Supplementary Material

Contrasting global genetic patterns in two biologically similar, widespread

and invasive Ciona species (Tunicata, Ascidiacea)

Sarah Bouchemousse^{1*}, John D.D. $Bishop^2$ and $Frédérique Viard^{1*}$

Supplementary Note. Taxonomic history of *C. robusta* and *C. intestinalis* and details of the historical observation of the two species, following literature report, in their introduced ranges at worldwide scale.

Until September 2015, the nominal species *Ciona intestinalis* was considered a species complex that included four cryptic species named *C. intestinalis* type A to type $D^{1.2}$. *C. intestinalis* type A and type B each have disjunct distributions and are considered as invasive species in several regions of the world². During the period of absence of taxonomic assignation, the native ranges of these two types were debated²⁻⁴. However, recent alpha-taxonomic works^{5,6} showed that *C. intestinalis* type A matched with the description of *C. robusta* Hoshino & Tokioka, 1967⁷ (ecotype from Onagawa, Japan) and *C. intestinalis* type B with the description of *C. intestinalis* (Linnaeus, 1767) *sensu* Millar⁸ (ecotype from Millport, Scotland). *C. robusta* had been placed synonymy with *C. intestinalis* by Hoshino & Nishikawa in 1985⁹. The classification of *C. intestinalis* type A and *C. intestinalis* type B as *C. robusta* and *C. intestinalis* has been accepted in WoRMS since September 2015. They are accepted as native to the region where they were described; the NW Pacific for *C. robusta* and the NE Atlantic for *C. intestinalis*.

C. robusta exhibits a disjunct global distribution in warm-temperate regions; this distribution and the fact that the species is most often restricted to urban habitats (ports, marinas) has been explained by introduction events in many regions, as listed below:

- English Channel: *C. robusta* (first reported as *C. intestinalis* type A) was first reported in the early 2000s in this range¹⁰. This species is well established along the eastern Brittany coastline¹¹, like several other ascidians recently introduced in this range, e.g. *Asterocarpa humilis, Corella eumyota*¹².
- Mediterranean Sea: Before the taxonomic re-evaluation in September 2015, the specimens were assigned to *C. intestinalis* and considered as members of a cryptogenic species^{13,14}. The first report dates back to the end of the 19th century by Roule in the harbor of Marseille¹⁵. So far, *C. robusta* and other species of the genus *Ciona* (e.g. *C. edwardsi* and *C. roulei*) have been reported in the Mediterranean Sea but not *C. intestinalis sensu stricto*.
- SE Pacific: The first report of *C. robusta* (with the name *C. intestinalis* used until the recognition of *C. robusta* as a valid species) in this region is debated. Individuals classified as *C. intestinalis* were recorded in the Magellan Strait (Magellanic Province) in 1885 by Traustedt¹⁶. However, it is likely that this report correspond to *C. antarctica* Hartmeyer, 1911 and not *C. robusta*^{17,18}, considering that the Magellanic Province has a temperate-subantarctic biota whereas *C. robusta* lives in warm-temperate regions¹⁹. The next known report of *Ciona* was made by Van Name in 1949²⁰ in Antofagasta Bay (Peruvian Province; warm-temperate). More recent surveys¹⁷ of ascidians carried out in the 2010s in the Magellan Strait and around Coquimbo (Peruvian Province) confirmed the absence of both *C. robusta* in the Peruvian Province. We can thus reasonably consider that the observation by Van

Name was the first report of *C. robusta* and that the presence of this species in Chile dates back (at least) to the mid- 20^{th} century.

- NE Pacific: Specimens reported under the name of *C. intestinalis* were first recorded in San Diego Bay in early part of the 20th century by Ritter & Forsyth²¹ (cited by Lambert & Lambert²²). Since the two species (or types) have been distinguished, only *C. robusta* (*C. intestinalis* type A) has been reported in this region. The species is considered to be non-native in this region ^{4,22-24}.
- South Africa: *C. robusta* (first reported under the name of *C. intestinalis*) was reported for the first time in South Africa in the mid-20th century ^{25,26}. The species is identified as non-native in this region²⁷⁻²⁹.
- Oceania: As in South Africa, *C. robusta* was reported under the name *C. intestinalis* in the mid-20th century in the Port Phillip (Victoria) in Australia by Millar³⁰. The species is considered an invasive species in harbours of the southern coastline of Australia^{31,32}. *C. robusta* was also reported in New Zealand (as *C. intestinalis*) during the second part of the 20th century³³.

Currently, *C. intestinalis* displays a disjunct distribution in the N Atlantic (i.e. reported in both E and W coasts but absent from Artic coastal regions) and it has been reported in one region outside the N Atlantic (see below).

- NW Atlantic: *C. intestinalis* was first reported in the Gulf of St Lawrence by Van Name³⁴. The species is currently distributed from Rhode Island to Newfoundland³⁵ and is found at high density on artificial substrates along the south coast of Nova Scotia³⁶ and eastern coasts of Prince Edwards Island³⁷. The recent proliferation of *C. intestinalis* in this region earned it the status of invasive species in most studies (e.g.³⁸⁻⁴²). The non-native status of *C. intestinalis* is however debated in this region (i.e. cryptogenic status) as for several other marine invertebrates presenting a similar distribution⁴³.
- NW Pacific: *C. intestinalis* (reported as *C. intestinalis* type B) was recorded very recently on the western coastline of Bohai Bay and Yellow Seas by Zhan et al.². The lack of genetic differentiation between North American, European and Asian populations supported its classification as a non-native species in the NW Pacific. It is important to note that *C. robusta* (reported as *C. intestinalis* type A) has been reported in the East Sea and Korea Strait but not yet in the Yellow Sea⁴⁴_ENREF_43.

References

- 1 Nydam, M. L. & Harrison, R. G. Genealogical relationships within and among shallow-water *Ciona* species (Ascidiacea). *Mar. Biol.* **151**, 1839-1847; DOI:10.1007/s00227-007-0617-0 (2007).
- 2 Zhan, A., Macisaac, H. J. & Cristescu, M. E. Invasion genetics of the *Ciona intestinalis* species complex: from regional endemism to global homogeneity. *Mol. Ecol.* **19**, 4678-4694 (2010).

- 3 Caputi, L. *et al.* Cryptic speciation in a model invertebrate chordate. *Proc. Natl. Acad. Sci. of USA* **104**, 9364-9369; DOI:10.1073/pnas.0610158104 (2007).
- 4 Therriault, T. W. & Herborg, L.-M. Predicting the potential distribution of the vase tunicate *Ciona intestinalis* in Canadian waters: informing a risk assessment. *Ices J. Mar. Sci.* **65**, 788-794; DOI:10.1093/icesjms/fsn054 (2008).
- 5 Brunetti, R. *et al.* Morphological evidence that the molecularly determined *Ciona intestinalis type* A and type B are different species: *Ciona robusta* and *Ciona intestinalis. J. Zoolog. Syst. Evol. Res.* **53**, 186-193; DOI:10.1111/jzs.12101 (2015).
- Pennati, R. *et al.* Morphological differences between larvae of the *Ciona intestinalis* species complex: Hints for a valid taxonomic definition of distinct species. *PloS ONE* 10; DOI:10.1371/journal.pone.0122879 (2015).
- 7 Hoshino, Z.-i. & Tokiota, T. An unusually robust *Ciona* from the Northeastern coast of Honsyu Island, Japan. *Publ. Seto Mar. Biol. Lab.* **15**, 275-290 (1967).
- 8 Millar, R. H. in *L.M.B.C. Memoirs of typical british marine palnts and animals, XXXV* (ed J. S. Colman) 123 (Liverpool University Press, 1953).
- 9 Hoshino, Z.-i. & Nishikawa, T. Taxonomic Studies of *Ciona intestinalis* (L.) and its allies. *Publ. Seto Mar. Biol. Lab.* **30**, 61-79 (1985).
- 10 Bishop, J. D. D., Wood, C. A., Yunnie, A. L. E. & Griffiths, C. A. Unheralded arrivals: non-native sessile invertebrates in marinas on the English coast. *Aquat. Invasions* **10**, 249-264; DOI:10.3391/ai.2015.10.3.01 (2015).
- 11 Bouchemousse, S., Lévêque, L., Dubois, G. & Viard, F. Co-occurrence and reproductive synchrony do not ensure hybridization between an alien tunicate and its interfertile native congener. *Evol. Ecol.* **30**, 69-87; DOI:10.1007/s10682-015-9788-1 (2016).
- 12 Bishop, J. D. D., Wood, C. A., Leveque, L., Yunnie, A. L. E. & Viard, F. Repeated rapid assessment surveys reveal contrasting trends in occupancy of marinas by nonindigenous species on opposite sides of the western English Channel. *Mar. Pollut. Bull.* **95**, 699-706; DOI:10.1016/j.marpolbul.2014.11.043 (2015).
- 13 Airoldi, L., Turon, X., Perkol-Finkel, S. & Rius, M. Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. *Divers. Distrib.* **21**, 755-768; DOI:10.1111/ddi.12301 (2015).
- 14 Lopez-Legentil, S., Legentil, M. L., Erwin, P. M. & Turon, X. Harbor networks as introduction gateways: contrasting distribution patterns of native and introduced ascidians. *Biol. Invasions* **17**, 1623-1638; DOI:10.1007/s10530-014-0821-z (2015).
- 15 Roule, L. in *Annales du musée d'histoire naturelle de Marseille* (ed A.F. Marion) (Typographie et Lithofraphie J. Cayer, 1884).
- 16 Traustedt, M. P. A. Ascidiae simplices fra det Stille Ocean Vidensk. 1-160 (Foren, Kjobenhavn, 1885).
- 17 Turon, X., Canete, J. I., Sellanes, J., Rocha, R. M. & Lopez-Legentil, S. Too cold for invasions? Contrasting patterns of native and introduced ascidians in subantarctic and temperate Chile. *Manag. Biol. Invasions* in press (2016).
- 18 Monniot, C. & Monniot, F. Ascidies antarctiques et subantarctiques: morphologie et biogéographie. *Mémoires du Muséum National d'Histoire Naturelle, Paris, série A, Zoologie* **125**, 1-180 (1983).

- 19 Procaccini, G., Affinito, O., Toscano, F. & Sordino, P. in *Evolutionary Biology: Concepts, Biodiversity, Macroevolution and Genome Evolution* (ed P. Pontarotti) Ch. 6, 91-106 (2011).
- 20 Van Name, W. G. Reports of the Lund University Chile expedition 1948-1949: Ascidians (Ascidiacea). (Lund Universitets Arsskrift, Lund, 1954).
- 21 Ritter, W. E. & Forsyth, R. A. Ascidians of the littoral zone of southern California. *University of California publications in zoology* **16**, 439-512 (1917).
- 22 Lambert, C. C. & Lambert, G. Non-indigenous ascidians in southern California harbors and marinas. *Mar. Biol.* **130**, 675-688 (1998).
- 23 Rius, M., Potter, E. E., Aguirre, J. D. & Stachowicz, J. J. Mechanisms of biotic resistance across complex life cycles. *J. Anim. Ecol.* **83**, 296-305; DOI:10.1111/1365-2656.12129 (2014).
- 24 Blum, J. C. *et al.* The non-native solitary ascidian *Ciona intestinalis* (L.) depresses species richness. *J. Exp. Mar. Biol. Ecol.* **342**, 5-14; DOI:10.1016/j.jembe.2006.10.010 (2007).
- 25 Millar, R. H. On the collection of ascidians from South Africa. *Proc. R. Soc. B* **125**, 169-221 (1955).
- 26 Michaelsen, W. The ascidians of the Cape Province of South Africa. *T. Roy. Soc. S. Afr.* **22**, 129-167 (1934).
- 27 Rius, M. *et al.* Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. *Global Ecol. Biogeogr.* **23**, 76-88; DOI:10.1111/geb.12105 (2014).
- 28 Rius, M., Heasman, K. G. & McQuaid, C. D. Long-term coexistence of nonindigenous species in aquaculture facilities. *Mar. Pollut. Bull.* **62**, 2395-2403; DOI:10.1016/j.marpolbul.2011.08.030 (2011).
- 29 Robinson, T. B., Griffiths, C. L., McQuaid, C. D. & Rius, M. Marine alien species of South Africa: status and impacts. *Afr. J. Mar. Sci.* **27**, 297-306 (2005).
- 30 Millar, R. H. Ascidiacea, Port Phillip Survey 1957-1963. *Memoirs of the National Museum of Victoria (Melbourne)* 27, 357-375 (1966).
- 31 MacDonald, J. The invasive pest species *Ciona intestinalis* (Linnaeus, 1767) reported in a harbour in southern Western Australia. *Mar. Pollut. Bull.* **49**, 868-870 (2004).
- 32 Hewitt, C. L. *et al.* Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. *Mar. Biol.* **144**, 183-202; DOI:10.1007/s00227-003-1173-x (2004).
- 33 Millar, R. H. The marine fauna of New Zealand: Ascidiacea. *New Zealand Institut Memories* **85**, 117 p. (1982).
- 34 Van Name, W. G. The North and South American ascidians. *B. Am. Mus. Nat. Hist.* **84**, 1-476 pls. 471-431 (1945).
- 35 Sargent, P. S., Wells, T., Matheson, K., McKenzie, C. H. & Deibel, D. First record of vase tunicate, *Ciona intestinalis* (Linnaeus, 1767), in coastal Newfoundland waters. *BioInvasions Rec.* **2**, 89-98; DOI:10.3391/bir.2013.2.2.01 (2013).
- 36 Cayer, D., MacNeil, N. & Bagnall, A. G. Tunicate fouling in Nova Scotia aquaculture: a new development. *J. Shellfish Res.* **18**, 327 (1999).

- Locke, A., Hanson, J. M., Ellis, K. M., Thompson, J. & Rochette, R. Invasion of the southern Gulf of St. Lawrence by the cludded tunicate (*Styela clava* Herdman): Potential mechanisms for invasions of Prince Edwards Island estuaries. *J. Exp. Mar. Biol. Ecol.* 342, 69-77; DOI: 10.1016/j.jembe.2006.10.016 (2007).
- 38 Zhan, A. *et al.* Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America. *Divers. Distrib.* **18**, 1042-1055; DOI:10.1111/j.1472-4642.2012.00894.x (2012).
- 39 Ramsay, A., Davidson, J., Bourque, D. & Stryhn, H. Recruitment patterns and population development of the invasive ascidian *Ciona intestinalis* in Prince Edward Island, Canada. *Aquat. Invasions* **4**, 169-176; DOI:10.3391/ai.2009.4.1.17 (2009).
- 40 Ramsay, A., Davidson, J., Landry, T. & Arsenault, G. Process of invasiveness among exotic tunicates in Prince Edward Island, Canada. *Biol. Invasions* **10**, 1311-1316; DOI:10.1007/s10530-007-9205-y (2008).
- 41 Vercaemer, B., Sephton, D., Nicolas, J. M., Howes, S. & Keays, J. *Ciona intestinalis* environmental control points: field and laboratory investigations. *Aquat. Invasions* **6**, 477-490; DOI:10.3391/ai.2011.6.4.13 (2011).
- 42 Collin, S. B., Edwards, P. K., Leung, B. & Johnson, L. E. Optimizing early detection of non-indigenous species: Estimating the scale of dispaersal of a nascent population of the invasive tunicate *Ciona intestinalis* (L.). *Mar. Pollut. Bull.* **73**, 64-69; DOI: 10.1016/j.marpolbul.2013.05.040 (2013).
- 43 Haydar, D. What is natural? The scale of cryptogenesis in the North Atlantic Ocean. *Divers. Distrib.* **18**, 101-110; DOI:10.1111/j.1472-4642.2011.00863.x (2012).
- 44 Lee, T. & Shin, S. Morphological and molecular identification of an introduced aline sea squirt (Tunicata: Ascidiacea) in Korea. *P. Biol. Soc. Wash.* **127**, 284-297; DOI:10.2988/0006-324X-127.1.284 (2014).

Table S1. Sampling locations and details of genetic diversity indices of *Ciona robusta* and *C. intestinalis* computed from the mitochondrial COX3-ND1 sequences dataset (source: this study and Zhan et al.²⁵).

The English Channel is the only sympatric region wherein the two species were reported. S: syntopic localities, i.e. wherein the two species coexist in the same habitat; - : localities where *C. robusta* has never been reported so far (most recent surveys in autumn 2014, JDDB, pers. obs.).

Nind: the number of individuals studied; nf: not found. Indices: Nh: number of haplotypes; Rh: haplotypic richness, with rarefaction size within brackets; Npr: number of private haplotypes; Rpr: corrected number (for sampling size) of private haplotype; S: number of polymorphic sites; Hd: Haplotype diversity; π : nucleotide diversity.

C. robusta C. intestinalis									Source										
Sampling location	Code	Status	Nind	Nh	Rh[9]	Npr	Rpr[9]	S	Hd	π (10 ²)	Nind	Nh	Nh[19]	Npr	Npr[19]	S	Hd	π (10 ²)	
North Eastern Atlantic	NEA																		
English Channel	EC																		
Brighton, UK	Bri	-	nf								23	9	8.8	2	2.0	17	0.636	0.519	
Shoreham, UK	Sho	-	nf								24	13	12.7	3	3.0	21	0.884	0.892	
Southsea, UK	Shs	-	nf								24	16	15.5	6	5.9	24	0.917	0.719	
Gosport, UK	Gpt	-	nf								23	14	13.7	6	5.9	23	0.881	0.932	
Southampton, UK	Sth	-	nf								21	10	10.0	2	2.1	17	0.776	0.672	
Lymington, UK	Lym	-	nf								22	13	12.8	3	3.0	18	0.840	0.466	
Poole Quay, UK	Poo	-	nf								24	12	11.6	4	3.9	20	0.844	0.789	
Torquay, UK	Tor	S	1	1	-	0	-	-	-	-	24	7	6.9	1	1.0	15	0.779	0.839	
Brixham, UK	Brx	-	nf								24	11	10.7	3	2.9	17	0.877	0.740	
Plymouth, UK	Ply	S	24	4	3.7	2	1.2	3	0.308	0.056	24	12	11.8	3	2.9	20	0.924	0.924	
Falmouth, UK	Fal	S	24	3	3.6	1	1.1	2	0.409	0.074	23	6	5.9	2	2.0	12	0.656	0.265	
Saint Vaast, Fr	StV	S	24	1	1.0	0	0.0	0	0.000	0.000	25	14	13.5	4	3.8	25	0.930	0.913	
Saint Malo, Fr	StM	S	23	1	1.0	0	0.0	0	0.000	0.000	19	9	9.0	1	1.0	14	0.801	0.745	This study
Saint Quay, Fr	StQ	S	24	3	2.9	2	1.9	2	0.424	0.079	24	8	7.8	4	3.6	17	0.808	0.689	
Perros Guirec, Fr	Per	S	24	3	2.9	1	0.7	2	0.163	0.029	26	11	10.6	2	2.0	20	0.871	0.959	
Trébeurden, Fr	Tre	S	24	1	1.0	0	0.0	0	0.000	0.000	24	10	9.8	2	2.0	18	0.870	0.974	
Roscoff-Bloscon, Fr	Blo	S	18	2	2.3	0	0.2	1	0.111	0.019	26	16	15.0	7	6.5	28	0.858	0.900	
Aber Wrac'h, Fr	AbW	-	nf								25	13	12.6	2	2.0	22	0.920	0.946	
Brest-Château, Fr	Cha	S	23	2	1.7	0	0.0	1	0.166	0.029	27	10	9.4	2	1.9	16	0.815	0.930	
Brest-Moulin Blanc, Fr	MB1	S	26	2	1.5	1	0.6	1	0.077	0.013	24	13	12.8	5	4.1	23	0.932	0.885	
Camaret, Fr	Cam	S	24	1	1.0	0	0.0	0	0.000	0.000	21	15	14.9	3	3.1	27	0.952	0.956	
Concarneau, Fr	Con	S	24	1	1.0	0	0.0	0	0.000	0.000	24	9	8.9	2	1.9	16	0.866	0.913	
Lorient, Fr	Lor	-	nf								24	10	9.7	2	2.0	19	0.793	0.877	
Crouesty, Fr	Cro	S	24	1	1.0	0	0.0	0	0.000	0.000	24	11	10.7	2	1.9	19	0.830	0.923	
Quiberon, Fr	Qui	S	13	2	1.9	0	0.4	1	0.154	0.027	23	9	8.8	2	2.0	15	0.723	0.460	
Total EC			320	13		10		10	0.138	0.025	592	117		110		100	0.870	0.854	
North Sea (Skagerrak)	NS																		
Grundsund, Sw	Grun										21	5	5.0	2	2.0	5	0.633	0.214	This study
Gullmar Fjord, Sw	GullF										22	5	5.0	2	2.0	8	0.532	0.231	

Fiskebäckskil, Sw	Fiske									24	8	7.8	2	2.0	7	0.659	0.224	
Total NS										67	13		9		13	0.619	0.232	
Total NEA		320	13		10		10	0.138	0.025	659	126		122		103	0.854	0.815	
North Western Atlantic	NWA																	
Cardigan River, Ca	CR									30	8	5.6	3	2.6	7	0.556	0.188	
Brudenell River, Ca	BR									30	3	2.9	1	0.9	2	0.191	0.037	
Murray River, Ca	MR									30	3	2.9	1	1.0	2	0.191	0.037	
Sydney, Ca	SD									42	5	3.6	0	0.2	9	0.577	0.195	
Point Tupper. Ca	РО									21	3	3.0	0	0.0	2	0.267	0.052	
Halifax. Ca	HF									28	4	3.9	Õ	0.0	7	0.429	0.308	
Chester, Ca	СТ									28	4	3.8	2	1.8	5	0.418	0.124	
Martin's River Ca	MA									45	5	4.6	1	0.7	8	0 574	0.146	[25]
Mahone Bay Ca	MB									28	3	3.0	0	0.0	5	0.569	0.121	
Stone Hurst Ca	ST									26	6	2.0 2.9	1	1.0	7	0.502	0.121	
Lupenburg Ca										20	3	3.0	0	0.1	3	0.032	0.171	
Shelburne Ca	SB									30	7	5.6	1	1.0	13	0.530	0.075	
Port La Tour, Ca	DT									21	3	2.0	0	1.0	15	0.347	0.580	
Varmouth Ca	I I VM									21	2	2.0	2	2.0	14	0.207	0.052	
Nahant US	Nah									20	6	5.0	2	2.0	14	0.621	0.019	This study
Groton US										24 19	6	5.9	2	1.9	10	0.030	0.740	[25]
Total NWA	01									40	25	5.0	20	0.0	21	0.000	0.007	[23]
	M. 10									401	23		20		51	0.490	0.324	
Neuterranean Sea	MedS	22	1	1.0	0	0.0	0	0.000	0.000									1
Naples, It	Napl	23	1	1.0	0	0.0	0	0.000	0.000									This study
Sete, Fr	Sete	21	3	2.4	0	0.2	2	0.186	0.033									
Total MedS		44	3		0		2	0.090	0.016									
North Western Pacific	NWP																	
Nishinomiya, Japan	Nishi	32	7	6.4	0	0.6	8	0.821	0.341									This study
Tokyo, Japan	Tokyo	32	6	5.7	1	0.9	7	0.758	0.261									This study
Total NWP		64	9		1		9	0.792	0.301									
North Eastern Pacific	NEP																	
north NEP	nNEP																	
Tomales Bay, US	TB	13	4	3.9	0	0.0	7	0.679	0.471									[25]
San Francisco Estuary, US	SF	9	5	5.0	1	1.0	9	0.861	0.597									[25]+This study
Monterey Bay, US	MO	18	6	5.4	0	1.1	7	0.791	0.275									[25]
Total nNEP		40	9		2		10	0.837	0.457									
south NEP	SNEP																	
Santa Barbara US	SB	16	6	56	2	19	6	0 783	0 298									
Channel Islands US	CI	27	8	6.0	2	1.7	12	0.772	0.220									
Port Hueneme US	PH	21	8	63	3	2.1	13	0.752	0.45									
Los Angeles US	ΙΔ	31	5	0.5 1 3	0	0.0	5	0.735	0.405									[25]
Newport Bay US	NR	21	5	т.5 4 б	0	0.0	5	0.755	0.321									[23]
Oceanside Estuary US	OF	21	8	т.0 Л б	0	0.0	0	0.838	0.333									
Mission Bay US	MI	2.3 Q	2	4.0	0	0.2	э Л	0.050	0.429									
San Diago US	SD	0 26	ט ד	56	0	0.1	4 0	0.714	0.322									I
San Diego, US	SD	20	/	5.0	U	0.1	o	0.709	0.397									

Total sNEP		173	16		12		20	0.775	0.393						
Total NEP		213	22		16		21	0.814	0.419						
South Eastern Pacific north SEP	SEP nSEP														
Antofagasta, Chile	Anto	3	3	-	0	-	3	1.000	0.346						
Coquimbo, Chile	Coqui	24	8	6.9	2	1.3	9	0.764	0.288						This study
Guanaqueros, Chile	Guana	24	5	3.8	1	0.6	8	0.685	0.244						
Total nSEP		51	12		3		10	0.724	0.385						
south SEP	sSEP														
Talcahuano, Chile	Talca	9	3	3.0	1	1.0	4	0.556	0.25						This study
Puerto Montt, Chile	Mont	13	5	5.7	1	1.3	4	0.808	0.231						This study
Total sSEP		22	8		2		5	0.771	0.246						
Total SEP		73	14		6		12	0.749	0.259						
All dataset															
Mean		21.0	3.9				4.2	0.469	0.196	25.9	8.5	14.0	0.694	0.554	
(SD)		6.9	2.3				3.8	0.344	0.181	6.5	3.8	7.4	0.217	0.347	
Total		714	45				39	0.703	0.334	1140	147	114	0.737	0.635	

Table S2. Number of *Ciona robusta* (A) and *C. intestinalis* (B) individuals identified in clusters of the haplotype network based on COX3-ND1 dataset.

Clusters were identified from the haplotype network built with COX3-ND1 mtDNA sequences and shown in Figure 3 in the main text.

(A) Ciona robusta					
Sampling location	Code	C1	C2	Not in cluster	Total
North Eastern Atlantic	NEA				
English Channel	EC				
Torquay, UK	Tor	1	0	0	1
Plymouth, UK	Plv	24	0	0	24
Falmouth, UK	Fal	24	0	0	24
Saint Vaast, Fr	StV	24	Ő	Ő	24
Saint Malo Fr	StM	23	Ő	Ő	23
Saint Quay Fr	StO	23	Ő	0	23
Perros Guirec Fr	Per	$\frac{24}{24}$	0	0	24
Trébeurden Fr	Tre	24	Ő	0	24
Roscoff Bloscon Er	Blo	18	0	0	18
Brest Château Er	Cha	23	0	0	23
Brost Moulin Blanc, Fr	MP1	25	0	0	25
Compret Er	Com	20	0	0	20
Concornacy Fr	Can	24	0	0	24
Concarneau, Fr	Con	24	0	0	24
Crouesty, Fr	Cro	24	0	0	24
Quiberon, Fr	Qui	13	0	0	13
Total EC		320	0	0	320
Maditarrangan Sag	ModS				
Naplas It	Nonl	23	Δ	0	23
Naples, It	Napi	23	0	0	25
Sele, Fr	Sete	21	0	0	21
Total Meas		44	0	0	44
North Western Pacific	NWP				
Nishinomiya, Japan	Nishi	29	2	1	32
Tokyo Japan	Tokyo	27	0	5	32
Total NWP	101190	56	2	6	64
North Eastern Pacific	NEP				
north NEP	nNEP				
Tomales Bay, US	TB	9	4	0	13
San Francisco Estuary, US	SF	4	5	0	9
Monterey Bay, US	MO	13	5	0	18
Total nNEP		26	14	0	40
couth NED					
South NEP		0	10	0	16
Santa Barbara, US	2R	10	10	0	10
Channel Islands, US	CI	13	14	0	27
Port Hueneme, US	PH	9	12	0	21
Los Angeles, US	LA	6	25	0	31
Newport Bay, US	NB	7	14	0	21
Oceanside Estuary, US	OE	5	18	0	23
Mission Bay, US	MI	1	7	0	8
San Diego, US	SD	11	15	0	26
Total sNEP		52	121	0	173
Total NEP		78	135	0	213
South Fastern Pacific	SED				
north SFP	nSED				
Antofagasta Chila	Anto	3	Ο	Δ	2
Cognimbo Chilo	Cogni	10	0	0	ວ າ₄
Cuanaqueros Chile	Guana	17	0	З л	24 24
Total nSED	Guana	20 12	0	4	24 51
10iai nSEI		42	U	9	51

south SEP

Total		562	137	15	714
Total SEP		64	0	9	73
Total sSEP		22	0	0	22
Puerto Montt, Chile	Mont	13	0	0	13
Talcahuano, Chile	Talca	0	0	0	0

(B) *C. intestinalis*

Sampling location	Code	C1	C2	C3	Not in cluster	Total
North Eastern Atlantic	NEA					
English Channel	EC					
Brighton, UK	Bri	19	3	1	0	23
Shoreham, UK	Sho	16	8	0	0	24
Southsea, UK	Shs	20	4	0	0	24
Gosport, UK	Gpt	16	6	1	0	23
Southampton, UK	Sth	19	2	0	0	21
Lymington, UK	Lym	19	3	0	0	22
Poole Quay, UK	Poo	17	7	0	1	24
Torquay, UK	Tor	16	5	3	0	24
Brixham, UK	Brx	19	3	2	0	24
Plymouth, UK	Ply	13	11	0	0	24
Falmouth, UK	Fal	22	1	0	0	23
Saint Vaast, Fr	StV	15	10	0	0	25
Saint Malo, Fr	StM	12	6	1	0	19
Saint Quay, Fr	StQ	19	1	4	0	24
Perros Guirec, Fr	Per	13	13	0	1	26
Trébeurden, Fr	Tre	13	8	3	0	24
Roscoff-Bloscon, Fr	Blo	18	6	2	0	26
Aber Wrac'h, Fr	AbW	15	8	2	0	25
Brest-Château, Fr	Cha	13	11	3	0	27
Brest-Moulin Blanc, Fr	MB1	15	8	1	0	24
Camaret, Fr	Cam	10	8	3	0	21
Concarneau, Fr	Con	16	7	1	0	24
Lorient, Fr	Lor	11	12	1	0	24
Crouesty, Fr	Cro	13	9	2	0	24
Quiberon, Fr	Qui	19	4	0	0	23
Total EC		398	164	30	2	592
North Sea (Skagerrak)	NS					
Grundsund, Sw	Grun	21	0	0	0	21
Gullmar Fjord, Sw	GullF	22	0	0	0	22
Fiskebäckskil, Sw	Fiske	24	0	0	0	24
Total NS		67	0	0	0	67
Total NEA		465	164	30	2	661
	N TXX 7 A					
North Western Atlantic	NWA	20	0	0	0	20
Cardigan River, Ca	CK	30	0	0	0	30
Brudenell River, Ca	BK	30	0	0	0	30
Murray River, Ca	MR	30	0	0	0	30
Sydney, Ca	SD	41	1	0	0	42
Point Tupper, Ca	PO	21	0	0	0	21
Halifax, Ca	HF	25	3	0	0	28
Chester, Ca	CI	28	0	0	0	28
Martin's River, Ca	MA	45	0	0	0	45
Mahone Bay, Ca	MB	28	0	0	0	28
Stone Hurst, Ca	ST	26	0	0	0	26
Lunenburg, Ca		21	0	0	0	21
Shelburne, Ca	SB	35	4	0	0	39
Port La Tour, Ca		21	0	0	0	21
Y armouth, Ca	YM	17	3	0	0	20
Nahant, US	Nah	18	6	0	0	24
Groton, US	GI	51	11	0	0	48
TOTAL IN W A		4.3.3	2ð	0	0	481

Total	918 192 30	2 1140
10141	710 174 JU	2 II4U

Table S3. Sampling locations and details of genetic diversity indices of *Ciona robusta* and *C. intestinalis* computed from the concatenated sequences dataset.

Indices were computed over concatenated mitochondrial DNA sequences (COI and COX3-ND1).

S: syntopic locality (see legend of Supplementary Table S1).

Nind: the number of individuals studied; nf: not found. Indices: Nh: number of haplotypes; Npr: number of private haplotypes; Hd: Haplotype diversity; π : nucleotide diversity.

					C roh	usta		<i>C. intestinalis</i>					
Sampling location	Code	Status	Nind	Nh	Nnr	Hd	$\pi(10^2)$	Nind	Nh	Nnr	Hd	$\pi(10^2)$	
North Eastern Atlantic	NEA	Status	1,1114	1 11	1.151	114	<i>m</i> (10)	1 (1114	1 111	1.151	114	<i>n</i> (10)	
English Channel	EC												
Brighton UK	Bri	_	nf					23	15	4	0.925	0 4 5 3	
Shoreham UK	Sho	_	nf					24	18	5	0.967	0.753	
Southsea, UK	Shs	_	nf					24	19	10	0.978	0.528	
Gosport UK	Gnt	_	nf					23	20	9	0.976	0.718	
Southampton UK	Sth	_	nf					21	17	6	0.976	0.549	
Lymington UK	Lvm	_	nf					22	18	6	0.978	0.428	
Poole Quay, UK	Poo	_	nf					24	20	7	0.975	0.661	
Torquay, UK	Tor	S	1	1	0	-	-	24	11	. 4	0.870	0.715	
Brixham, UK	Brx	-	nf	-	Ũ			24	16	4	0.946	0.607	
Plymouth, UK	Plv	S	24	5	2	0.377	0.056	24	18	9	0.964	0.708	
Falmouth, UK	Fal	ŝ	24	5	1	0.659	0.112	23	15	7	0.909	0.311	
Saint Vaast, Fr	StV	ŝ	24	2	0	0.159	0.011	25	18	6	0.963	0.692	
Saint Malo, Fr	StM	ŝ	23	- 1	Ő	0.000	0.000	19	13	3	0.924	0.657	
Saint Quay, Fr	StO	ŝ	24	7	4	0.667	0.078	24	13	7	0.931	0.592	
Perros Guirec, Fr	Per	ŝ	24	3	1	0.163	0.012	26	21	6	0.985	0.776	
Trébeurden, Fr	Tre	ŝ	24	2	1	0.083	0.006	24	17	4	0.967	0.788	
Roscoff-Bloscon, Fr	Blo	ŝ	18	2	1	0.111	0.016	26	23	10	0.982	0.731	
Aber Wrac'h, Fr	AbW	-	nf	_	-			25	19	6	0.977	0.769	
Brest-Château, Fr	Cha	S	23	2	0	0.166	0.012	27	21	8	0.977	0.784	
Brest-Moulin Blanc, Fr	MB1	ŝ	26	3	1	0.151	0.011	24	19	9	0.975	0.729	
Camaret, Fr	Cam	ŝ	24	1	0	0.000	0.000	21	20	7	0.995	0.722	
Concarneau, Fr	Con	ŝ	24	2	Ő	0.159	0.011	24	16	. 4	0.957	0.697	
Lorient, Fr	Lor	-	nf	-	Ũ	01109	01011	24	19	7	0.967	0.696	
Crouesty, Fr	Cro	S	24	2	0	0.489	0.035	24	19	. 4	0.978	0.769	
Ouiberon, Fr	Oui	ŝ	13	4	0	0.526	0.062	23	18	5	0.957	0.403	
Total EC		~	320	18	13	0.285	0.033	592	229	157	0.979	0.692	
North Sea (Skagerrak)	NS												
Grundsund, Sw	Grun							21	10	6	0.871	0.244	
Gullmar Fjord, Sw	GullF							22	10	5	0.857	0.228	
Fiskebäckskil, Sw	Fiske							24	10	4	0.851	0.184	
Total NS								67	22	15	0.901	0.237	
Total NEA			320	18	13	0.285	0.033	659	248	172	0.977	0.666	
North Western Atlantic	NWA												
Nahant, US	Nah							24	12	7	0.917	0.632	
Mediterranean Sea	MedS												
Naples. It	Napl		23	2	0	0.166	0.012						
Sete. Fr	Sete		21	11	8	0.910	0.143						
Total MedS	2010		44	11	8	0.642	0.079						
North Western Pacific	NWP			11	0	0.012	0.079						
Nishinomiya Japan	Nishi		32	9	2	0 845	0 4 5 4						
Tokyo Japan	Tokyo		32	8	1	0.045	0.434						
Total NWP	токуо		52 64	11	3	0.813	0.398						
South Eastern Pacific	SEP		0.		U	01010	01070						
North SFP	nSFP												
Antofagasta Chile	Anto		3	3	1	1 000	0 333						
Coquimbo Chile	Comi		24	13	4	0.902	0 387						
Guanaqueros Chile	Guana		24 24	12	2	0.913	0 354						
Total nSFP	Guana		2 4 51	17	7	0.905	0.354						
South SEP	sFP		51	1/	,	0.705	0.500						
Talcahuano Chile	Talca		0	6	2	0 833	0 345						
Puerto Montt Chile	Mont		13	7	1	0.876	0.345						
i donto monti, cillic	mont		15	'	1	0.0-0	0.571						

Total sSEP	sSEP	22	10	3 0.879	0.404				
Total SEP		73	21	11 0.898	0.377				
All dataset									
Mean		21	5	0.454	0.132	24	17	0.948	0.611
(SD)		8	4	0	0	2	4	0	0
Total		501	48	0.598	0.225	683	255	0.977	0.665

Table S4. Number of *Ciona intestinalis* individuals identified in clusters C1, C2 and C3 of the haplotype network based on concatenated dataset.

Clusters were identified from the haplotype network built with concatenated mtDNA sequences (COI and COX3-ND1) and shown in Supplementary Figure S1.

Sampling location	Code	C1	C2	C3	Not in cluster	Total
North Eastern Atlantic	NEA					
English Channel	EC					
Brighton, UK	Bri	19	3	1	0	23
Shoreham, UK	Sho	17	7	0	0	24
Southsea, UK	Shs	20	4	0	0	24
Gosport, UK	Gpt	15	6	1	1	23
Southampton, UK	Sth	17	4	0	0	21
Lymington, UK	Lym	20	2	0	0	22
Poole Quay, UK	Poo	18	6	0	0	24
Torquay, UK	Tor	16	5	3	0	24
Brixham, UK	Brx	20	2	2	0	24
Plymouth, UK	Ply	14	9	0	1	24
Falmouth, UK	Fal	22	1	0	0	23
Saint Vaast, Fr	StV	16	9	0	0	25
Saint Malo, Fr	StM	16	2	1	0	19
Saint Quay, Fr	StQ	18	1	5	0	24
Perros Guirec, Fr	Per	16	10	0	0	26
Trébeurden, Fr	Tre	13	8	3	0	24
Roscoff-Bloscon, Fr	Blo	18	4	2	2	26
Aber Wrac'h, Fr	AbW	18	5	2	0	25
Brest-Château, Fr	Cha	16	8	3	0	27
Brest-Moulin Blanc, Fr	MB1	19	4	1	0	24
Camaret, Fr	Cam	8	9	4	0	21
Concarneau, Fr	Con	16	6	1	1	24
Lorient, Fr	Lor	15	8	1	0	24
Crouesty, Fr	Cro	16	6	2	0	24
Quiberon, Fr	Qui	21	2	0	0	23
Total EC		424	131	32	5	592
North Sea (Skagerrak)	NS					
Grundsund Sw	Grun	21	0	0	0	21
Gullmar Fiord Sw	GullE	21	0	0	0	$\frac{21}{22}$
Fiskebäckskil Sw	Fiske	24	0	0	0	24
Total NS	I ISKC	67	0	0	0	67
10101115		07	0	0	0	07
Total NEA		491	131	32	5	659
North Western Atlantic	NWA					
Nahant, US	Nah	19	5	0	0	24
Total		510	136	32	5	683

Table S5. Estimates of pairwise population genetic differentiation for Ciona robusta (A) and C. intestinalis (B) based on COX3-ND1 sequences.

The fixation index ϕ_{ST} was computed based on COX3-ND1 mitochondrial DNA sequences with the software Arlequin v 3.5. Bold numbers indicate statistical significance (*P*-value <0.05). Population labels are detailed in Supplementary Table S1.

(A) C. robusta

Fal SB Ply StV StM StQ Per Tre Blo Cha MB1 Cam Con Cro Qui Napl Set Coqui Guana Talca Mont Nishi Toky TB SF MO CI PH LA NB OH Ply Fal 0.067 StV 0.050 0.267 0.000 StM 0.047 0.261 0.215 0.087 0.084 StQ 0.067 Per 0.039 0.235 0.000 -0.002 0.065 Tre 0.050 0.267 0.000 0.000 0.087 0.000 Blo 0.030 0.219 0.016 0.014 0.059 -0.003 0.016 Cha 0.047 0.236 0.048 0.045 0.075 0.023 0.048 0.025 MB1 0.042 0.244 -0.003 -0.005 0.069 0.000 -0.003 -0.003 -0.017 Cam 0.050 0.267 0.000 0.000 0.087 0.000 0.000 0.016 0.048 -0.003 0.050 0.267 0.000 0.000 0.087 0.000 0.000 0.016 0.048 -0.003 0.000 Con 0.050 0.267 0.000 0.000 0.087 0.000 0.000 0.016 0.048 -0.003 0.000 0.000 Cro 0.017 0.189 0.050 0.047 0.044 -0.043 0.050 0.004 0.023 0.000 0.050 Oui 0.050 0.050 0.000 -0.002 0.014 0.045 -0.005 0.047 Napl 0.047 0.261 0.0000.084 0.000 0.0000.000 0.000 0.034 0.221 0.007 0.004 0.059 0.000 0.007 -0.038 -0.025 -0.021 0.007 0.007 -0.003 0.004 Sete 0.007 0.332 0.298 0.401 0.395 0.368 0.386 0.401 0.356 0.382 0.391 0.395 Coqui 0.401 0.401 0.401 0.319 0.368 Guana 0.424 0.365 0.507 0.501 0.465 0.489 0.507 0.460 0.485 0.498 0.507 0.507 0.507 0.422 0.501 0.471 -0.018 0.389 0.279 0.334 0.389 0.303 0.331 0.380 0.308 Talca 0.202 0.147 0.380 0.350 0.389 0.389 0.389 0.245 0.014 0.065 0.563 0.555 0.476 0.525 0.563 0.493 0.520 0.555 0.501 -0.019 -0.020 0.430 0.366 0.538 0.563 0.563 0.563 0.440 0.018 Mont Nishi 0.439 0.395 0.496 0.491 0.470 0.484 0.496 0.458 0.481 0.494 0.496 0.496 0.426 0.491 0.469 0.044 0.016 0.110 0.013 0.496 0.506 0.482 0.436 0.544 0.539 0.513 0.531 0.544 0.527 0.539 0.544 0.544 0.544 0.475 0.539 0.516 0.048 0.011 0.003 -0.001 Tokyo 0.154 0.695 0.688 0.654 0.679 0.695 0.643 0.673 0.688 0.695 0.695 0.695 0.595 0.688 0.658 0.346 0.379 0.398 0.369 0.399 TB 0.641 0.614 0.370 SF 0.732 0.684 0.732 0.675 0.723 0.725 0.691 0.328 0.387 0.350 0.371 -0.033 0.670 0.638 0.725 0.713 0.707 0.732 0.732 0.732 0.621 0.366 0.347 0.320 MO 0.585 0.518 0.668 0.662 0.619 0.649 0.668 0.619 0.644 0.659 0.668 0.668 0.668 0.578 0.662 0.630 0.110 0.055 0.231 0.101 0.053 0.054 0.293 0.624 0.592 SB 0.788 0.764 0.835 0.831 0.797 0.820 0.835 0.801 0.817 0.826 0.835 0.835 0.835 0.772 0.831 0.808 0.542 0.577 0.565 0.579 0.311 0.146 0.520 0.507 0.486 0.507 0.493 0.504 0.501 0.481 0.244 0.132 CI 0.468 0.445 0.501 0.498 0.467 0.507 0.507 0.507 0.431 0.186 0.199 0.188 0.220 0.209 0.035 0.160 0.186 PH 0.498 0.467 0.544 0.538 0.517 0.533 0.544 0.497 0.528 0.541 0.544 0.544 0.544 0.457 0.538 0.513 0.204 0.213 0.257 0.203 0.241 0.227 0.164 0.062 -0.0250.150 0.156 0.633 0.662 0.633 0.653 0.604 0.662 0.643 0.392 0.446 0.392 0.388 0.389 0.209 0.035 0.340 0.093 0.037 0.048 LA 0.617 0.666 0.643 0.657 0.666 0.662 0.666 0.666 0.666 0.366 0.252 NB 0.595 0.569 0.642 0.637 0.610 0.629 0.642 0.598 0.625 0.636 0.642 0.642 0.642 0.560 0.637 0.612 0.272 0.298 0.356 0.295 0.298 0.297 0.174 0.024 0.161 -0.015 0.003 -0.021 0.398 0.328 0.053 0.023 0.024 OH 0.599 0.580 0.637 0.632 0.610 0.626 0.637 0.596 0.622 0.633 0.637 0.637 0.637 0.560 0.632 0.609 0.341 0.371 0.366 0.379 0.384 0.194 0.044 -0.011 -0.003 SD 0.559 0.555 0.553 0.532 0.237 0.256 0.302 0.251 0.174 0.051 0.222 0.142 -0.025 -0.020 0.015 -0.020 0.520 0.499 0.553 0.534 0.549 0.559 0.518 0.544 0.559 0.559 0.559 0.482 0.277 0.269 -0.013

(B) C. intestinalis

. ,	Bri	Sho	Shs	Gpt	Sth	Lvm	Poo	Tor	Brx	Plv	Fal	StV	StM	StO	Per	Tre	Blo	AbW	Cha	MB1	Cam	Con	Lor	Cro	Oui	Grun	GullF	Fiske
Sho	0.040			-1		5				5																		
Shs	0.040	0.014																										
Gpt	-0.027	-0.028	0.005																									
Sth	0.020	0.004	0.024	0.013																								
Lym	-0.020	0.004	-0.013	-0.013	-0.002																							
Poo	-0.024	-0.023	-0.013	-0.023	-0.002	0.039																						
Tor	0.051	0.025	0.037	0.015	0.039	0.059	0.025																					
Brx	0.011	0.020	0.015	0.033	0.021	0.036	0.025	0.001																				
Plv	0.133	-0.005	0.015	0.005	0.021	0.050	0.037	0.049	0 118																			
Fal	0.049	0.162	0.056	0.000	0.074	0.031	0.021	0.163	0.110	0 270																		
StV	0.057	-0.030	0.030	-0.022	0.019	0.098	-0.009	0.031	0.051	-0.010	0 175																	
StM	0.007	-0.031	-0.012	-0.038	-0.018	0.049	-0.034	-0.011	-0.002	0.015	0.175	-0.021																
StO	0.047	0.097	0.046	0.050	0.056	0.067	0.054	-0.003	-0.013	0.015	0.140	0.021	0.037															
Per	0.129	-0.007	0.088	0.004	0.077	0.007	0.021	0.062	0.117	-0.024	0.155	-0.018	0.011	0 164														
Tre	0.092	-0.005	0.065	-0.014	0.049	0 141	0.013	0.023	0.057	0.002	0.200	-0.009	-0.019	0.095	-0.008													
Blo	0.002	-0.017	-0.008	-0.024	-0.014	0.036	-0.025	0.009	0.012	0.002	0.094	-0.007	-0.040	0.046	0.000	-0.001												
AbW	0.051	-0.027	0.028	-0.026	0.016	0.092	-0.016	0.019	0.049	-0.004	0 160	-0.023	-0.032	0.086	-0.010	-0.021	-0.019											
Cha	0.128	0.002	0.092	0.004	0.082	0.180	0.023	0.053	0.105	-0.014	0.267	0.001	0.005	0.144	-0.015	-0.023	0.019	-0.014										
MBl	0.003	-0.025	-0.012	-0.035	-0.024	0.036	-0.031	0.012	0.013	0.022	0.117	-0.018	-0.042	0.050	0.020	-0.003	-0.032	-0.023	0.017									
Cam	0.176	0.034	0.136	0.036	0.128	0.227	0.068	0.075	0.137	-0.002	0.309	0.016	0.042	0.170	-0.008	-0.010	0.053	0.013	-0.020	0.052								
Con	0.150	0.001	0.106	0.011	0.094	0.201	0.030	0.070	0.139	-0.032	0.297	-0.005	0.025	0.177	-0.026	-0.003	0.034	-0.003	-0.022	0.027	-0.011							
Lor	0.189	0.017	0.140	0.031	0.125	0.241	0.052	0.091	0.161	-0.025	0.334	0.008	0.043	0.206	-0.020	0.003	0.056	0.008	-0.021	0.050	-0.016	-0.029						
Cro	0.096	-0.019	0.065	-0.016	0.052	0.148	0.004	0.034	0.078	-0.021	0.234	-0.024	-0.016	0.123	-0.027	-0.031	-0.002	-0.026	-0.029	-0.006	-0.017	-0.025	-0.018					
Qui	-0.026	0.048	-0.020	0.034	-0.018	-0.020	0.020	0.068	0.020	0.149	0.045	0.067	0.014	0.058	0.141	0.105	0.013	0.059	0.146	0.011	0.195	0.169	0.202	0.112				
Grun	0.089	0.210	0.096	0.186	0.114	0.071	0.175	0.204	0.128	0.315	0.125	0.218	0.197	0.165	0.301	0.264	0.148	0.217	0.313	0.164	0.348	0.344	0.381	0.281	0.073			
GullF	0.060	0.195	0.068	0.169	0.094	0.026	0.156	0.189	0.107	0.305	0.077	0.204	0.177	0.136	0.297	0.253	0.131	0.203	0.302	0.140	0.341	0.333	0.372	0.270	0.051	0.049		
Fiske	0.063	0.201	0.069	0.174	0.095	0.026	0.161	0.197	0.113	0.313	0.082	0.213	0.186	0.139	0.305	0.262	0.136	0.210	0.310	0.146	0.351	0.339	0.382	0.279	0.050	0.047	-0.018	
CR	0.039	0.195	0.062	0.166	0.086	0.024	0.149	0.186	0.100	0.315	0.081	0.208	0.172	0.138	0.301	0.254	0.121	0.200	0.305	0.140	0.355	0.344	0.384	0.272	0.036	0.094	0.054	0.060
BR	0.086	0.254	0.100	0.224	0.138	0.048	0.209	0.246	0.145	0.377	0.114	0.262	0.259	0.205	0.364	0.318	0.172	0.260	0.369	0.202	0.418	0.411	0.453	0.339	0.080	0.159	0.052	0.058
MR	0.079	0.248	0.095	0.218	0.132	0.043	0.202	0.240	0.139	0.372	0.110	0.257	0.251	0.197	0.359	0.312	0.166	0.254	0.363	0.195	0.413	0.406	0.447	0.333	0.074	0.159	0.052	0.058
SD	0.038	0.202	0.063	0.173	0.087	0.024	0.153	0.197	0.108	0.332	0.091	0.219	0.176	0.147	0.319	0.268	0.126	0.209	0.319	0.144	0.379	0.361	0.401	0.286	0.035	0.135	0.057	0.063
PO	0.045	0.197	0.062	0.168	0.091	0.018	0.155	0.189	0.100	0.315	0.082	0.207	0.189	0.145	0.304	0.256	0.123	0.203	0.308	0.145	0.350	0.347	0.388	0.276	0.042	0.129	0.038	0.043
HF	-0.020	0.069	-0.009	0.050	-0.005	-0.006	0.032	0.085	0.037	0.176	0.068	0.089	0.031	0.079	0.168	0.128	0.024	0.079	0.170	0.027	0.227	0.200	0.235	0.135	-0.021	0.128	0.085	0.091
CT	0.049	0.204	0.071	0.174	0.097	0.031	0.160	0.194	0.107	0.323	0.091	0.216	0.187	0.145	0.312	0.263	0.129	0.209	0.313	0.150	0.361	0.353	0.393	0.282	0.050	0.133	0.060	0.066
MA	0.068	0.217	0.091	0.191	0.115	0.055	0.170	0.208	0.127	0.334	0.102	0.233	0.188	0.149	0.324	0.275	0.147	0.223	0.325	0.158	0.377	0.358	0.397	0.291	0.069	0.118	0.050	0.058
MB	0.111	0.214	0.116	0.194	0.141	0.100	0.178	0.211	0.147	0.312	0.159	0.224	0.198	0.166	0.306	0.262	0.157	0.219	0.310	0.162	0.345	0.334	0.374	0.277	0.114	0.169	0.099	0.109
ST	0.117	0.212	0.119	0.193	0.144	0.106	0.179	0.210	0.149	0.307	0.163	0.222	0.197	0.167	0.301	0.259	0.158	0.218	0.306	0.162	0.338	0.328	0.367	0.274	0.119	0.163	0.104	0.114
LU	0.031	0.176	0.049	0.148	0.075	0.016	0.134	0.170	0.088	0.292	0.087	0.187	0.161	0.128	0.281	0.233	0.105	0.181	0.284	0.124	0.328	0.323	0.363	0.252	0.032	0.142	0.061	0.066
SB	-0.009	0.093	0.003	0.075	0.009	-0.008	0.053	0.106	0.048	0.206	0.048	0.115	0.054	0.087	0.195	0.157	0.046	0.106	0.201	0.047	0.261	0.229	0.264	0.165	-0.018	0.072	0.049	0.054
РТ	0.046	0.200	0.063	0.171	0.093	0.019	0.158	0.192	0.102	0.318	0.086	0.209	0.194	0.148	0.307	0.259	0.125	0.205	0.311	0.148	0.353	0.350	0.392	0.279	0.044	0.138	0.040	0.046
YM	0.021	0.030	0.007	0.028	0.010	0.042	0.011	0.065	0.051	0.097	0.117	0.043	0.012	0.088	0.092	0.074	0.015	0.040	0.103	0.009	0.143	0.113	0.140	0.073	0.021	0.153	0.129	0.137
Nah	0.022	0.025	0.002	0.023	0.010	0.058	0.029	0.028	0.043	0.018	0.142	0.011	0.034	0.088	0.016	0.010	0.002	0.018	0.023	0.028	0.067	0.028	0.047	0.002	0.026	0.184	0.174	0.183
GT	0.017	0.018	0.011	0.018	0.013	0.045	0.006	0.054	0.056	0.078	0.109	0.028	0.005	0.090	0.074	0.062	0.008	0.030	0.089	0.002	0.129	0.086	0.121	0.052	0.027	0.144	0.118	0.124

Table S5b C. intestinalis (contined)															
	CR	BR	MR	SD	PO	HF	CT	MA	MB	ST	LU	SB	РТ	YM	Nah
Sho															
Shs															
Gpt															
Sth															
Lym															
Poo															
Tor															
Brx															
Ply															
Fal															
StV															
StM															
StQ															
Per															
Tre															
Blo															
AbW															
Cha															
MB1															
Cam															
Con															
Lor															
Cro															
Qui															
Grun															
GullF															
Fiske															
CR															
BR	0.056														
MR	0.036	0.023													
SD	-0.004	0.072	0.050												
PO	-0.006	0.006	0.006	0.002											
HF	0.032	0.115	0.100	0.018	0.054										
CT	-0.011	0.071	0.046	-0.006	-0.005	0.043									
MA	0.036	0.087	0.078	0.026	0.042	0.068	0.026								
MB	0.136	0.199	0.193	0.129	0.151	0.139	0.128	0.009							
ST	0.147	0.207	0.202	0.147	0.161	0.150	0.142	0.020	-0.033						
LU	-0.021	0.102	0.065	-0.024	-0.009	0.021	-0.022	0.032	0.143	0.156					
SB	0.011	0.058	0.050	0.018	0.025	-0.015	0.032	0.057	0.114	0.122	0.015				
PT	-0.007	0.035	0.003	0.001	-0.039	0.055	-0.007	0.044	0.156	0.166	-0.010	0.025			
YM	0.121	0.199	0.192	0.130	0.142	0.031	0.138	0.116	0.115	0.115	0.114	0.043	0.145		
Nah	0.162	0.232	0.226	0.173	0.177	0.041	0.180	0.189	0.197	0.195	0.155	0.056	0.180	0.009	
GT	0.114	0.152	0.147	0.110	0.117	0.037	0.118	0.099	0.090	0.093	0.103	0.051	0.118	0.009	0.008

Table S6. Estimates of pairwise population genetic differentiation for *Ciona robusta* (A) and *C. intestinalis* (B) based on concatenated mitochondrial DNA sequences.

The fixation index ϕ_{ST} was computed based on concatenated mitochondrial DNA sequences (COI and COX3-ND1) with the software Arlequin v 3.5. Bold numbers indicate statistical significance (*P*-value <0.05). Population labels are detailed in Table S1.

(A) C. robusta																		
	Blo	Cha	MB1	Cam	Con	Cro	Fal	Per	Ply	StQ	StM	Tre	StV	Guana	Coqui	Nishi	Tokyo	Napl
Blo																		
Cha	0.022																	
MB1	0.003	-0.017																
Cam	0.016	0.048	-0.003															
Con	-0.029	0.045	0.023	0.043														
Cro	0.188	0.288	0.294	0.348	0.181													
Fal	0.224	0.253	0.264	0.274	0.258	0.293												
Per	0.002	0.023	0.000	0.000	0.022	0.285	0.255											
Ply	0.038	0.056	0.055	0.061	0.058	0.197	0.078	0.051										
StQ	0.040	0.069	0.071	0.079	0.058	0.147	0.187	0.066	0.064									
StM	0.014	0.045	-0.005	0.000	0.041	0.342	0.269	-0.002	0.058	0.076								
Tre	0.007	0.032	0.000	0.000	0.029	0.313	0.264	0.000	0.055	0.072	-0.002							
StV	-0.029	0.045	0.000	0.043	-0.043	0.181	0.258	0.022	0.058	0.058	0.041	0.029						
Guana	0.460	0.494	0.511	0.507	0.498	0.487	0.405	0.499	0.452	0.437	0.501	0.503	0.498					
Coqui	0.364	0.399	0.416	0.412	0.401	0.391	0.325	0.404	0.361	0.349	0.406	0.408	0.401	-0.014				
Nishi	0.508	0.535	0.549	0.544	0.540	0.538	0.451	0.540	0.499	0.522	0.539	0.542	0.540	0.056	0.088			
Tokyo	0.575	0.601	0.615	0.611	0.606	0.602	0.509	0.560	0.562	0.584	0.606	0.608	0.606	0.071	0.122	0.006		
Napl	0.000	0.036	0.021	0.033	-0.034	0.156	0.244	0.019	0.052	0.051	0.030	0.024	-0.034	0.488	0.392	0.535	0.601	
Sete	0.103	0.151	0.163	0.171	0.120	0.056	0.214	0.157	0.137	0.104	0.166	0.164	0.120	0.425	0.338	0.497	0.555	0.111

(B) C. int	estinal	is																									
	AbW	Blo	Cha	Bri	MB1	Brx	Cam	Con	Cro	Fal	Gpt	Lor	Lym	Per	Ply	Poo	Qui	Sho	Shs	StQ	Sth	StM	Tre	Tor	StV	Fiske	Grun	GullF
AbW																												
Blo	-0.012																											
Cha	-0.025	-0.015																										
Bri	0.052	0.002	0.048																									
MBl	0.028	-0.010	-0.021	0.050																								
Brx	0.045	0.006	0.029	0.013	0.045																							
Cam	0.016	0.069	0.014	0.175	0.027	0.139																						
Con	-0.009	0.036	0.000	0.130	-0.014	0.117	-0.005																					
Cro	-0.021	0.012	-0.025	0.092	-0.019	0.073	-0.012	-0.028																				
Fal	0.162	0.099	0.190	0.089	0.182	0.106	0.312	0.276	0.228																			
Gpt	-0.022	-0.020	-0.020	0.021	-0.026	0.024	0.050	0.009	-0.008	0.145																		
Lor	0.005	0.064	0.012	0.172	0.006	0.145	-0.015	-0.029	-0.020	0.316	0.034																	
Lym	0.094	0.035	0.097	0.002	0.091	0.037	0.229	0.182	0.142	0.078	0.049	0.225																
Nah	-0.008	-0.009	0.000	0.035	-0.008	0.034	0.080	0.027	0.011	0.132	-0.012	0.050	0.068															
Per	-0.009	0.035	0.004	0.115	-0.011	0.103	0.002	-0.027	-0.022	0.250	0.009	-0.020	0.162															
Ply	-0.009	0.029	0.006	0.112	-0.013	0.092	0.013	-0.027	-0.016	0.255	0.005	-0.015	0.162	-0.022														
Poo	-0.011	-0.018	-0.011	0.012	-0.017	0.027	0.075	0.024	0.009	0.135	-0.021	0.049	0.042	0.017	0.014													
Qui	0.067	0.014	0.072	-0.006	0.066	0.015	0.205	0.154	0.113	0.078	0.035	0.194	-0.001	0.133	0.133	0.022												
Sho	-0.021	-0.010	-0.015	0.044	-0.022	0.045	0.040	-0.002	-0.014	0.165	-0.024	0.018	0.083	-0.004	-0.005	-0.013	0.053											
Shs	0.036	-0.006	0.031	-0.016	0.030	0.012	0.153	0.099	0.069	0.082	0.005	0.140	-0.003	0.088	0.085	-0.003	0.000	0.018										
StQ	0.077	0.037	0.058	0.058	0.083	-0.005	0.156	0.154	0.108	0.155	0.063	0.183	0.086	0.148	0.132	0.074	0.076	0.090	0.062									
Sth	0.027	-0.009	0.030	-0.006	0.020	0.020	0.144	0.092	0.063	0.099	-0.007	0.129	-0.005	0.079	0.077	-0.012	-0.006	0.019	-0.019	0.068								
StM	-0.027	-0.030	-0.028	0.014	-0.027	0.009	0.051	0.012	-0.010	0.147	-0.031	0.035	0.056	0.009	0.004	-0.030	0.027	-0.028	-0.002	0.048	-0.007							
Tre	-0.019	0.007	-0.024	0.086	-0.018	0.055	-0.004	-0.011	-0.026	0.218	-0.007	-0.003	0.135	-0.011	-0.003	0.011	0.103	-0.003	0.067	0.081	0.055	-0.012						
Tor	0.024	0.016	0.012	0.060	0.028	0.003	0.077	0.061	0.032	0.172	0.018	0.082	0.097	0.061	0.039	0.029	0.078	0.024	0.047	0.005	0.050	0.002	0.024					
StV	-0.020	0.002	-0.007	0.053	-0.023	0.055	0.031	-0.008	-0.018	0.192	-0.018	0.011	0.101	-0.015	-0.013	-0.010	0.072	-0.021	0.033	0.107	0.030	-0.017	-0.008	0.038				
Fiske	0.220	0.139	0.251	0.111	0.226	0.135	0.371	0.336	0.284	0.060	0.187	0.381	0.085	0.305	0.313	0.174	0.095	0.213	0.103	0.181	0.125	0.199	0.270	0.217	0.241			
Grun	0.241	0.178	0.273	0.178	0.255	0.181	0.372	0.349	0.301	0.098	0.217	0.387	0.148	0.315	0.328	0.213	0.168	0.240	0.167	0.223	0.174	0.232	0.287	0.244	0.266	0.091		
GullF	0.200	0.114	0.218	0.072	0.198	0.103	0.344	0.309	0.257	0.117	0.153	0.353	0.026	0.277	0.285	0.140	0.054	0.184	0.066	0.150	0.072	0.163	0.240	0.186	0.212	0.075	0.188	
Nah	-0.008	-0.009	0.000	0.035	-0.008	0.034	0.080	0.027	0.011	0.132	-0.012	0.050	0.068	0.020	0.019	-0.013	0.026	-0.015	0.009	0.091	0.012	-0.020	0.014	0.037	-0.004	0.182	0.204	0.169

Supplementary Figure S1. Median-joining haplotype networks of *Ciona robusta* (a) and *C. intestinalis* (b) based on concatenated mtDNA sequences.

Haplotype circles are proportional to haplotype frequency in the whole dataset. Branch lengths are proportional to number of mutational steps between two haplotypes. Missing haplotypes are indicated by small black circles. Colors represent the location of individuals possessing the haplotypes. A dotted line gives the number of mutations between the most similar haplotypes in the two species.

Supplementary Figure S2. Marginal posterior distribution of parameters in the IMM computed with IMa2 for examining the history of isolation between populations of *C. intestinalis*.

Distribution curves are shown for 1) the effective size of the study populations, namely NE Atlantic and NW Atlantic (N_{NEA} and N_{NWA} , respectively) and their ancestral population (N_{anc}), 2) the number of effective migrants per generation (with M_1 and M_2 being the number of migrants from N_{NEA} to N_{NWA} and from N_{NWA} to N_{NEA} , respectively) and 3) the time of divergence between the two sides of the Atlantic. The median value and the 95% highest posterior density of each parameter are given in Figure 5 in the main text.