013; Tedstone et al., 2015]. At high elevations in northeastern Greenland, where
the greatest increase in SGL volume is predicted, faster subglacial channel closure may outweigh the
evolution of efficient subglacial drainage [Doyle et al., 2014; Tedstone et al., 2015]. However, an increase in
subglacial channel melting provided by more frequent rapid drainage of SGLs to the ice bed, due to the
predicted expansion of SGLs and the presence of crevasses far inland [Fahnestock et al., 1993; Poinar et al.,
2015; Stevens et al., 2015], could counteract faster creep closure.

4. Conclusions

Our results confirm the findings of Leeson et al. [2015] that SGLs will become more prevalent across the GrIS
during the 21st century. However, by considering regional variations in ice surface topography and ELA, we
predict significant changes in the large-scale spatial distribution of SGLs. Our results indicate that currently
about 18% of the total SGL volume lies in the northeast and 23% in the southwest catchment. However,
according to our results, this could change to 30–35% and 14–17%, respectively, by the end of the century.
This highlights the heterogeneous nature of SGL evolution and cautions against extrapolating from studies
based on the southwestern region of the ice sheet alone. In particular, we suggest that further work is needed
to (1) fully understand the controls governing the spatial distribution of surface depressions and (2) establish
whether future changes to SGL formation and growth in the northeast are likely to affect ice flow.
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