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European continental shelf seas have experienced intense warming over the last 30 33 

years1. In the North Sea, fishes have been comprehensively monitored throughout 34 

this period and resulting data provide a unique record of changes in distribution and 35 

abundance in response to climate change2,3. We use these data to demonstrate the 36 

remarkable power of Generalised Additive Models (GAMs), trained on data earlier in 37 

the time-series, to reliably predict trends in distribution and abundance in later years. 38 

Then, challenging process-based models that predict substantial and ongoing 39 

poleward shifts of cold-water species4,5, we find that GAMs coupled with climate 40 

projections predict future distributions of demersal (bottom-dwelling) fish species 41 

over the next 50 years will be strongly constrained by availability of habitat of suitable 42 

depth. This will lead to pronounced changes in community structure, species 43 

interactions and commercial fisheries, unless individual acclimation or population-44 

level evolutionary adaptations enable fish to tolerate warmer conditions or move to 45 

previously uninhabitable locations. 46 

 47 

While the temperature of the world’s oceans has gradually risen through the 20th Century, 48 

the northeast Atlantic has experienced particularly intense warming, resulting in the North 49 

Sea mean annual sea-surface temperature increasing by 1.3°C over the last 30 years1, a 50 

rate four times faster than the global average6. Predictions for the North Sea suggest a 51 

further 1.8°C rise in sea-surface temperatures during the next five decades (Hadley Centre 52 

QUMP_ens_00 model, unpublished data supplied by J. Tinker) (Fig. 1). Impacts of recent 53 

warming on northeast Atlantic marine ecosystems have been diverse, including 54 

reorganisation of the plankton community7, modification to the phenology of fish spawning8,9, 55 

and alterations of ecosystem interactions10,11. Due to its longstanding economic importance 56 

to fisheries (reported landings in 2007 valued at $1.2 billion1) and other industries, the 57 

ecology of the North Sea has been intensively monitored throughout this period of recent 58 

warming. 59 

 60 
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Analyses of North Sea fish surveys have revealed northerly range expansions of warmer-61 

water species12, population redistributions to higher latitudes2 and deeper water13, and 62 

widespread changes in local abundance associated with warming, with impacts on 63 

community structure3. This substantial modification to fish community composition in the 64 

region has had an observable economic impact on fisheries, with landings of cold-adapted 65 

species halved but landings of warm-adapted species increasing 2.5 times since the 1980s3; 66 

a pattern also identified in other marine ecosystems14. With a uniquely rich fish abundance 67 

time-series from the period of warming, it is possible to split these data to assess how 68 

predictions made using data from earlier years match observations from later years; a 69 

validation approach which has been promoted for terrestrial systems15. Existing studies have 70 

used survey data to describe past changes2,3,12,13, or adopted process-based climate 71 

envelope models to predict future abundance without validation16. Thus there is a need to 72 

compare the predictions of climate-envelope models with those from more structurally-73 

complete data-driven models that have been developed and tested using spatially and 74 

temporally explicit abundance data. 75 

 76 

The GAM approach makes no a-priori assumptions about the nature of associations 77 

between predictors and response variables17 and has been used to assess the importance 78 

of different environmental drivers on patterns of distributions and relative abundance in 79 

marine ecosystems18-20. Here we developed GAMs to predict changes in the distribution and 80 

abundance of the 10 most abundant North Sea demersal (bottom-dwelling) fish species, 81 

which accounted for 68% of commercial landings by the North Sea fishery between 1980 82 

and 2010 (www.ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-83 

assessment.aspx). We used a two-step approach. First, predictive models with different sets 84 

of variables were compared using data earlier in the time-series to train the models and 85 

predict known distributions and abundances later in the time-series. Second, models were 86 

used to predict changes in species distributions over the next 50 years. 87 

 88 
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Predictors of species’ abundance were identified from a wider array of potential variables 89 

(annual sea-surface and near-bottom temperatures; seasonal sea-surface and near-bottom 90 

temperatures; depth; salinity; fishing pressure: all of which are expected to influence fish 91 

abundance and distribution e.g. 2,3,13,21). For each species we calculated from summer and 92 

winter monitoring surveys the mean annual abundance per grid cell in a 10 year time-slice 93 

(2000–2009, inclusive) and used these data to train GAM models based on different 94 

combinations of variable sets to predict the same data. We then analysed associations 95 

between the predictions and original observations. All model combinations performed well 96 

with predictions against known data all exceeding correlation coefficients of 0.67 and only 97 

marginal changes with the loss of each variable for each species (Supplementary Table 1). 98 

Following an assessment of the performance of alternate GAMs (Supplementary Figure 4, 99 

Supplementary Tables 1 and 2), a model that included temperature, depth and salinity 100 

variables was applied to each species (Fig. 2a and Supplementary Table 1). The selected 101 

models excluded the metric for fishing pressure since this was a relatively poor predictor 102 

variable in the majority of cases (Fig. 2a and Supplementary Table 1). 103 

 104 

To assess the most appropriate length of time-series to use for future projections, we 105 

developed models to predict the abundance of species across the region in a decade using 106 

annual and seasonal temperature, salinity and depth data from the periods 10, 20 and 30 107 

years beforehand. There was no consistent improvement in model fit with increasing periods 108 

of training data (Fig. 2b and Supplementary Fig. 1), thus we used 10-year training periods 109 

for all subsequent projections. The final stage of the model development stage was to 110 

assess the ability of GAMs, using an effective set of variables, to predict distributions for 10, 111 

20 and 30 year periods into the future and compare with observations. Predictions closely 112 

matched observations for 8 of the 10 species using both survey datasets (Fig. 2c and 113 

Supplementary Fig. 1). 114 

 115 
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Following model development and testing, models trained on data from 2000–2009 were 116 

used to predict future distributions, abundance and thermal occupancy of the eight species 117 

for which the models were effective, based on environmental conditions forecasted with the 118 

Hadley Centre QUMP_ens_00 model (Fig. 3 and Supplementary Fig. 1). Predictions based 119 

on independent winter and summer fish surveys showed congruent temperature occupancy 120 

patterns, with species predicted to experience warmer conditions and maintain existing 121 

distributions, rather than maintaining their preferred temperature ranges by redistributing to 122 

other locations (Fig. 3). 123 

 124 

We quantified latitudinal ranges, a commonly used estimator of distributions, which showed 125 

considerable overlap between present and future conditions, with no consistent pattern 126 

among species in predicted changes in distributions (Fig. 3). This indicates that poleward 127 

advances of North Sea demersal fishes following preferences for colder waters are unlikely 128 

to be commonplace, and highlights how process-based models that predict northward shifts 129 

may underestimate dependence on non-thermal habitat. Importantly, predicted depth ranges 130 

were also similar for present and future conditions (Fig. 3), implying that depth-associated 131 

niches are the primary drivers and constraints of the distributions of demersal species. One 132 

species predicted here to have the most marked reduction in abundance alongside a 133 

proportionate increase in individuals in deeper water was dab (Fig. 3). As a shallow water 134 

species predominantly found in the southern North Sea their current thermal experience is 135 

expected to be exceeded through the projection period (Supplementary Fig. 2.) suggesting 136 

that expected climate change may force the species into less optimal habitats. 137 

 138 

Seasonal temperatures, depth and salinity and likely co-varying habitat variables, appear to 139 

be major determinants of current species distributions of commercially-important demersal 140 

species in the North Sea, and were good predictors of past changes in distribution for many 141 

species. Looking to the future, our results suggest that the strong associations of species 142 

with specific habitats may ultimately prevent further poleward movement of species in 143 
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response to warming as previously predicted16. A recent study demonstrated that 1.6°C of 144 

warming across the European continental shelf over the last 30 years locally favoured some 145 

demersal species suited to warmer waters, but drove local declines in cold-adapted species, 146 

despite long-term stability in spatial patterns of species presence-absence3. Dependence of 147 

species on specific non-thermal habitat, together with spatially-contrasting local changes in 148 

responses to warming3, may explain why mean latitudinal range shifts are only apparent in 149 

some species2, and are not detected in others despite sharing similar temperature 150 

preferences. Dependence on specific non-thermal habitat has been observed in tagged 151 

Atlantic cod (Gadus morhua), where fish occupied suboptimal thermal habitat for extended 152 

periods with likely costs to metabolism and somatic growth22. Indeed a dominant driver of 153 

changes in the central distributions of cod in the North Sea appears to have been intense 154 

fishing pressure over the last century rather than warming, which has depleted former 155 

strongholds in the western North Sea, driving an eastward longitudinal shift in relative 156 

population abundance but no apparent poleward shift21. These factors, together with 157 

potential indirect effects of warming potentially not captured in our models, for example from 158 

changes to prey abundance, may explain why models based on depth and temperature 159 

were not effective for longer term projections for Atlantic cod and whiting (Merlangius 160 

merlangus). It is necessary to evaluate the performance of alternate predictor variables for 161 

data-driven models of these species. 162 

 163 

Mean depth distributions of North Sea fishes that had preferences for cooler water increased 164 

by approximately 5m during the warming of the 1980s but tended to slow or stabilise 165 

thereafter13. Based on the GAM results we do not expect or predict substantial further 166 

deepening for cooler water species because depth is such a strong predictor of distribution. 167 

Collectively, the studies imply that capacity to remain in cooler water by changing their depth 168 

distribution has been largely exhausted in the 1980s and that fish with preferences for cooler 169 

water are being increasingly exposed to higher temperatures, with expected physiological, 170 

life history and population consequences. 171 
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 172 

In the absence of substantial distributional shifts that would allow fish to occupy different 173 

habitats and depths, North Sea populations are likely to experience 3.2°C of warming over 174 

the coming century (J. Tinker, Hadley Centre). Although such temperature increases are 175 

within observed thermal limits for these species the ecological consequences are unknown, 176 

especially when warmer conditions are closer to thermal preferences of other species using 177 

the same habitats. Furthermore, physiological theory suggests that responses of species to 178 

projected warming will eventually reach thermal thresholds. As species’ Pejus temperatures 179 

are reached, increased metabolic costs will compromise growth with associated declines in 180 

population productivity23. Capacity to tolerate warming will thus depend on scope for thermal 181 

acclimation24 and adaptation25, with the degree of connectivity between thermally-adapted 182 

sub-populations across the geographic range of species influencing the rate of adaptation to 183 

future warming. Unless adaptation or acclimation can track the rate of warming, it is likely 184 

that stocks will be affected, both directly through individual physiological tolerances, and 185 

indirectly through climate-related changes to the abundance of prey, predators, competitors 186 

and pathogens. 187 

 188 

Our study demonstrates the power of data-driven GAM models for predicting future fish 189 

distributions. In contrast to process-based models that attempt to integrate discrete 190 

ecological mechanisms such as dispersal and density dependence, GAMs are grounded by 191 

past net responses of populations to all these processes, in addition to interspecific 192 

interactions and habitat associations that are not typically considered in process-based 193 

modelling, perhaps explaining the strong predictive power of our GAM approach for 194 

predicting known future conditions. The results of this study suggest that we should be 195 

cautious when interpreting process-based model projections of distributional shifts, and that 196 

interpretations should be informed by data-driven modelling approaches, especially when 197 

using predictions for policy and management planning. Our projections suggest that if 198 

populations fail to adapt or acclimatise to a warmer environment, warming will change 199 
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fishing opportunities for currently-targeted species in the North Sea over the next century. 200 

Historically, fishing pressure has substantially modified the North Sea26 and ongoing 201 

changes in management will play an important role in shaping future fisheries resources. 202 

Species responses to temperature should be considered when planning future fisheries 203 

management strategies to ensure that anticipated long-term benefits of management are 204 

ecologically feasible in this period of intense warming. 205 

 206 

METHODS 207 

Fish surveys. We used two long-term monitoring surveys that give detailed descriptions of 208 

the distribution and abundance of demersal (bottom-dwelling) fishes in the North Sea. The 209 

Centre for Environment, Fisheries and Aquaculture Science UK (Cefas) time-series is a 210 

summer survey (August–September) conducted since 1980. The survey encompasses 69 211 

1x1° latitude-longitude cells with at least three hauls conducted in each decade. The 212 

International Council for the Exploration of the Sea (ICES) International Bottom Trawl Survey 213 

(IBTS) time-series is a winter survey (January–March) conducted since 1980. The survey 214 

encompasses 84 1x1° cells with at least three hauls conducted in each decade. Both 215 

surveys are conducted using otter trawling gear (Granton trawl for pre-1992 Cefas surveys, 216 

otherwise Grande Ouverture Verticale (GOV) trawls). Raw catch data were 4th-root 217 

transformed to reduce skewness that is inherent in ecological abundance data. 218 

 219 

Our study focused on the 10 most abundant demersal species targeted by commercial 220 

fisheries or taken as bycatch (Fig. 2c), which together accounted for 68% of commercial 221 

landings (by weight) in the North Sea fishery from 1980–2010 (www.ices.dk/marine-222 

data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx). For both surveys, 223 

we grouped data into three 10-year time slices and one three-year time slice for the 224 

analyses: 1980–1989, 1990–1999, 2000–2009 and 2010–2012. The limited 2010–2012 time 225 

slice was only used for testing predictions from the GAMs. To ensure a balanced design, 226 
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mean values for each for each decadal time period were used. This method controls for the 227 

variable numbers of survey hauls taken in each cell and ensures that longer-term responses 228 

to climate change are identified rather than year on year variability. All data were 4th root 229 

transformed before being subject to GAM modelling, and individual cell predictions were 230 

back transformed before calculation of correlation coefficients. 231 

 232 

Depth. We used mean 1x1° cell in situ measures of depth taken during the hauls for each 233 

survey (Supplementary Fig. 3), which closely matched data from the 1x1o resolution GEBCO 234 

Digital Atlas (summer survey, r = 0.91; winter survey, r = 0.90; 235 

www.gebco.net/data_and_products/gebco_digital_atlas/)3. 236 

 237 

Temperature and salinity. We calculated Sea-Surface Temperature (SST), Near-Bottom 238 

Temperature (NBT) and salinity (Supplementary Fig. 3) for the period 1980–2012 using the 239 

UK Meteorological Office Hadley Centre QUMP_ens_00 standard model for the northwest 240 

European shelf seas. Modelled temperatures closely matched data from the Hadley Centre 241 

global ocean surface temperature database (HadISST1.1; 92 cells, Pearson’s r = 0.84; 242 

www.metoffice.gov.uk/hadobs/hadisst/). Data from the QUMP_ens_00 model were provided 243 

as monthly means for 1x1° cells, enabling mean winter (January–March), summer (July–244 

September) and mean annual values to be calculated (Fig. 1). 245 

 246 

Fishing pressure. We calculated a spatially-explicit metric of fishing pressure for each 10-247 

year time-slice by combining annual multispecies fishing mortality (F) estimates for North 248 

Sea demersal species (mean estimates of regional F for cod, dab, haddock, hake, lemon 249 

sole, ling, long rough dab, plaice, saithe and whiting, weighted by spawning-stock biomass, 250 

from ICES stock assessments; www.ices.dk/datacentre/StdGraphDB.asp)3 with mean otter 251 

and beam trawling effort for each 1x1° cell based on hours of fishing27 (Supplementary Fig. 252 

3). This integrated metric combining temporal trends in fishing mortality and spatial 253 
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distribution of fishing effort enabled us to test the importance of fishing pressure as a 254 

predictor of abundance. 255 

 256 

Identifying key predictors. We used GAM models, coded using the mgcv package in R 257 

(www.r-project.org), to test the performance of GAMs for predicting changes in fish species’ 258 

distribution and identify the importance of different variables to these predictions. The s 259 

smooth was used with k = 7 for all variables to limit the degrees freedom in-line with the 260 

number of data points. The Gaussian model was used. Assessment of the plots for each 261 

variable using the gam.plot function showed that increasing the k value did not improve 262 

model fit to each variable. The gam.check function was used to check the k index was above 263 

or close to 1 with non-significant p values. Analysis of the residuals showed no obvious 264 

deviations from normal distributions, while the response to fitted values relationship was 265 

close to linear. 266 

 267 

Data from 2000–2009 were used to test sets of variables as this period had the greatest 268 

survey intensity. To identify variables that most strongly influenced prediction we first 269 

developed a model with all variables (annual temperatures, seasonal temperatures, depth, 270 

salinity and fishing), and a subsequent five models each excluding one set of variables 271 

(Supplementary Table 1). Sea surface and near bottom temperatures from both the summer 272 

and winter were grouped together to characterise seasonal fluctuations. This suite of 273 

potentially correlated variables captured the extremes of temperatures that all species may 274 

experience at different life stages, and ensured that thermal conditions with and without the 275 

seasonal thermocline, annually varying ocean currents and land mass effects are all 276 

included. We compared the performance of models based on i) the strength of correlation r 277 

between observed and predicted data, ii) weighted AIC 28 using data from the AIC function in 278 

R, and iii) using generalised cross validation (GCV, through summary.gam in R). Inclusion of 279 

interaction terms between depth and seasonal temperature extremes either reduced or had 280 

little influence on model performance (Supplementary Table 2 and summaries based on 281 
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Akaike weights in Supplementary Fig. 4). 282 

 283 

Model development  284 

We developed predictive GAMs with a set of variables that were effective across all species. 285 

The correlation coefficient r, AIC values and GCV values of modelled and observed data 286 

were compared. Across-species inclusion of depth, seasonal temperature, annual 287 

temperature, salinity and fishing effort all improved the predictions (Fig. 2a). A key finding 288 

from this model development stage is that variables that are readily measured and projected 289 

in climate models effectively predict species distributions. On average models that excluded 290 

fishing effort were most similar to the all-variable models (Supplementary Table. 1, Fig. 2a). 291 

Since this metric had little predictive value, and we have no robust models of future fishing 292 

effort, we excluded it when making future predictions. 293 

 294 

Training period and predictive performance. To assess the influence of the duration of 295 

training data on predictive power, GAMs trained on sets of one, two and three decades of 296 

data for each species were used to predict 10 years into the future (Supplementary Fig. 1), 297 

and the associations between predicted and known data compared. We also assessed the 298 

performance of the model to predict further into the future within the historic records 299 

available (Supplementary Fig. 1). We compared predicted with known abundance data for 300 

each species for each forecasting period (0 to 30 years). 301 

 302 

Forecasting future distributions. We used surface and near bottom annual and seasonal 303 

temperature projections from the QUMP_ens_00 model, surface and near bottom salinity, 304 

and average depths from surveys between 1980–2012 as the environmental variables for 305 

our predictions. We predicted fish abundances for sequential decades from 2000–2009 to 306 

2050–2059 (Supplementary Figs. 5 & 6) using environmental variables (Supplementary 307 

Figs. 3 & 7), and observed fish abundances from 2000–2009. Throughout the projection 308 

period many cells do not experience temperatures outside of the range used to train the 309 
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model (Supplementary Fig. 2). For the widespread species in this study it is therefore likely 310 

that at least parts of the population have experienced future conditions. However we 311 

recognise that in future projected conditions the climate in some areas of the North Sea will 312 

depart from existing variability in the model training period. Since it is not possible to test the 313 

model beyond current thermal conditions using know data, some caution should be taken 314 

interpreting projections for cells as they begin to experience temperatures beyond those 315 

currently in the region (Supplementary Fig. 2). 316 

 317 
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Figure 1. Physical environment of the North Sea. (a) Bathymetry with an overlay showing 418 

locations of the 84 1x1° latitude-longitude cells in which fish abundance, distribution and sea 419 

temperature were reported and predicted; (b) mean Sea-Surface Temperature (SST, red) 420 

and Near-Bottom Temperature (NBT, black) in the study cells from 1980–2060 in summer 421 

(July–September, solid line) and winter (January–March, dashed line) from the 422 

QUMP_ens_00 northwest European shelf seas climate model. Mean decadal values (as 423 

used in the model) are overlaid in the corresponding colours for SST and NBT for each 424 

season. 425 

 426 

Figure 2. Predictive ability of Generalised Additive Models (GAMs). (a) Fits of predicted to 427 

observed species abundance using 2000–2009 data. Variables were sequentially removed. 428 

Model fits were evaluated using correlation (mean ± SE Pearson’s r coefficient across 429 

species) and weighted Akaike Information Criterion (AIC: mean ± SE across species). (b) 430 

Duration of training data and predictive performance of GAMs using depth and seasonal 431 

temperatures. Correlations (mean ± SE Pearson’s r coefficient across species) indicate no 432 

improvement in performance with longer time-series. (c) Relationship between known data 433 

and GAM predictions using depth, salinity and seasonal and annual temperature, for 434 

decades beyond GAM training period. 435 

 436 

Figure 3. Observed and predicted abundances of eight focal species along depth, latitude 437 

and mean annual Near-Bottom Temperature (NBT) and Sea-Surface Temperature (SST) 438 

gradients. Analyses were based on both the summer and winter survey datasets. 439 

Distribution averages for each time period are shown using arrows of corresponding colours 440 

along the x-axis. 441 
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