
RESEARCH ARTICLE
10.1002/2015JC011408

A neural network-based method for merging ocean color and
Argo data to extend surface bio-optical properties to depth:
Retrieval of the particulate backscattering coefficient
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Abstract The present study proposes a novel method that merges satellite ocean color bio-optical prod-
ucts with Argo temperature-salinity profiles to infer the vertical distribution of the particulate backscattering
coefficient (bbp). This neural network-based method (SOCA-BBP for Satellite Ocean-Color merged with Argo
data to infer the vertical distribution of the Particulate Backscattering coefficient) uses three main input com-
ponents: (1) satellite-based surface estimates of bbp and chlorophyll a concentration matched up in space
and time with (2) depth-resolved physical properties derived from temperature-salinity profiles measured by
Argo profiling floats and (3) the day of the year of the considered satellite-Argo matchup. The neural network
is trained and validated using a database including 4725 simultaneous profiles of temperature-salinity and
bio-optical properties collected by Bio-Argo floats, with concomitant satellite-derived products. The Bio-Argo
profiles are representative of the global open-ocean in terms of oceanographic conditions, making the pro-
posed method applicable to most open-ocean environments. SOCA-BBP is validated using 20% of the entire
database (global error of 21%). We present additional validation results based on two other independent
data sets acquired (1) by four Bio-Argo floats deployed in major oceanic basins, not represented in the data-
base used to train the method; and (2) during an AMT (Atlantic Meridional Transect) field cruise in 2009.
These validation tests based on two fully independent data sets indicate the robustness of the predicted ver-
tical distribution of bbp. To illustrate the potential of the method, we merged monthly climatological Argo
profiles with ocean color products to produce a depth-resolved climatology of bbp for the global ocean.

1. Introduction

The ocean plays an important role in the regulation of the climate of our planet by influencing the amount
of carbon dioxide (CO2) in the atmosphere. An important part of this regulation takes place through the so-
called biological carbon pump, which results from the sinking and sequestration to the deep oceans of part
of the stock of Particulate Organic Carbon (POC) produced by phytoplankton photosynthesis [Falkowski
et al., 1998; Volk and Hoffert, 1985]. Despite their importance to the global carbon cycle, these processes are
still poorly constrained. This is largely caused by a lack of observations of key biogeochemical properties
and associated processes on relevant space and time scales. Traditional ship-based sampling and measure-
ment methods provide direct, detailed information on biogeochemical properties of the water column, but
with insufficient space-time coverage.

Recent advances in optical sensors implemented on in situ and remote-sensing platforms allow the study of
biogeochemical variables and processes in the open ocean over a broad range of temporal and spatial
scales. The increasing use of such optical tools has led the scientific community to develop optical proxies
for estimating key biogeochemical parameters. Specifically the particulate backscattering coefficient and
the particulate beam attenuation coefficient are widely used as proxies of POC [Bishop and Wood, 2009;
Bishop, 2009; Gardner et al., 2006]. The particulate backscattering coefficient (bbp) has received much atten-
tion in the recent years because it can be continuously measured in situ from autonomous platforms [e.g.,
Boss and Behrenfeld, 2010; Boss et al., 2008; Dall’Olmo and Mork, 2014] or retrieved from satellite remote
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Sauzède, R., H. Claustre, J. Uitz,
C. Jamet, G. Dall’Olmo, F. D’Ortenzio,
B. Gentili, A. Poteau, and
C. Schmechtig (2016), A neural
network-based method for merging
ocean color and Argo data to extend
surface bio-optical properties to depth:
Retrieval of the particulate
backscattering coefficient, J. Geophys.
Res. Oceans, 121, 2552–2571,
doi:10.1002/2015JC011408.

Received 27 OCT 2015

Accepted 15 MAR 2016

Accepted article online 21 MAR 2016

Published online 13 APR 2016

VC 2016. American Geophysical Union.

All Rights Reserved.

SAUZ�EDE ET AL. bbp VERTICAL PROFILE FROM SATELLITE DATA 2552

Journal of Geophysical Research: Oceans

PUBLICATIONS

http://dx.doi.org/10.1002/2015JC011408
http://dx.doi.org/10.1002/2015JC011408
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9291/
http://publications.agu.org/


sensing of ocean color [Behrenfeld et al., 2005; Siegel et al., 2005; Westberry et al., 2008]. Aside from being a
relevant proxy of POC [Balch et al., 2001; Cetinić et al., 2012; Loisel et al., 2001, 2002; Stramski et al., 1999,
2008], this bio-optical property can be used as an index of the particulate load, and its spectral dependence
as an index of particle size [e.g., Dall’Olmo and Mork, 2014; Loisel et al., 2006] and phytoplankton size struc-
ture [Kostadinov et al., 2010]. Although still debated, several recent studies have shown that bbp could also
be considered as an indicator of phytoplankton carbon [Behrenfeld et al., 2005; Graff et al., 2015; Martinez-
Vicente et al., 2013]. This would make bbp an interesting alternative to chlorophyll a concentration for moni-
toring phytoplankton biomass in situ or from space. Therefore, bbp appears as a key bio-optical property to
study the space-time dynamics of POC and possibly of phytoplankton biomass, a prerequisite for ultimately
improving the characterization and quantitative assessment of biologically mediated carbon fluxes in the
global open ocean.

Satellite remote sensing of ocean color, coupled to relevant algorithms, has the potential to provide a
quasi-synoptic view of bbp which, in turn, can be interpreted in terms of POC [Loisel et al., 2001, 2002; Stram-
ski et al., 1999, 2008]. We note that satellite-derived products of POC may also be obtained from
reflectance-based or beam attenuation-based algorithms [e.g., Gardner et al., 2006; Stramski et al., 2008].
Several studies have used this potential to examine the spatial and temporal distribution of POC in the
open ocean [Gardner et al., 2006; Loisel et al., 2002; Stramska, 2009]. However, such satellite-based estimates
are restricted to the ocean surface layer and, in the context of global carbon cycle studies including carbon
production and export, are insufficient. In fact, the photosynthetic activities of phytoplankton are not
restricted to the near-surface layer but also to deeper layers in the water column. Moreover, POC, which is
vector of carbon export, is also composed of biogenic detrital particles, microzooplankton, heterotrophic
bacteria, viruses, and aggregates that are present within the entire water column in various proportions. So
the vertical distribution of POC is important for understanding both pelagic ecosystems and carbon flux.
The high spatial and temporal variability of the vertical distribution of POC makes the extension of surface
POC to depth complex. To our knowledge, this has been attempted only by Duforêt-Gaurier et al. [2010]
who based their study on a relatively small database of POC vertical profiles.

Because bbp is tightly linked to the stock of biologically derived carbon (POC), its vertical distribution must
be in some way driven by nutrient availability and light regime, which are in turn influenced by the physical
forcing of the water column. Hence, one may expect that combining the satellite-derived surface data of
bbp with available information on the physical state of the water column will help extending surface bbp to
depth and constraining its vertical distribution. Since the launch of the Argo program, temperature, and
salinity profiles are measured continuously with high spatiotemporal resolution throughout the world’s
oceans [Roemmich et al., 2009]. Now mature, with more than 3800 active floats, the Argo array provides a
unique high-resolution view of hydrological properties in the upper 2000 m of the ocean. These data repre-
sent an ideal candidate for merging with satellite ocean color products. Therefore, in this study, we propose
to develop and examine the potential of a new global method for merging satellite ocean color and physi-
cal Argo data to infer the vertical distribution of bbp with a relatively high spatiotemporal resolution, i.e., the
resolution of Argo-to-satellite matchup data.

In the past few years, the number of concurrent in situ observations of the vertical distributions of tempera-
ture, salinity, and bbp has dramatically increased. This results from the integration of optical sensors on
autonomous platforms, especially Bio-Argo profiling floats which almost all measure bbp [Boss et al., 2008;
Claustre et al., 2010a, 2010b; Mignot et al., 2014; Xing et al., 2014] in addition to physical vertical profiles of
temperature and salinity. Hence, the numerous vertical profiles collected by Bio-Argo floats offer a new
path for developing a global parameterization of the vertical distribution of this key bio-optical property.
Our study aims to use the large database of physical and bio-optical vertical profiles collected by the Bio-
Argo fleet within the global open ocean to establish the proposed method.

Artificial neural networks (ANNs) are very powerful methods for approximating any differentiable and con-
tinuous functions [Hornik et al., 1989] and have been widely used for biogeochemical, geophysical, and
remote sensing applications [e.g., Bricaud et al., 2007; Friedrich and Oschlies, 2009; Gross et al., 2000; Jamet
et al., 2012; Krasnopolsky, 2009; Niang et al., 2006; Palacz et al., 2013; Raitsos et al., 2008; Sauzède et al., 2015;
Telszewski et al., 2009]. These methods have a large potential to model complex and nonlinear relationships
that are characteristic of ecological data sets [Lek and Gu�egan, 1999]. Furthermore, one of the benefit of
using ANNs is that uncertainties in input data are accounted for during the training process of the neural
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network. Indeed, ANNs are relatively insensitive to reasonable uncertainties in input data. Therefore, we
selected this method as the most appropriate for reaching our goal.

In summary, this study presents a new ANN-based method that uses merged satellite ocean color-based
products and physical Argo data to retrieve the vertical distribution of bbp at the global scale. Hereafter, the
method is referred to as SOCA-BBP for Satellite Ocean Color merged with Argo data to infer the vertical dis-
tribution of the Particulate Backscattering coefficient. SOCA-BBP uses three main input components: (1) a
surface component composed of satellite-based estimates of bbp and chlorophyll a concentration, (2) verti-
cally resolved physical quantities derived from Argo temperature and salinity profiles, and (3) the day of the
year of the considered satellite-to-Argo matchup. Our analysis utilizes a large database of 4725 concurrent
in situ vertical profiles of temperature, salinity, and bbp collected by Bio-Argo profiling floats, matched up
with satellite ocean color observations. The resulting database is representative of various trophic condi-
tions, making the method largely applicable to the global open ocean.

2. Data Presentation and Processing

Below we present the Bio-Argo database used in this study, which is composed of concurrent vertical pro-
files of temperature, salinity, and particulate backscattering coefficient. Then we present the procedure for
matching up the Bio-Argo vertical profiles with satellite-based bio-optical products. We finally describe the
resulting database used to develop and validate the SOCA-BBP algorithm.

2.1. Database of Concurrent Vertical Profiles of Temperature, Salinity, and Particulate Backscattering
Coefficient
In addition to the standard conductivity-temperature-depth (CTD) sensors mounted on physical Argo profil-
ing floats, Bio-Argo floats are equipped with additional bio-optical sensors that can be used to measure
proxies of major biogeochemical variables. Specifically, the Bio-Argo floats are fitted with a CTD (Seabird), a
sensor package (Satlantic OCR) that measures downwelling irradiance at three wavelengths and PAR (Pho-
tosynthetically Available Radiation), and a sensor package (WET Labs ECO Puck Triplet) composed of a chlo-
rophyll a fluorometer, a CDOM (Colored Dissolved Organic Matter) fluorometer, and a sensor measuring the
particulate backscattering coefficient at a wavelength of 700 nm (79 floats) or 532 nm (4 floats). In the pres-
ent study, we use exclusively measurements of temperature, salinity, and particulate backscattering coeffi-
cient to train and validate the method.

The Bio-Argo floats used in this study typically collect measurements from 1000 m to the surface with a
�1 m resolution every 10 days, 3 days, or even 3 times per day depending on the float mission configura-
tion. When the float surfaces, data are transmitted in real time using Iridium communication. Thanks to this
communication system, the float mission parameters can also be modified in real time (e.g., time interval
between two profiling cycles).

The volume scattering function (VSF), b(u,k) (m21 sr21), is defined as the angular distribution of scattering
relative to the direction of light propagation h at the optical wavelength k. The backscattering sensor of
Bio-Argo floats measures b(1248, k) with k 5 700 nm or 532 nm. The contribution of particles to the VSF, bp,
is calculated by subtracting the contribution of pure seawater, bsw, from b(1248, k):

bpð1248; kÞ5bpð1248; kÞ2bswð1248; kÞ: (1)

with bsw depending on temperature and salinity and computed using a depolarization ratio of 0.039 [Zhang
et al., 2009]. Then, the particulate backscattering coefficient at 700 or 532nm, bbp(k), is determined from
bp(1248, k) and a conversion factor, v, [Boss and Pegau, 2001; Kokhanovsky, 2012; Sullivan and Twardowski,
2009] as follows:

bbpðkÞ52pvðbpð1248; kÞ2bswð1248; kÞÞ: (2)

The value of v for an angle of 1248 is 1.076 [Sullivan and Twardowski, 2009].

As the Bio-Argo database includes 10 times more bbp(700) profiles than bbp(532) profiles, in order to harmo-
nize the bbp profiles of the database, the profiles of bbp(532) were converted to bbp(700). The conversion
was performed using a power law model of the particulate backscattering coefficient spectral dependency:
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bbpðkÞ5bbpðk0Þ �
k
k0

� �2c

: (3)

We use a value of c 5 2 for the
Bio-Argo profiles collected in the
North Pacific subtropical gyre
and a value of c 5 3 for those col-
lected in the South Pacific Sub-
tropical Gyre. These values are
based on Loisel et al. [2006] who
showed that the low chlorophyll
waters of the subtropical gyres
are typically associated with high
c values (between 2 and 3)
whereas low or even negative c
values are found in the more
productive areas of the ocean
(between 21.5 and 1). The CTD
data were quality controlled fol-
lowing the standard Argo proto-
col [Wong et al., 2014]. A quality
control procedure was applied to
each profile of bbp(700) (here-

after bbp; see Table 1 for a list of symbols): (1) the manufacturer-supplied offsets and scaling factors were
applied to each raw profile; (2) high-frequency spikes were removed using a median filter; (3) bbp values
above 0.03 m21 were discarded as considered outside of the sensor range of operation. The final Bio-Argo
database of concurrent bbp and temperature-salinity measurements is composed of 8330 vertical profiles
collected by 83 Bio-Argo profiling floats.

2.2. Bio-Argo and Satellite Ocean Color Matchup Database
For consistency with Bio-Argo bbp data measured at (or converted to) 700 nm, the satellite-derived bbp data
were estimated for a wavelength of 700 nm using the Quasi-Analytical Algorithm (QAA) [Lee et al., 2002].
Then, each profile of the Bio-Argo database described above was matched up with satellite data of surface
bbp(700) and chlorophyll a concentration (Chl) using the closest pixel from standard level 3 eight day
MODIS-Aqua composites (Reprocessing R2014.0) with a 9 km resolution (provided by the Ocean Color Web:
http://oceancolor.gsfc.nasa.gov).

The matchup procedure led to discarding 43% of the profiles from the initial Bio-Argo database (see dis-
carding rate for the major oceanic basins in Table 2). The geographic distribution of the 4725 remaining
Bio-Argo profiles with concomitant MODIS-Aqua-derived products is presented in Figure 1. The database
used in this study covers most of the major ocean basins (i.e., Southern Ocean, Indian Ocean, Mediterranean
Sea, North Pacific, South Pacific, North Atlantic, and South Atlantic; see supporting information Figure S1 for
details of basin boundaries). The underrepresentation of the Southern Hemisphere, due to undersampling
(see Figure 1), is apparent in Figure 2. On a monthly basis, more profiles are available for spring and summer
than for autumn and winter months for the Northern and Southern Hemisphere (Figure 2a). This temporal
bias of data acquisition is mostly due to a lack of satellite images at high latitudes during winter and
autumn. The annual distribution of the vertical profiles in the database covers 8 years from 2008 to 2015
(Figure 2b); most of the observations were nevertheless collected since 2013.

The resulting Bio-Argo and satellite matchup database appears to be representative of a broad variety of
hydrological and biogeochemical conditions prevailing in the global open ocean (Figure 3). For instance,
the values of mixed layer depth, Zm, acquired by the Bio-Argo floats vary between 15 and 900 m (measure-
ments from the North Atlantic Subtropical Gyre in spring and the North Atlantic in winter, respectively). Zm

is calculated from the density profiles using a density criterion of 0.03 kg m23 as in De Boyer Mont�egut et al.
[2004]. The database is also representative of most trophic conditions observed in the open ocean (i.e.,
from oligotrophic to eutrophic waters, see Figure 3b). The MODIS-Aqua-estimated Chl, ChlMODIS, covers 3

Table 1. Abbreviations Used in the Present Study and Their Significance

Abbreviations Significance

bbp Optical particulate backscattering coefficient at 700 nm (m21)
Chl Chlorophyll a concentration (mg m23)
bbp_MODIS MODIS-Aqua-derived bbp using QAA algorithm

[Lee et al., 2002] (m21)
bbp_VIIRS VIIRS-derived bbp using QAA algorithm [Lee et al., 2002] (m21)
ChlMODIS MODIS-Aqua-derived Chl (mg m23)
ChlVIIRS VIIRS-derived Chl (mg m23)
bbp_SOCA Vertically resolved values of bbp retrieved by SOCA-BBP (m21)
bbp_Floats Vertically resolved values of bbp collected by Bio-Argo

profiling floats (m21)
bbp_AMT Vertically resolved values of bbp collected during the AMT cruise (m21)
Z Geometrical depth (m)
Znorm Depth at which the Chl profile returns to a constant

background value at depth (m)
f Depth normalized with respect to Znorm, f 5 z/Znorm (dimensionless)
Zm Mixed layer depth (m)
Ze Euphotic layer depth (m)
Kd490 Diffuse attenuation coefficient at 490 nm (m21)
KPAR Diffuse attenuation coefficient for photosynthetically

available radiation (m21)
Day Day of the year
Dayrad Day transformed into radians
Zpd Penetration depth defined as Zpd 5 Ze/4.6 [Morel and Berthon, 1989] (m)
MAPD Median Absolute Percent Difference (%)
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orders of magnitude (i.e., from 0.01
to 10 mg m23). The most oligotro-
phic conditions were found in the
South Atlantic Subtropical Gyre in
autumn and the most eutrophic in
the North Atlantic, especially in the
Labrador Sea during the spring
bloom. Similarly, the MODIS-Aqua-
derived bbp, bbp_MODIS, covers 3
orders of magnitude (from 0.00001
to 0.01 m21; Figure 3c).

Before splitting the Bio-Argo and
satellite matchup database into two
subsets for developing the neural

network (i.e., the training and validation data sets), 314 profiles collected by four Bio-Argo floats were
removed from the database to create an ‘‘independent data set’’ used for an additional validation of the
method. These four floats were chosen in four major oceanic basins: the North Atlantic Subpolar Gyre, the
North Atlantic Subtropical Gyre, the Southern Ocean, and the Mediterranean Sea.

The resulting matchup database was randomly split into two independent subsets, including 80% (3525
profiles used for training the MLP) and 20% (886 profiles used for validating the MLP) of the data. Similar to
the training data set, the validation data set is representative of the hydrological and biogeochemical condi-
tions prevailing in the global open ocean (see histograms in Figure 3).

Finally, a totally independent data set from an AMT (Atlantic Meridional Transect) field cruise in 2009 is also
used to validate independently the method (i.e., different bbp sensor, different time and location of bbp

acquisition). This addition validation is done in order to demonstrate the good generalization of the method

Figure 1. Geographic distribution of the 4725 stations used in the present study. For each station, concurrent profiles of temperature, salinity, and bbp collected by Bio-Argo floats were
matched up with concomitant MODIS-Aqua-derived products. Turquoise and purple crosses indicate the location of the profiles of the so-called ‘‘training’’ and ‘‘validation’’ data sets,
respectively (see text). The vertical profiles collected by the four independent Bio-Argo floats are shown as orange crosses. The vertical profiles collected during the AMT oceanographic
cruise (also used for an independent validation of the method) are shown as dark blue crosses.

Table 2. Summary of the Number of Profiles Rejected After the Satellite Versus
Bio-Argo Matchup Procedure for the Different Bio-Argo Float Sampling Regionsa

Area
Number of

Profiles
Number of Profiles

After Matchup
% of Profiles

Removed

North Atlantic 3985 1791 56%
South Atlantic 1073 620 43%
North Pacific 364 173 53%
South Pacific 275 188 32%
Southern Ocean 203 47 77%
Mediterranean Sea 2235 1839 18%
Indian Ocean 195 67 66%
Global ocean (total) 8330 4725 56%

aThe seven major oceanic basins boundaries used to compute this table are
presented in supporting information Figure S1.
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(i.e., good performance of the method in other conditions as used for the neural network training). During
this AMT cruise, the continuous bbp measurements at 470 and 526 nm were made using a WET Labs ECO-
BB3 sensor. The AMT bbp(700) profiles were then computed by linearly combining bbp measurements at
470 and 556 nm. After matchup, this subset is composed of 16 matchup satellite and in situ profiles of tem-
perature, salinity, and bbp.

To summarize, the geographical distribution of the sampling stations included in the training, validation,
independent four float, and totally independent-AMT subsets is shown in Figure 1.

2.3. Normalization of the Vertical Profiles of the Particulate Backscattering Coefficient
SOCA-BBP is designed to predict the vertical distribution of bbp within the so-called productive layer. This corre-
sponds essentially to the layer where most particle and phytoplankton stocks are confined. In mixed conditions,
the thickness of the productive layer roughly coincides with that of the mixed layer. In stratified conditions (typi-
cally associated with the presence of a deep chlorophyll maximum), the productive layer is more linked to the
euphotic layer. Here the productive layer is described through the introduction of a dimensionless depth, f [Sau-
zède et al., 2015], with f defined as the geometrical depth, z, divided by a normalization depth, Znorm:

f5z Znorm := (4)

with Znorm defined as the depth at which the Chl vertical profile returns to a constant background value
(depth of the bottom of the productive layer). As fluorescence profiles are always collected simultaneously

Figure 2. Temporal distribution of the 4725 stations for which both Bio-Argo and satellite data were simultaneously available as a function
of (a) months and (b) years with black and grey colors indicating the hemisphere of data acquisition.
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with temperature, salinity, and bbp profiles by the Bio-Argo floats, Znorm can be computed with precision for
the Bio-Argo database using the fluorescence profiles (see Sauzède et al. [2015] for details).

As the main objective of the SOCA-BBP method is to merge satellite and Argo data without using vertical
bio-optical profiles acquired by Bio-Argo floats, for application purposes, we developed a statistical relation-
ship to estimate Znorm from two parameters accessible or derivable from our input data set: (1) the euphotic
layer depth, Ze, the depth at which irradiance is reduced to 1% of its surface value, and (2) the mixed layer
depth, Zm. Ze is computed with the following procedure: (1) the attenuation coefficient at 490 nm, Kd490, is

Figure 3. Histogram of frequency of (a) the mixed layer depth, Zm (m), (b) the satellite-derived chlorophyll a concentration, ChlMODIS (mg
m23), and (c) the satellite-derived particulate backscattering coefficient, bbp_MODIS (m21). The black histogram represents the distribution
of the data used to train the method and the red histogram is for the independent data set (20% of the initial database) used to validate
the method.
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determined using the satellite-derived chlorophyll a concentration [Morel and Maritorena, 2001]; (2) the
total attenuation coefficient, KPAR, is retrieved from Kd490 [Rochford et al., 2001]; and (3) finally, Ze is retrieved
from KPAR using the exponential decrease of light over depth. The most statistically significant relationship
between Znorm and both the Ze and Zm parameters was found when stratified conditions are discriminated
from mixed conditions based on the ratio of Ze to Zm (i.e., Ze>Zm: stratified; Ze< Zm: mixed) [Morel and
Berthon, 1989; Uitz et al., 2006]. We obtain the following optimal statistical relationships for a stratified water
column:

log ðZnormÞ50:12 � log ðZmÞ11:04 � log ðZeÞ: (5)

and for a mixed water column:

log ðZnormÞ50:64 � log ðZmÞ10:51 � log ðZeÞ: (6)

The relationship between Znorm computed from the fluorescence in situ profiles measured by the Bio-Argo
floats and modeled with the statistical relationships presented above for the two hydrological regime of the
water column (stratified or mixed) is satisfactory with a median absolute percent difference, MAPD, of 14%
(for more details see supporting information Figure S2). Finally, Znorm used to scale bbp profiles ranges from
20 to 805 m in the Bio-Argo database (see supporting information Figure S3). Scaling the bbp profiles with
respect to f enables the merging all the profiles regardless of their vertical shape and range of variation
while simultaneously accounting for their variability.

3. SOCA-BBP Algorithm Development

3.1. General Principles of Multi-Layer Perceptron (MLP)
The type of artificial neural network chosen in this study is a Multi-Layer Perceptron (MLP) [Bishop, 1995;
Rumelhart et al., 1988]. A MLP is composed of several layers: one input layer, one output layer, and one or
more intermediate levels (i.e., the so-called hidden layers). Each layer is composed of neurons, which are
elementary transfer functions that provide outputs when inputs are applied. Each neuron is interconnected
with the others by weights (Figure 4). The matrix of these weight values is iteratively adjusted during the
training phase of the MLP and is computed by minimizing a cost function defined as the quadratic differ-
ence between the desired and computed outputs. The technique used for this minimization is the back-
propagation conjugate-gradient, which is an iterative optimization method adapted to MLP development
[Bishop, 1995; Hornik et al., 1989].

To determine the weights of the MLP, the training data set is randomly split into two subsets (50% of the
data each), the so-called ‘‘learning’’ and ‘‘test’’ data sets. These two subsets are used during the training

Figure 4. Schematic overview of the SOCA-BBP MLP-based algorithm that retrieves the vertical distribution of bbp from merged ocean
color satellite and Argo data associated with the day of the year of the considered satellite-to-Argo matchup.
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process of the MLP to prevent overlearning [Bishop, 1995]. The validation data set used to evaluate inde-
pendently the final performance of the MLP is composed of 20% of the entire initial database.

3.2. Developing a MLP to Retrieve the Vertical Distribution of bbp

After multiple tests, the following set of three input components was selected as optimal (see Figure 4): (1)
a temporal component, i.e., the day of year; (2) a surface component, defined by the satellite-derived log-
transformed particulate backscattering coefficient (bbp_MODIS) and chlorophyll a concentration (ChlMODIS)
(see section 2.2); and (3) a vertical component, i.e., the normalization depth Znorm, the mixed layer depth Zm

and four potential density values along the vertical profile, of which three taken at shallow depths and one
at depth. The dimensionless depths according to density inputs were chosen using a principal component
analysis to minimize redundancy in the selected input data (not shown). The MLP returns simultaneously 10
normalized values of log(bbp) as output according to 10 depths taken at regular intervals within the 0–1.3
f layer.

The elementary transfer function (sigmoid nonlinear function) that provides outputs when inputs are
applied to the MLP varies within the range [21;1]. Therefore, to take advantage of the nonlinearity of this
function, the inputs and outputs of the MLP (xi,j) are centered and reduced to match the [21;1] domain as
follows:

xi;j5
2
3
� xi;j2meanðxiÞ

rðxiÞ
: (7)

with r the standard deviation of the considered input or output variable x. Obviously, the outputs need to
be ‘‘denormalized’’ using the above equation with appropriate mean and standard deviation for each
dimensionless depth of restitution.

With respect to the temporal component, we applied a specific normalization procedure that accounts for
the periodicity of the day of the year (i.e., day one of the year is very similar from a seasonal perspective to
day 365). Thus, similar to the method developed by Sauzède et al. [2015], the temporal input is transformed
in radians using the following equation:

Dayrad5
Day � p

182:625
: (8)

where Dayrad is the day of the year in radian units and the coefficient 182.625 accounts for half the number
of days per year (365.25).

Once the optimal input and output variables were determined, additional tests were performed to establish
the best architecture of the MLP: one or two hidden layers with a number of neurons in each layer varying
between 1 and 50 and 1 and 20, respectively. The architecture with minimum error of validation and mini-
mum number of neurons was selected as optimal. The resulting optimal MLP is here composed of two hid-
den layers with eight neurons in the first hidden layer and six neurons in the second one. In order to
evaluate the MLP robustness, different subsets of the training data set have been tested and no significant
difference in the predictive skills of the MLP was observed.

3.3. Evaluation of Method Performance
The SOCA-BBP method is validated using independent data sets of bbp profiles acquired by Bio-Argo floats
or as part of an AMT field cruise (see section 2.2). For each profile used for the validation of the method, the
10 bbp values simultaneously retrieved by SOCA-BBP (bbp_SOCA), associated with the 10 dimensionless
depths taken at regular intervals within the 0–1.3 f layer, are compared to bbp values measured by the Bio-
Argo floats (bbp_Floats) or measured during the AMT cruise (bbp_AMT) at each corresponding depth. To evalu-
ate the performance of SOCA-BBP in inferring the vertical distribution of bbp, several statistical parameters
are considered. First, the determination coefficient (R2) and the slope of the linear regression between the
log-transformed values of bbp_SOCA and bbp_Floats (or bbp_AMT) are computed. Second, we estimate the model
error using the Median Absolute Percent Difference (MAPD, %) calculated as follows:

MAPD5median
jbbp SOCA2bbp Floatsj

bbp Floats

� �
� 100: (9)
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Note that bbp_Floats is replaced by bbp_AMT for the validation against bbp profiles from AMT cruise. We also
evaluate the sensitivity of SOCA-BBP to uncertainties in the origin of the satellite data used as input to the
MLP. For this purpose, a test is performed which consists in replacing the MODIS-Aqua-derived bio-optical
products by VIIRS-derived products.

4. Results and Discussion

4.1. Retrieval of the Vertical Distribution of the Particulate Backscattering Coefficient
Using the validation database (i.e., 20% of our initial database), the ability of the method is evaluated
through a comparison of the 10 values retrieved from SOCA-BBP (bbp_SOCA) with corresponding values
measured by the Bio-Argo floats (bbp_Floats). The scatterplot of bbp_SOCA versus bbp_Floats reveals that SOCA-
BBP predicts bbp without systematic bias (i.e., global error of retrieval of 21%; see Figure 5a and Table 3).
This figure shows that most of the bbp_SOCA values are retrieved with substantial accuracy and that only a
limited number of data points diverge significantly from the 1:1 line (Figure 5a). No bias according to the
dimensionless depth of estimation seems to be identified from the Figure 5a. To be more precise, we tested
statistically the performance of the method with respect to the vertical dimension (see Figure 6 and sup-
porting information Figure S4 and Table 3). The Figure 6 presents the median of APD that is �20% for each
of the 10 dimensionless output depths. The APD appears somewhat lower for the 0–0.84 f layer suggesting
that the method performs slightly better for the upper layers. For the deep layers, the bbp values are very
low, which may lead to large errors even when the difference between the predicted and reference values
is minor. Nevertheless, the APD remains still low for these deep layers (�22% for the median). Supporting
information Figure S4 presents the scatterplots of bbp_SOCA versus bbp_Floats for five layers of the water col-
umn (chosen from the dimensionless depth f). This figure reveals that bbp is predicted without systematic
bias according to the vertical dimension and that the slight deterioration of statistic results (see Table 3) for
the deepest layer (1–1.3 f layer) might come from the lower range of bbp values to predict.

4.2. Sensitivity of SOCA-BBP to Satellite Input Data
We evaluate the sensitivity of the method to satellite input data by replacing in the validation data set the
MODIS-Aqua products by VIIRS-derived products. It is important to note that the purpose here is not to
compare MOIS-Aqua and VIIRS products in term of accuracy but to evaluate the impact to use other satellite
input data (e.g., VIIRS estimates rather than MODIS-Aqua) on the performance of the SOCA-BBP method.
The VIIRS-to-Argo matchups are computed using standard level 3 VIIRS composites (reprocessing R2014.0)

Figure 5. Comparison of the bbp values retrieved by SOCA-BBP (bbp_SOCA) to the reference bbp measurements acquired by the Bio-Argo
floats (bbp_Floats) using two different data sets: (a) the validation database (i.e., 20% of the entire database chosen randomly) with data
ordered according to the dimensionless depth f; (b) the independent data acquired by four Bio-Argo floats not integrated in the training
and validation databases with the color code indicating the oceanic basins in which the Bio-Argo floats were deployed. The 1:1 line is
shown in each plot. The calculation details of statistics are provided in section 3.3.
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with a 4 km resolution and 8 day binning period (9 km resolution as for MODIS-Aqua not available). Among
the 886 Bio-Argo profiles of the validation data set, 649 profiles had concomitant VIIRS and MODIS-Aqua
products available. The sensitivity of the method to both types of satellite input data is therefore evaluated
using these 649 profiles (see statistics in Table 4). Obviously, as the neural network was trained using MODIS
Aqua products as input data, the use of VIIRS data slightly reduces the skills of the method (i.e., decrease in
the determination coefficient by 0.07). However, the scatterplot of bbp_SOCA (using VIIRS data as input) ver-
sus bbp_Floats shows that the data points are still fairly well scattered around the line 1:1 (Figure 7) and the
accuracy of the method remains satisfactory when VIIRS data are used as input (Table 4). Finally, SOCA-BBP
appears robust to reasonable noise in the input satellite data. Use of VIIRS-derived instead of MODIS-Aqua-
derived products yield accurate results (global retrieval error of 21%; Table 4) despite a MAPD in the VIIRS
products compared to the MODIS-Aqua products of 44% and 15% for bbp and Chl, respectively.

4.3. Additional Validation of SOCA-BBP Using Independent Data Sets
Time series of the vertical profile of the particulate backscattering coefficient collected from four Bio-Argo
profiling floats deployed in several oceanic basins (Southern Ocean, North Atlantic Subtropical Gyre, North
Atlantic Subpolar Gyre, and North Western Mediterranean Sea) were removed from the initial database to
obtain an independent data set for further validation of SOCA-BBP (see section 2.2). A comparison of
bbp_SOCA with the corresponding bbp_Floats in each basin is presented in Figure 5b. This comparison suggests

Figure 6. Boxplots of the Absolute Percent Difference, APD (%), between the retrieved bbp_SOCA and the reference bbp_Floats, according to
the 10 dimensionless depths, f, that are the output of bbp_SOCA. The box represents the upper quartile and the lower quartile with the
middle line representing the median of the values. The points represent the outliers.

Table 3. Statistics of the Comparison of the bbp Values Predicted by SOCA-BBP to Bio-Argo Reference Measurementsa

n R2 Slope MAPD (%)

Validation data set: total 8860 0.78 0.8 21
Validation data set: 0–0.2 f layer 1772 0.77 0.8 19
Validation data set: 0.2–0.5 f layer 1772 0.75 0.76 21
Validation data set: 0.5–0.7 f layer 1772 0.7 0.72 22
Validation data set: 0.7–1 f layer 1772 0.76 0.8 20
Validation data set: 1–1.3 f layer 1772 0.62 0.68 23
Independent data set: total 3140 0.78 0.8 22
Independent data set: Mediterranean Sea 1440 0.71 0.7 30
Independent data set: North Atlantic Subtropical Gyre 650 0.81 0.81 12
Independent data set: Austral Ocean 500 0.72 0.84 23
Independent data set: North Atlantic Subpolar Gyre 550 0.85 0.85 21

aThe number of values (n) to compute the determination coefficient (R2) and slope of the linear regression between the retrieved
and reference values. The MAPD (Median Absolute Percent Difference) between the retrieved and reference values is also indicated
(see section 3.3 for the calculation details).
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that the method has similar accuracy when
tested with this independent data set
(Table 3) as with the validation data set
comprising 20% of the initial database. The
skill of the method is slightly reduced in
the Mediterranean Sea compared to other
areas (increase of MAPD by �8%).

To obtain fully depth-resolved vertical pro-
files of bbp, we applied a linear interpola-
tion between each of the 10 bbp_SOCA

values provided by the MLP. The resulting predicted time series are compared to their float counterparts for
the four basins (Figure 8). We note that the absence of bbp_SOCA data (white bands in Figures 8b, 8d, 8f,
and 8h) reflect missing satellite-to-Argo matchups caused by a lack of satellite image in cloudy areas/sea-
sons (i.e., usually high-latitude environments in winter). The vertical patterns of bbp predicted by SOCA-BBP
are very consistent with those observed by the profiling floats in the 0–300 m layer. For the North Atlantic
Subtropical Gyre, an area with extremely low bbp values, SOCA-BBP reproduces the seasonal deepening of
the bbp maximum in spring and early summer and the shoaling in June–July (Figures 8a and 8b). For the
Southern Ocean, the bbp_SOCA values are consistent with the Bio-Argo float measurements with respect to
an increase of bbp from December to April in the 0–100 m layer (Figures 8c and 8d). In the North Atlantic
Subpolar Gyre, the retrieved bbp values agree with float measurements for both years of the time series (i.e.,
2013 and 2014, Figures 8e and 8f). SOCA-BBP seems to underestimate bbp in the Mediterranean Sea, espe-
cially from July to October when a deep bbp maximum develops at �50 m (Figures 8g and 8h). This under-
estimation is possibly caused by the relatively coarse vertical resolution of the SOCA-BBP outputs. The bbp

maximum may be missed by the 10 output depths from which the entire vertical profile is derived. Finally, a
comparison of bbp values integrated within the 0-Zm layer estimated from SOCA-BBP and measured by the
Bio-Argo floats show good agreement for the four examined areas (R2 of 0.92 and MAPD of 20%; Figure 9a).

Yet this result is not surprising
because the four floats used for
this additional validation exer-
cise, although not used for the
training process, were deployed
in the same areas as the floats
represented in the training
and validation data sets (see
Figure 1). The comparison of
depth-integrated estimations of
bbp allows to smooth errors of
estimation due to the noise in
the in situ bbp profiles.

The performance and the good
generalization of the method
was also evaluated using a
totally independent set of data
(i.e., different oceanic zone of
sampling and different sam-
pling sensors) from a Atlantic
Meridional Transect (AMT) cru-
ise conducted in 2009. The geo-
location of the 16 profiles of
temperature, salinity, and bbp

with concomitant MODIS-Aqua-
derived products is shown in
Figure 1 (dark blue crosses). The

Figure 7. Predictive skills of SOCA-BBP when using as satellite input VIIRS-derived products
instead of MODIS-Aqua products. Comparison of bbp retrieved by SOCA-BBP (bbp_SOCA) to
reference bbp measurements acquired by Bio-Argo floats (bbp_Floats) with data ordered
according to the dimensionless depth f. The 1:1 line is represented in black. The
calculation details of statistics are provided in section 3.3.

Table 4. Statistics of the Comparison of the bbp Values Predicted by
SOCA-BBP Using MODIS-Aqua or VIIRS-Derived Products as Inputa

Type of Satellite
Products n R2 Slope MAPD (%)

MODIS-Aqua 6490 0.79 0.79 21
VIIRS 6490 0.72 0.78 21

aDetermination coefficient (R2) and slope of the linear regression
between the retrieved and reference values. The MAPD (Median Absolute
Percent Difference) between the retrieved and reference values is also
indicated (see section 3.3 for the calculation details).
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Figure 8. Comparison of the reference bbp measurements acquired by Bio-Argo floats, bbp_Floats (a, c, e, and g), with the values predicted by SOCA-BBP), bbp_SOCA (b, d, f, and h). Time
series for the Bio-Argo floats deployed (a and b) in the North Atlantic Subtropical Gyre (WMO 5 6901472), (c and d) in the Southern Ocean (WMO 5 6901493), (e and f) in the North Atlan-
tic (WMO 5 6901523), and (g and h) in the Mediterranean Sea (WMO 5 6901496). The WMO numbers are official numbers of the World Meteorological Organization. The location of time
series for each float is represented in orange in Figure 1. The grey line in each plot indicates the depth of the mixed layer.
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SOCA-BBP retrieved bbp values, bbp_SOCA, were compared to the reference bbp ship-based measurements
integrated within the 0-Zm layer, bbp_AMT (Figure 9b). Similar to previous validation tests, the results appear
highly satisfactory (i.e., median absolute percent difference of 18%). In addition, this validation exercise
based on totally independent set of data demonstrates that SOCA-BBP may be applicable to conditions/
regions not included in the training database (e.g., Atlantic Equatorial Zone, see Figure 1).

4.4. Potential Application of the SOCA-BBP Method: Development of Global 3-D Climatologies of bbp

Before the emergence and use of profiling floats equipped with backscattering sensors, vertical profiles of
bbp in the ocean were quite scarce and highly heterogeneous. SOCA-BBP provides a way to estimate vertical
profiles of bbp using basic ocean color products merged with Argo data. A natural application of this
method is the development of depth-resolved bbp climatologies. As an example, we develop a 3-D climatol-
ogy of bbp for the global ocean for the months of June and December. We use as input satellite-based
monthly composites of bbp and Chl. These data are merged with monthly temperature and salinity data
from the Argo global climatologies [Roemmich and Gilson, 2009]. As the Mediterranean Sea is not repre-
sented in the Argo climatology, we use climatological data from the World Ocean Database (WOD) [Levitus
et al., 2013] for this basin.

First, we compare the bbp_SOCA surface values with the corresponding satellite estimates, with the bbp_SOCA

surface values defined as bbp averaged within the layer comprised between the surface and the penetration
depth, Zpd 5 Ze/4.6 [Morel and Berthon, 1989]. This comparison is conducted at a 18-resolution (i.e., Argo cli-
matology resolution). Overall, the geographical patterns of the SOCA-BBP retrieved surface bbp values for
the months of June and December (Figures 10a and 10b) are consistent with those observed by the satellite
(Figures 10c and 10d). In June, high values of bbp are consistently recorded in the high-latitude regions of
the Northern Hemisphere. Reciprocally, high values of bbp are recorded in the high latitudes of the Southern
Hemisphere in December. Unsurprisingly, the equatorial band, the upwelling systems associated with East-
ern Boundary Currents and other near-coastal areas (Figure 10a) show high bbp values with weak seasonal
variability. SOCA-BBP yields low bbp values compared to satellite-based estimates in the subtropical gyres
(Figure 10e). A general bias between the SOCA-retrieved surface bbp values and the corresponding satellite

Figure 9. Comparison of bbp integrated within the 0-Zm layer (scale given in optical thickness) predicted by the SOCA-BBP method (bbp_SOCA dimensionless) and calculated from the ref-
erence measurements collected by the Bio-Argo floats (bbp_Floats dimensionless) or during an AMT cruise (bbp_AMT dimensionless). This comparison makes use of reference measurements
from two independent data sets: (a) collected by the four Bio-Argo floats not represented in the training and validation databases of the MLP with the color code indicating the float
deployment basins; and (b) acquired during an AMT oceanographic cruise in 2009. The identity line is shown in black in each plot. The calculation details of statistics are provided in
section 3.3.
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values can be identified in supporting information Figure S5 that shows a comparison of the surface bbp val-
ues retrieved by SOCA-BBP and derived from MODIS-Aqua climatological products for the month of June.
This observation might result either from a global overestimation of the predicted bbp, or from a global
underestimation of bbp_MODIS derived from the QAA model. The SOCA-retrieved bbp versus VIIRS-estimated
climatological bbp for the month of June is displayed in supporting information Figure S6 for a comparison
with supporting information Figure S5. There is no general bias between the SOCA-BBP retrieved and
satellite-derived values using the VIIRS matchup data. This suggests that the bias observed in supporting
information Figure S5 is probably caused by an underestimation of bbp using the QAA algorithm with satel-
lite MODIS-Aqua products.

Besides the bias between the two estimates of bbp, bbp levels yield by the model are lower than the
satellite-derived values especially in the subtropical gyres (see Figure 10). Using in situ data from the BIO-
SOPE cruise (Biogeochemistry and Optics South Pacific Experiment) [Claustre et al., 2008], several studies
have shown an overestimation of backscattering satellite estimates in the most oligotrophic conditions of
the South Pacific Subtropical Gyre [Brown et al., 2008; Huot et al., 2008]. In fact, inherent optical properties
are very difficult to estimate from satellite-based measurements in these extremely clear waters and it is
now acknowledged that semianalytical algorithms of bbp retrieval from satellite data lead to a systematic
overestimation [e.g., Brown et al., 2008; Lee and Huot, 2014]. Interestingly, the model improves the retrieval

Figure 10. Surface climatology of the particulate backscattering coefficient with a 18 resolution for the month of (left) June and (right) December. (a and b) Surface bbp (i.e., averaged
over the 0-Zpd layer) obtained from the SOCA-BBP algorithm; (c and d) MODIS-Aqua-derived estimates of bbp; (e and f) log10 ratio of the satellite-based bbp to the SOCA-BBP-retrieved
bbp.
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of the surface bbp in the subtropical gyres (Figure 10 and supporting information Figure S5), even though
satellite-based surface bbp estimates used as input show overestimation. This is principally because the
learning of the neural network is based on accurate Bio-Argo in situ bbp profiles hence constraining the
retrieved bbp surface values. In addition, as the subtropical gyres are characterized by low Chl, the results
shown in this study are consistent with the formulations of Morel and Maritorena [2001] and Huot et al.
[2008] that account for a continuous decrease in bbp with decreasing chlorophyll a concentrations for low
chlorophyll a concentrations (<0.1 mg m23) instead of the constant bbp with decreasing chlorophyll a con-
centrations as reported by Behrenfeld et al. [2005].

Finally, the vertical distribution of the depth-resolved bbp climatologies is presented in Figure 11. This figure
presents sections of bbp for the global ocean at 25, 50, and 100 m depth for the months of June and Decem-
ber. Overall, the decrease of the SOCA-BBP retrieved bbp values with depth is apparent for most of the
oceanographic zones expect in most oligotrophic waters (see Figure 11). Indeed, for instance in the pacific
south subtropical gyre, the decrease in bbp levels is barely visible (from �0.0003 m21 at the surface to
�0.0002 m21 at 100 m depth in June and from �0.0004 m21 at the surface to �0.0003 m21 at 100 m depth
in December) because bbp values decrease only at �150–200 m depth. Rapid decrease of bbp are recorded
in the high-latitude regions of the Northern Hemisphere in June (from �0.004 m21 at the surface to
�0.001 m21 at 100 m depth). Reciprocally, rapid decrease of bbp is recorded in the high-latitude regions of
the Southern Hemisphere in December (from �0.003 m21 at the surface to �0.001 m21 at 100 m depth).

Figure 11. Depth-resolved climatology of the particulate backscattering coefficient with a 18 resolution for the month of (left) June and (right) December. (a and b) bbp_SOCA_25 at 25 m
depth (averaged 65 m) obtained from the SOCA-BBP algorithm; (c and d) bbp_SOCA_50 at 50 m depth; (e and f) bbp_SOCA_100 at 100 m depth.
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As for bbp surface estimates, the vertical distribution of bbp shows weak seasonal variability in the equatorial
band, the upwelling systems associated with Eastern Boundary Currents and other near-coastal areas. In Fig-
ure 11, bbp levels are shown for only three depths but it is important to note that SOCA-BBP method pro-
vides bbp vertical distribution for the whole productive zone (0–1.3 f layer). Finally, these depth-resolved
bbp climatologies are an invaluable source of information on the vertical distribution of a key bio-optical
property at a global scale with the potential to support investigations dedicated to carbon cycle, including
carbon production and export.

5. Conclusion and Perspectives

We have demonstrated that, using a Multi-Layered Perceptron method, we can merge ocean color-based
products with temperature-salinity Argo data to infer the vertical distribution of a bio-optical property esti-
mated from both satellite and robotic platform measurements. The proposed method, SOCA-BBP, infers the
vertical distribution of the particulate backscattering coefficient using three main input components: (1) a
surface component, i.e., satellite-derived products; (2) a vertical component derived from temperature and
salinity profiles measured by Argo floats; and (3) a temporal component, i.e., the day of the year of the con-
sidered satellite-to-Argo matchup. Because the training of the MLP-based method was conducted using a
data set representative of the hydrologic and biogeochemical conditions prevailing in the global open
ocean, the method is expected to be applicable to most open-ocean environments. Nevertheless, we note
that SOCA-BBP has not been developed for applications on a profile-per-profile basis, where a single
satellite-to-Argo matchup associated with a specific day would be used to retrieve an ‘‘accurate’’ vertical
profile of bbp. Instead SOCC-BBP should be considered as a method dedicated to relatively large-scale appli-
cations, such as the development of climatological products (see, e.g., section 4.4).

The natural variability of the vertical distribution of bbp makes the prediction of this bio-optical parameter
challenging. Compared to the reference measurements acquired by the Bio-Argo floats from the training
data set (i.e., used to establish the SOCA-BBP underlying relationship), the retrieved bbp_SOCA values from
the training data set (i.e., used to establish the underlying relationship of the MLP) are retrieved with a
median absolute percent difference of 19% (i.e., intrinsic error of the model). Therefore, the error of SOCA-
BBP in retrieving the vertical distribution of bbp (i.e., 21%) seems to be essentially induced by the natural
variability of bbp. The uncertainties associated with ocean color-based bio-optical products may also gener-
ate additional uncertainties in the retrieval of bbp. Our analysis of the sensitivity of SOCA-BBP to the satellite
data used as input indicates limited changes in the prediction of bbp as one uses VIIRS products instead of
MODIS-Aqua products (Figure 7 and Table 4). This suggests that the MLP is relatively insensitive to reasona-
ble noise levels in the input satellite data because noise is accounted for in the training of the MLP. Based
on this sensitivity analysis, we expect that the method can be safely used with satellite products other than
those derived from MODIS-Aqua (e.g., SeaWiFS, MERIS, VIIRS, and OLCI) or with merged products (e.g., Glob-
Colour and CCI-OC).

The present study provides an invaluable source of information on the vertical distribution of the bbp allow-
ing this key bio-optical property to be comprehensively described at a global scale. A major application of
the method is obviously linked to the creation of a depth-resolved global proxy of POC and, possibly, phyto-
plankton carbon with high space-time resolution. This is a prerequisite for improving the characterization
and quantification of key carbon fluxes such as net primary production or export fluxes. In particular, the
data resulting from SOCA-BBP are valuable for the initialization or validation of biogeochemical models. The
climatological data retrieved from SOCA-BBP also have the potential to serve as benchmarks against which
temporal or regional trends could be evidenced.

Several published relationships link POC to bbp either regionally or at the global scale [Balch et al., 2001;
Cetinić et al., 2012; Loisel et al., 2001, 2002; Stramski et al., 1999, 2008]. A systematic and routine acquisition
of bbp vertical profile has started only recently (a decade ago) so that the number of concurrent bbp and
POC measurements for establishing robust regional or global bbp-to-POC relationships is still limited. Obvi-
ously, the converted POC or phytoplankton carbon from bbp estimated by SOCA-BBP method will integrate
combined errors from SOCA-BBP method of bbp and from the relationships bbp-to-POC or bbp-to-Cphyto.

Therefore, collecting systematic measurements of POC and bbp is of critical need for refining the previously
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published relationships and, ultimately, exploit in an optimal manner the growing bbp data set acquired by
Bio-Argo floats and the SOCA-BBP climatological products.

Apart from deriving POC, recent studies have highlighted the potential of bbp as a phytoplankton carbon
proxy [Graff et al., 2015]. Actually bbp might be a more reliable proxy of phytoplankton carbon than Chl or
POC. Hence, using the bbp-to-phytoplankton carbon relationships presently available in the literature in
combination with SOCA-BBP, it appears possible to propose global estimates of the vertical distribution of
phytoplankton carbon with high space-time resolution. A potential consequence of obtaining improved
estimates of the phytoplankton biomass is a possible reassessment of the sources of variability in the Chl.
Using phytoplankton carbon estimates derived from satellite-based data of bbp, some studies have indeed
shown that temporal changes in Chl over large oceanic regions may be predominantly caused by physio-
logically driven modifications in the cellular Chl-to-carbon ratio rather than by actual changes in phyto-
plankton biomass [Behrenfeld et al., 2005, 2009; Mignot et al., 2014; Siegel et al., 2013]. The combination of
SOCA-BBP with other methods, which infer the vertical distribution of Chl from space [e.g., Uitz et al., 2006],
could permit the variability in the phytoplankton carbon-to-Chl relationship to be examined over the verti-
cal dimension. This would represent a significant step toward a better understanding of light and nutrient
control of phytoplankton biomass and physiological status, a prerequisite for improving the characterization
of the distribution and variability in primary production and carbon export.

Along with the progressive development of a global Bio-Argo program and associated float deployments,
additional measurements of concurrent density and bbp profiles will help to improve the relationship estab-
lished in the MLP. This is especially expected for the regions currently undersampled in the Bio-Argo data-
base used in this study (e.g., Indian Ocean Gyre and Arctic Ocean). It is indeed important to stress out the
evolving aspect of this database and of the quality of the products that can be retrieved from it. This study
has shown that neural network-based methods can link the vertical distribution of a given bio-optical prop-
erty (i.e., particulate backscattering coefficient) to the corresponding near-surface value merged with verti-
cally resolved physical properties. The development of analogous methods for other bio-optical properties,
measured from both Bio-Argo floats and ocean color satellites (e.g., chlorophyll a concentration, CDOM),
appears as a natural extension of the present study.
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