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The seminal papers by Viswanathan and colleagues in the late 1990s [1,2] proposed not only that 

scale-free, superdiffusive Lévy walks can describe the free-ranging movement patterns observed in 

animals such as the albatross [1], but that the Lévy walk was optimal for searching for sparsely and 

randomly distributed resource targets [2]. This distinct advantage, now shown to be present over a 

much broader set of conditions than originally theorised [3], implied that the Lévy walk is a search 

strategy that should be found very widely in organisms [4]. In the years since there have been 

several influential empirical studies showing that Lévy walks can indeed be detected in the 

movement patterns of a very broad range of taxa, from jellyfish, insects, fish, reptiles, seabirds, 

humans [5-10], and even in the fossilised trails of extinct invertebrates [11]. The broad optimality 

and apparent deep evolutionary origin of movement (search) patterns that are well approximated by 

Lévy walks led to the development of the Lévy flight foraging (LFF) hypothesis [12], which states that 

“since Lévy flights and walks can optimize search efficiencies, therefore natural selection should have 

led to adaptations for Lévy flight foraging”. 

The idea that organism search strategies naturally evolved to exploit optimal Lévy patterns has 

gathered pace in recent years [5,7,9,11]. To account for observed Lévy-like behaviour – by which I 

mean behaviour patterns well approximated by a truncated Lévy distribution – it has been 

hypothesized that (i) scale-free activities may arise from intrinsic processes [9,11,13-16], (ii) that 

behavioural adaptations to changes in environmental resources may cue the switching between 

localized Brownian and Lévy random searching [5,7], or (iii) that sensory interactions with 

heterogeneous environments may give rise to Lévy movement patterns (an emergent phenomena) 

[17,18]. However, the origins of such potential mechanisms remain elusive. 
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The review by Reynolds [19] is a timely synthesis of this burgeoning topic. The review proposes that 

the Lévy flight foraging hypothesis may be too narrowly focused on optimal foraging to be ideal for 

framing questions aimed at exploring how scale-free movements and behaviours may arise. I do not 

entirely agree with this position. I hold the view that to understand the mechanisms underlying the 

observed scale-free (Lévy) patterns it will be necessary to consider both intrinsic and extrinsic 

processes, in addition to behavioural adaptations that are flexible and including cognitive processes 

such as learning and sociality. In my opinion a new hypothesis would be particularly valuable if it 

could unify these different aspects. Whilst I appreciate that the LFF hypothesis may not achieve this 

aim for all behaviour patterns observed, it is evident that the free hypothesis outlined [19] does not 

succeed entirely in this endeavour either. 

The LFF hypothesis essentially considers natural selection as a driver for widely observed Lévy search 

patterns of organisms. In this idea it is the competition occurring between individuals that favours 

the survival of those approaching or exhibiting optimal Lévy searches (for resources such as food or 

mates) [3]. Reynolds [19] proposes a new synthesis supporting a new hypothesis – the ‘free Lévy 

flight hypothesis’ – which states that “Lévy flights emerge spontaneously and naturally from innate 

behaviours and inocuous responses to the environment but, if advantageous, then there could be 

selection against losing them”. The choice of the word ‘innate’ is problematic because it is not 

defined, even though historically it has been the source of much controversy in the behavioural 

sciences [20]. The normal use of the term ‘innate’ has been to describe a behaviour which was 

adapted to its present function by natural selection. A so-called innate (inborn) behaviour can be a 

complex behaviour, one that is developmentally fixed, but this does not necessarily mean it is 

independent of environmental influences or genetically fixed. Indeed, there are very few behaviour 

patterns that run to completion regardless of information from the environment and in the light of 

feedback from the results of an organism’s own actions [20]. Nevertheless, it appears that ‘innate 

behaviours’ in the proposed free hypothesis is meant to signify behaviour that develops without 

example or practice and is fixed. Regardless of that contention, the principal idea of the free Lévy 

flight hypothesis is that Lévy patterns arise as a consequence of factors unrelated to behaviour (e.g. 

internal factors linked to physiology) [15] – with the assumption that Lévy characteristics are neutral 

– or that organisms interact with their heterogeneous environment such that Lévy patterns emerge 

[17]. It is proposed that if either of these are advantageous then natural selection will favour against 

the loss of these characteristics. On the face of it, the free Lévy flight hypothesis does not appear, as 

argued, to be a broader hypothesis than the LFF hypothesis. Rather, I would argue, they are 

somewhat different faces of the same coin. 

The proposed free Lévy flight hypothesis is largely focused on explanations that favour the 

prevalence of scale-free behaviour as an intrinsic, spontaneous behaviour. However, this 

explanation is not outwith the LFF hypothesis in my view. In addition to it being possible for scale-

free activities to be generated intrinsically [13,15,16], it is also possible that an innate, intrinsic 

pattern is flexible, is under selection and becomes ‘optimal’ in the general environment in which a 

species finds itself. For example, the nematode worm (Caenorhabditis elegans) undertakes searching 

movements for food that show behavioural transition between an environmentally informed 

‘extrinsic’ strategy that is influenced by recent experience and controls area-restricted searching, 

and a time-dependent ‘intrinsic’ strategy that reduces spatial oversampling and improves random 

encounter success [21]. A study using quantitative genetic analysis to examine the mechanisms 

underlying the behavioural transition decision of C. elegans to leave a food patch showed genetic 
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variation and environmental cues converge on common neural circuits to regulate this behaviour 

[22]. This result suggests that behaviours linked to decisions to make longer movement steps away 

from depleted food patches (cf. long steps in a Lévy walk) are heritable traits modifiable by the 

environment and not solely owing to a fixed and neutral intrinsic behaviour program or to emergent 

interactions with food patches. This emphasises the need to consider apparently ‘innate’ behaviours 

as flexible, i.e. they are capable of responding rapidly to environmental changes and are modified 

slowly by changes in the genome [22]. This modern understanding of ‘innate’, intrinsic behaviours 

sits well within the LFF hypothesis. 

The free Lévy flight hypothesis also attempts to incorporate Lévy walks as an emergent property of 

environmental interaction. However, the arguments are not particularly convincing. For example, it 

is claimed that emergent Lévy walks are present in marine predators. With reference to previous 

observations of vertical Lévy movements in diving marine predators [5,7] Reynolds’ uses his own 

analytical and simulation study of ocean turbulence to conclude that the numerical results were 

consistent with marine predators (mainly large fish species) changing their direction of travel upon 

encountering patches of relatively strong turbulence, the distribution of which was scale–free, but 

otherwise moving in straight lines; thus emerges the Lévy walk. However, this interpretation of 

vertebrate behaviour is entirely speculative; there is no empirical evidence that vertical 

displacements of oceanic fish respond to turbulence in this way, nevertheless no uncertainties 

surrounding this assumption were expressed in the review. Detailed evidence was also ignored 

about the foraging patterns of albatrosses to support the emergent Lévy walk idea by saying “it is 

now known that fish odours facilitate prey location in these birds”. In contrast, the study referenced 

in the review, Nevitt et al. [23], actually indicates that only 46.8% of prey locations made by tracked 

albatrosses were achieved using olfactory clues, the others were seemingly random encounters. In 

more recent research it has also been shown that 74% of tracked albatrosses exhibited Lévy 

movements during foraging trips [9,24], suggesting therefore that significant numbers of prey 

encounters associated with Lévy foraging patterns are not likely due to emergent Lévy walks arising 

solely from interaction with prey odours. This empirical evidence undermines the general 

applicability of the free hypothesis in important ways, whereas the LFF hypothesis predicts such 

transitions in behaviour, for example between Brownian walks where resource targets (e.g. prey) are 

abundant and Lévy walks when targets are sparsely distributed [3,7,25]. 

In conclusion, the review [19] is timely in drawing together studies that demonstrate scale-free 

activities in many different organisms, from single cells to humans. The idea that such patterns of 

activity are intrinsic and spontaneous is not new, however a renewed focus on understanding how 

intrinsic Lévy behaviours are generated within organisms is a great challenge worth taking up. It is 

possible that there is not one and the same mechanism underlying spontaneous scale-free patterns 

that may arise in animals as different in behaviour and morphological complexity as are fruit flies 

and sharks, for example. And whether search and other behaviours are under selection in different 

species may also vary greatly. But experiments that can differentiate between a true intrinsic 

behaviour pattern that converges to a Lévy walk and one that is mediated by the environment or by 

behavioural or cognitive adaptations will be a great first step along the path. 
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