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Abstract 13	

Ocean-colour remote sensing provides high-resolution and global-coverage of 14	

chlorophyll concentration, which can be used to estimate ecological indicators and to 15	

study inter-annual and long-term trends in the state of the marine ecosystem. To date, 16	

the record of ocean-colour observations is a rich one, including data from a number of 17	

sensors spanning more than three decades. The ESA Ocean-Colour Climate Change 18	

Initiative has advanced seamless merging of ocean-colour observations from missions 19	

during the period 1990s to 2010s. However, comparison of these more recent 20	

observations with records from 1970s to 1980s remains a complex undertaking, 21	

particularly for absolute values of chlorophyll concentration, primarily due to 22	

differences in the sensors. A further impediment to the analysis of the past records is 23	

the non-uniform distribution of gaps in the observations, in both time and space 24	

dimensions, when data from two or more sensors are compared. Here, we use the 25	

CZCS gap distribution from the Coastal Zone Color Scanner (CZCS, 1978-1986) as a 26	

mask to evaluate the impact that missing data may have on the estimation of six 27	

ecological indicators, when using the Sea-viewing Wide Field-of-view Sensor 28	

(SeaWiFS) data set. Specifically, we evaluate the precision and accuracy of indicators 29	

by computing the root-mean-square-error (RMSE) and the bias arising purely from 30	

missing data. We develop an original resampling method allowing comparison of 31	

indicator estimates between SeaWiFS reference time-series and SeaWiFS time-series 32	

with CZCS-like gaps. We reduce some of the sampling gaps by applying a linear 33	

interpolation procedure, and compute multi-year averages of the indicators for every 34	

one-by-one degree pixel where sufficient data are available. Indicators from SeaWiFS 35	

reference and SeaWiFS with CZCS-like gaps are compared. Lowest uncertainty 36	

arising from missing data is observed in the indicators of annual mean and median 37	
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chlorophyll concentration (global mean RMSE of 8% and |bias| ≤ 1%), while higher 38	

uncertainty is recorded for the peak chlorophyll values and the duration of the 39	

phytoplankton growing period (global mean RMSE of 33 and 47% respectively and 40	

|bias| ≤ 20%). Timing of initiation of the increasing phase of chlorophyll 41	

concentration in the seasonal cycle and timing of peak chlorophyll are subject to a 42	

global mean RMSE of nearly two months and a bias of two weeks or less. The present 43	

quantitative evaluation of uncertainty due to missing data demonstrates that, when 44	

pooled to create a nine-year climatology at 8-day temporal resolution, the coverage of 45	

CZCS is adequate for many climate-related studies on the marine ecosystem. 46	

Phytoplankton annual mean biomass can be estimated with low error in 47	

approximately 95% of the global oceans (i.e. regions where the indicators can be 48	

estimated with RMSE values of less than 30% and bias within ±10%), and the 49	

phenological patterns can be estimated with low error in approximately 25% of the 50	

global oceans. 51	

 52	
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1. Introduction 57	

 58	

In the marine environment, ecological indicators have been developed to 59	

provide specific information relevant to the evaluation of the state of the marine 60	

ecosystem (Borja et al., 2008; Platt and Sathyendranath, 2008; Cardoso et al., 2010; 61	

Ferreira et al., 2011; Tett et al., 2013).  The function of an indicator may be to depict 62	

the condition of the environment, to provide early-warning signals or to register long-63	

term trends (Niemi and McDonald, 2004).  The state of the first trophic level of the 64	

marine ecosystem can be characterized by the annual cycle of phytoplankton. In-situ 65	

or remote-sensing observations of chlorophyll concentration, a proxy for 66	

phytoplankton biomass, have been used to depict changes in the annual cycle of 67	

phytoplankton (Platt and Sathyendranath, 1996; Platt and Sathyendranath, 2008). 68	

Some indicators, for instance, the mean, median and maximum concentrations or 69	

biomasses of phytoplankton in a given year, are generally expressed in units of mass 70	

of chlorophyll or carbon per unit volume of water. Other indicators correspond to the 71	

patterns of the annual cycle of phytoplankton, and are referred to as phenology (i.e. 72	

timing of periodic events). These phenological metrics describe phases in the annual 73	

cycle, and carry units of time (e.g. days, weeks, month...). Such indicators include the 74	

timings of initiation, peak, termination and the duration of phytoplankton growing 75	

period (blooming period) in a given season. 76	

The most cost-efficient datasets available to implement ecological indicators 77	

are provided by ocean-colour remote sensing observations (Platt et al., 2009). These 78	

data sets have the additional advantage of having high spatial resolution, high 79	

sampling frequency and global coverage. The first satellite sensor developed 80	

specifically to study ocean-colour properties was the Coastal Zone Color Scanner 81	
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(CZCS). It was launched by NASA in October 1978 and remained operational for 82	

seven and a half years, until June 1986. A decade later, the Ocean Colour and 83	

Temperature Scanner (OCTS) was launched by the Japanese Space Agency 84	

(NASDA) in November 1996 and it collected ocean colour data until June 1997. The 85	

next major satellite instrument for ocean colour was the Sea-viewing Wide Field-of-86	

View Sensor (SeaWiFS), which functioned for more than 13 years from September 87	

1997 until December 2010. The spacecraft and SeaWiFS were owned and operated by 88	

Orbital Sciences and subsequent commercial entities. NASA purchased the data, and 89	

was then responsible for processing, quality control, and data distribution to approved 90	

researchers. In 2002, two additional sensors began acquiring ocean-colour data: the 91	

Moderate Resolution Imaging Spectroradiometer (MODIS) launched by NASA, and 92	

the MEdium Resolution Imaging Spectrometer (MERIS) launched by the European 93	

Space Agency (ESA). MERIS ceased operations in early 2012, but MODIS is still 94	

operating, though well past its design lifespan. Further information about historical, 95	

current and scheduled ocean-colour sensors can be found on the International Ocean 96	

Colour Coordinating Group (IOCCG) website at 97	

http://www.ioccg.org/sensors_ioccg.html. 98	

The use of data from the CZCS period could possibly allow us to extend the 99	

ocean-colour-based record of ecological indicators backwards in time to the period 100	

1978 – 1986, when CZCS was operational. However, the CZCS mission was 101	

exploratory: it had limited spatial coverage and spectral bands, and it did not overlap 102	

with other ocean-colour sensors (making it difficult to correct for any potential inter-103	

sensor bias). Because of the absence of overlapping periods, the merging of ocean-104	

colour data such as implemented by the ESA Ocean Colour-Climate Change Initiative 105	

using SeaWiFS, MODIS and MERIS (Hollman et al. 2013), is not possible with the 106	
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CZCS. Nevertheless, a number of efforts have been made to improve the precision 107	

and accuracy of the CZCS archive and effectively compare it with ocean-colour data 108	

from follow-on missions. Gregg and Conkright (2002) re-analysed the archive by 109	

blending the CZCS ocean-colour data with in-situ chlorophyll measurements to 110	

minimise possible bias in the satellite-derived fields. In the re-analysis effort of 111	

Antoine et al. (2005), the authors revised the CZCS data processing algorithms to 112	

generate an improved, revised CZCS chlorophyll data set. Then, to allow an inter-113	

comparison between the CZCS and SeaWiFS sensors, they applied the same revised 114	

algorithms to SeaWiFS data over the period 1998-2002. However, the regional 115	

increases and decreases in absolute values of chlorophyll shown in these two 116	

publications are not straightforward to reconcile. More generally, taking into account 117	

also the findings based on in-situ observations, the debate on multi-decadal trends in 118	

phytoplankton biomass is still open (Boyce et al., 2010; Mackas et al., 2011; 119	

Rykaczewski and Dunne, 2011; McQuatters-Gollop et al., 2011; Raitsos et al., 2013; 120	

Wernand et al., 2013). 121	

Given the unique availability of observations from the CZCS during the period 122	

1978-1986, and the critical importance of determining long-term trends in the marine 123	

ecosystem, scrutiny is required to determine the impact of missing data in the CZCS 124	

record on the estimation of ecological indicators. The spatial and temporal coverage 125	

of remotely-sensed data is limited by sun-glint, clouds, atmospheric aerosol, sensor 126	

saturation over ice, sand or snow, and high solar zenith angle. During the exploratory 127	

mission of the CZCS sensor, the collection of observations was limited for all the 128	

reasons above, but in addition, also by power and data recorder limitations, which led 129	

to the priority being set on observations in the coastal regions and in the Northern 130	

Hemisphere. The distribution of missing data in the CZCS time-series has been 131	
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evaluated at monthly resolution (Antoine et al., 2005). However, monthly resolution 132	

is not sufficient to assess inter-annual variability and trends in phytoplankton 133	

phenology, which are driven by natural or anthropogenic forcing (Chiba et al., 2008, 134	

Thomalla et al., 2011, Racault et al., 2012; González Taboada and Ricardo Anadón, 135	

2014).  136	

The present study aims to: 1) evaluate the distribution of missing data in the 137	

CZCS 1978-1986 time-series at a resolution of 8-days in the global oceans; 2) 138	

perform a sensitivity analysis for assessing the error that the distribution of missing 139	

data in the CZCS time-series may have on the estimation of six ecological indicators; 140	

and 3) compare the error associated with missing data when estimating the indicators 141	

from time-series, with and without applying an interpolation scheme to fill some of 142	

the missing data. 143	

 144	

 145	

2. Material and Methods 146	

 147	

2.1 Remotely-sensed ocean-colour data 148	

 149	

Synoptic fields of chlorophyll concentration were retrieved for the periods 150	

1978-1986 and 1997-2010 from NASA Ocean Color Web 151	

http://oceancolor.gsfc.nasa.gov. The R2010.0 reprocessing of Level 3 Mapped 152	

chlorophyll concentrations from both CZCS and SeaWiFS were both downloaded at 153	

9-km spatial resolution and 8-day temporal resolution. To reduce gaps in the global 154	

oceans time-series, the data were re-gridded to 1° x 1° boxes (Fig. 1).  155	

 156	
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2.2 Estimation of ecological indicators 157	

 158	

The annual cycle of phytoplankton was characterized by estimating six well-159	

established ecological indicators from remote-sensing observations of chlorophyll 160	

concentrations (Platt and Sathyendranath, 1996; Platt and Sathyendranath, 2008). The 161	

selected indicators are: 1) annual mean chlorophyll; 2) median chlorophyll; 3) annual 162	

maximum chlorophyll; 4) timing of initiation of the phytoplankton growing period; 5) 163	

timing of peak of the phytoplankton growing period; and 6) duration of the 164	

phytoplankton growing period. The first three indicators are based on absolute values 165	

of chlorophyll concentration, whereas the last three can be calculated using relative 166	

changes in the field of chlorophyll. Timing of the peak in the phytoplankton growing 167	

period corresponds to when chlorophyll concentration reaches maximum amplitude in 168	

the annual cycle. The timings of initiation and termination of phytoplankton growth 169	

are detected using changes relative to a threshold of the long-term median plus 5% 170	

(Siegel et al., 2002; Racault et al., 2012). The duration of the growing period is 171	

estimated as the time elapsed between initiation and termination. Phenology estimates 172	

are calculated using 8-day composites, which is the temporal resolution of the 173	

chlorophyll data used. 174	

  175	

2.3 Sensitivity analysis of the impact of missing data 176	

 177	

The question we wish to address is whether the additional gaps in CZCS data 178	

compared with SeaWiFS data could lead to differences in the estimation of ecological 179	

indicators. Therefore, in the sensitivity analysis presented here, we treat SeaWiFS as 180	

the reference data set, and we use the CZCS gap distribution as a mask to create a 181	
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SeaWiFS data set with CZCS-like gaps. Thus, we can investigate the impact that 182	

missing data may have on determination of ecological indicators from two consistent 183	

ocean-colour data sets (i.e. SeaWiFS reference and SeaWiFS with CZCS-like gaps) in 184	

terms of calibration and algorithms. To avoid bias associated with the significant 185	

increase in missing data in chlorophyll observations after 2007 in the SeaWiFS 186	

sensor, the sensitivity analysis was performed using SeaWiFS data from 1998-2007.  187	

Error in the estimation of ecological indicators was evaluated using two 188	

measures: the root-mean-square-error (RMSE) and the bias. The procedure to 189	

evaluate the error is presented in the flow diagram (Fig. 1) and described in the 190	

following steps: 1) a SeaWiFS nine-year chlorophyll time-series was selected as the 191	

reference from the 10 years of available data during 1998-2007 (by drawing out, 192	

without duplication); 2) the SeaWiFS nine-year time-series was sub-sampled to 193	

simulate the distribution of missing data in the nine-year CZCS time-series, 194	

generating a SeaWiFS time-series with CZCS-like gaps; 3) nine-year climatologies 195	

were computed for the SeaWiFS reference time-series and the SeaWiFS time series 196	

with CZCS-like missing data; 4) the six ecological indicators were estimated from 197	

each climatology; and 5) the difference 𝛿 defined as: 198	

Equation (1):     𝛿 = 	 𝑖𝑛𝑑'()* − 𝑖𝑛𝑑,-. 199	

was computed, with 𝑖𝑛𝑑,-.	representing the ecological indicator estimated from the 200	

SeaWiFS reference climatology and 𝑖𝑛𝑑'()* representing the same indicator 201	

estimated from the SeaWiFS climatology with CZCS-like gaps. The entire procedure 202	

was repeated for each one-degree pixel of the global oceans. In addition, a relative 203	

difference 𝛿,was estimated for the indicators of maximum amplitude, annual mean, 204	

median and duration: 205	

Equation (2):     𝛿, = 	
/

012345
  . 206	
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To account for the sensitivity of difference estimates to the choice of the 207	

particular years in the time series, we generated a total of 25 unique SeaWiFS 208	

reference time-series by drawing out, without duplication, nine years from the 10 209	

years of SeaWiFS data (1998-2007). Then, at each given pixel of the oceans where 210	

indicator estimates were available, the magnitude of the error was measured using the 211	

root-mean-square-error RMSE as follows:  212	

Equation (3):     𝑅𝑀𝑆𝐸(𝛿) = <∑ />>?
@AB
CD

  ; and 213	

Equation (4):     𝑅𝑀𝑆𝐸(𝛿,) = <∑ /3
>>?

@AB
CD

  ;  214	

Moreover, at each pixel, the bias was computed as: 215	

Equation (5):     𝐵𝑖𝑎𝑠(𝛿) = 	 ∑ />?
@AB
CD

  ; and 216	

Equation (6):     𝐵𝑖𝑎𝑠(𝛿,) = 	
∑ /3>?
@AB
CD

  . 217	

Next, to reduce the number of missing data in the SeaWiFS reference and in the 218	

SeaWiFS with CZCS-like gaps time-series, a spatial and temporal linear interpolation 219	

was performed (see gap filling “option” in Fig. 1) and the error estimation procedure 220	

described in equations (1) to (6) was re-applied. The interpolation scheme was applied 221	

sequentially in the order: longitude, latitude, and time. Specifically, the gaps were 222	

filled with the average value of the surrounding grid points along the indicated axis. 223	

The averaging window had a width of three points and the surrounding points were 224	

weighted equally. Along the indicated axis, if one of the points bordering the gap was 225	

invalid, it was omitted from the calculation. If the two surrounding points were 226	

invalid, then the gap was not filled (the interpolation scheme is illustrated in Fig. 1).  227	

The outcome of the sensitivity analysis is an evaluation of the RMSE 228	

(providing information on the precision of the error) and the bias (corresponding to a 229	
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measure of accuracy of the error) in the estimation of the six ecological indicators due 230	

to the missing data in the CZCS time-series (with and without interpolation 231	

procedure). It is noteworthy that the CZCS time-series is used here only to identify 232	

the spatio-temporal distribution of the missing data. The indicators are actually 233	

estimated from the SeaWiFS observations (i.e. with and without CZCS-like sub-234	

sampling, and with and without interpolation). Therefore, any difference in the 235	

estimated ecological indicators arises from differences in the gaps between the two 236	

datasets analysed. 237	

 238	

 239	

3. Results  240	

 241	

3.1 Spatio-temporal distribution of ocean-colour observations 242	

 243	

Large differences are apparent in the spatial coverage of the SeaWiFS and 244	

CZCS missions (Fig. 2a and 2b). In the SeaWiFS data collection, the number of 245	

scenes (i.e. 8-day composites) decreases markedly poleward of 30°N and 30°S, 246	

following the latitude-dependent increase in the solar zenith angle during the winter 247	

season (Fig. 2a). The tropics and subtropics are not affected by high-sun zenith angle, 248	

and the reduction in the number of scenes is caused mainly by atmospheric aerosols, 249	

sun-glint and persistent clouds (e.g. during the monsoon season). The tropical regions 250	

with lowest coverage include the coasts of Western Africa and South-Western 251	

America, the Arabian Sea and the Bay of Bengal (Fig. 2a). During the CZCS mission, 252	

in addition to the reduction of scenes due to all the same reasons as in the case of 253	

SeaWiFS, the collection of data was further limited by low duty cycle. The spatial 254	
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coverage of the CZCS is better in coastal regions and in the Northern Hemisphere, 255	

with the highest density of 8-day composites observed in upwelling regions, the 256	

Arabian and Mediterranean Seas, and along the coasts of Europe, North-Eastern 257	

Africa, Northern America and Eastern as well as Western Australia (Fig. 2b). When a 258	

linear interpolation procedure (i.e. interpolating spatially- and temporally-adjacent 259	

values) is applied to 8-day composites of ocean-colour data from SeaWiFS and from 260	

CZCS, the density of data increases by 2% for SeaWiFS over the period 1997-2011 261	

and by 91% for CZCS over the period 1978-1986 in the global oceans (Fig. 2c and 262	

2d). In other words, the interpolation procedure nearly doubled the spatio-temporal 263	

coverage of CZCS data. 264	

Since we are evaluating the gaps in CZCS data compared with SeaWiFS, the 265	

coverage of the CZCS is estimated as a percentage of the SeaWiFS climatological 266	

coverage (Fig. 3a). On average, during the period 1978-1986, the global ocean 267	

coverage of CZCS reaches 19% of the SeaWiFS climatological coverage, with 12% 268	

of the observations located in the Northern Hemisphere and 6.5% in the Southern 269	

Hemisphere. Moreover, a major reduction in sampling occurred in the global oceans 270	

in the Spring of 1982 after the volcanic eruption of “El Chichon” released large 271	

quantities of ash into the atmosphere (Michalsky et al., 1990; Antoine et al., 2005). In 272	

the following years, the sampling density remained low, particularly during the 273	

summers 1984 and 1985, when nearly no observations were recorded. When the 274	

linear interpolation procedure is applied, the mean (1978-1986) global ocean coverage 275	

of CZCS reaches 40% (Fig. 3b). 276	

 277	

3.2 Error associated with missing data on the estimation of ecological indicators 278	

 279	
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The distribution of RMSE in the global oceans is shown in Figure 4 and as a 280	

function of the percentage of missing data of the CZCS sensor in Figure 5. The bias (a 281	

measure of accuracy) in the estimated indicators in the global ocean is shown in 282	

Figure 6 and as a function of the percentage of missing data of the CZCS sensor in 283	

Figure 7. Global averages of RMSE and bias are provided in Tables 1 and 2. 284	

 285	

3.2.1 Phytoplankton biomass indicators 286	

 287	

The distribution of RMSE values for peak chlorophyll shows large variations 288	

throughout the global oceans (Fig. 4a). Lower RMSE values tend to be observed 289	

where the percentage of missing data was lower (i.e. fewer missing data). This 290	

tendency is more clearly apparent after a linear interpolation has been applied to fill in 291	

some of the missing data. Peak chlorophyll RMSE values of 30% or less are generally 292	

observed in coastal regions, across the North Atlantic ocean, the eastern North Pacific 293	

ocean and the western coast of Australia. The percentage of ocean coverage with 294	

RMSE below 30% reaches 56% after applying linear interpolation (Table 1). 295	

Interestingly, the shape of the distribution of the RMSE remains similar before and 296	

after applying linear interpolation (Fig. 5c and 5d), indicating that the effect of 297	

interpolation is uniform across all the regions.  298	

The missing data in the CZCS sampling induce a bias of +16% on average on 299	

the estimation of peak chlorophyll concentration (Table 2). The bias appears positive 300	

throughout most of the global oceans (Fig. 6a) indicating that peak chlorophyll 301	

concentrations tend to be over-estimated in the multi-year SeaWiFS climatology with 302	

missing data, compared with the multi-year SeaWiFS reference climatology. In 303	

regions of the oceans where the percentage of missing data (in the SeaWiFS time-304	
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series with CZCS-like gaps) is less than 65%, the bias in peak chlorophyll 305	

concentration is positive with values ranging between +5 and +25% (Fig. 7c). 306	

However, when the percentage of missing data is particularly high (i.e. greater than 307	

95%), the bias in peak chlorophyll concentration appears negative (i.e. peak 308	

chlorophyll values estimated from the climatology with gaps tend to be lower, Fig. 309	

7c). The positive biases in peak chlorophyll may be counter intuitive, in the sense that 310	

in any given year, one anticipates that missing data would lead to estimated peak 311	

values equal to, or less than the reference dataset. However, when dealing with multi-312	

year climatologies, one of the consequences of missing data is that a high peak value 313	

in any single year does not get averaged with lower values from other years if data are 314	

missing from those other years. But as gaps in data increase, the probability of 315	

missing all peak values increases, leading to negative bias. Such negative bias values 316	

are observed over large regions of the Southern Ocean where the sampling coverage 317	

of the CZCS was particularly limited (Fig. 2b and 6a). After applying the 318	

interpolation procedure, the results are spatially more homogeneous (i.e. positive bias 319	

values throughout the global oceans), and the bias values are noticeably reduced in 320	

large regions of the global oceans (Fig. 6a). Interestingly, the interpolation procedure 321	

had limited influence on the shape of the bias distribution as a function of the 322	

percentage of missing data in the SeaWiFS time-series with CZCS-like gaps (Fig. 7c, 323	

d). 324	

The RMSE values for climatological mean and median indicators are 325	

particularly low, with average values of 13 and 14% for the global oceans (before 326	

applying a linear interpolation; Fig. 4b, c and Table 1). RMSE values for these two 327	

indicators are below 30% in more than 90% of the oceans (Fig. 4b, c) and the 328	

interpolation procedure had a very limited influence on the spatial distribution of the 329	
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RMSE (Fig. 4b, c). The RMSE for the climatological mean and median indicators 330	

increases exponentially with increasing missing data (Fig. 5e-h). Moreover, the shape 331	

of the curve describing RMSE as a function of missing data remained similar before 332	

and after applying the interpolation procedure. The biases in the estimated 333	

climatological mean and median chlorophyll concentrations are -0.5% and -2% 334	

respectively on average in the global oceans (Fig. 6b, c; Table 2). These bias values 335	

change to +1% and -0.5% respectively after applying the interpolation procedure (Fig. 336	

6b, c and Table 2). It is noteworthy that for these two indicators, the bias estimates 337	

alternate between positive and negative values throughout the global oceans. This 338	

pattern is also clearly apparent when the bias is plotted as a function of the percentage 339	

of missing data (Fig. 7e-h). For these two indicators, when the percentage of missing 340	

data is <50%, the bias is constrained within ±5%, which is particularly low compared 341	

with the bias associated with peak chlorophyll concentration. 342	

 343	

3.2.2 Phytoplankton phenology indicators 344	

 345	

In this analysis, only the ocean pixels for which all phenological metrics (i.e. 346	

timings of initiation, peak, termination, and duration) could be estimated are shown 347	

on the maps of the distribution of the RMSE and bias (Fig. 4d-f and Fig. 6d-f). Before 348	

applying the interpolation procedure, the phenology indicators could be estimated 349	

over 25% of the global oceans. This figure increases to 70% after applying the 350	

interpolation (which was applied prior to the calculation of the climatology from 351	

which the indicators are estimated, as described in the method section). The 352	

identification of timings of specific events, such as those of initiation and termination, 353	

are particularly sensitive to the presence of missing data in the time-series. As a 354	
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result, the calculation of the duration (which is estimated as the difference between 355	

the timings of initiation and termination) can fail. The increase in spatial coverage of 356	

the indicators achieved, once the interpolation is implemented, highlights the critical 357	

importance of estimating phenology indicators from the most temporally-complete 358	

time-series. 359	

The missing data in the CZCS sampling induce on average, over the global 360	

oceans, a RMSE and a bias of 57% and -43% respectively (before applying the 361	

interpolation); and 47% and -20% respectively (after applying the interpolation) on 362	

the estimated duration of phytoplankton growing period (Fig. 4d, Fig. 6d, and Tables 363	

1 and 2). Negative bias values are observed throughout most of the global oceans, 364	

indicating that when missing data are present in the SeaWiFS time-series with CZCS-365	

like gaps, the duration tends to be under-estimated compared with the SeaWiFS 366	

reference time-series with more data. The RMSE values decreased in those ocean 367	

regions where the percentage of missing data was lower. Before applying the 368	

interpolation, 8% of all of the pixels in the oceans presented an RMSE of 30% or less, 369	

whereas after applying the interpolation, 26% of all of the ocean pixels showed an 370	

RMSE of 30% or less (Table 1). As with the indicators of climatological mean, 371	

median and peak chlorophyll, the plot of RMSE and bias in the estimated duration as 372	

a function of the percentage of missing data in CZCS, showed similar patterns with 373	

and without the linear interpolation procedure (Fig. 5i-j and Fig. 7i-j), except for 374	

percent missing data <30%. It is probable that the	increase	in	RMSE	observed	in	Fig.	375	

5i	is	due	to	the	low	number	of	observations	in	those	class	intervals	(i.e.	only	376	

eight	pixels	in	the	global	oceans	presented	missing	data	between	20-25%).	The 377	

bias in the duration estimates drops below 10% when the percentage of missing data 378	

(in the SeaWiFS time-series with CZCS-like gaps) is less than 60% (Fig. 7i). 379	
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On average, the RMSE in the estimation of the timings of initiation and peak 380	

are 76 and 75 days respectively. After applying the interpolation procedure, the 381	

RMSE was reduced to 61 and 62 days for the timings of initiation and peak 382	

respectively (Fig. 4e, f; Table 1). Similar to the estimated duration, the RMSE 383	

decreased in ocean regions where the percentage of missing data was lower. In the 384	

case of the timings of initiation and peak, without applying interpolation, 11% of all 385	

of the ocean pixels presented an RMSE of 30 days or less, whereas, with 386	

interpolation, the percentage increased to 27 and 24% (Table 1). 387	

The bias values were equal to -10 and -24 days on average in the global 388	

oceans for the timings of bloom initiation and peak chlorophyll respectively (Fig. 6e, 389	

f, Table 2). Negative bias values indicate that the estimated timings tend to be earlier 390	

in the climatological seasonal cycle with missing data compared with the SeaWiFS 391	

reference climatology data set. After applying the interpolation, the number of ocean 392	

pixels for which the timings of initiation and peak could be estimated increased 393	

markedly and their average bias values decreased to -1 and -13 days respectively. 394	

Ocean pixels with less than 65% missing data show a bias of less than 30 days (~1 395	

month) for timings of both initiation and peak (Fig. 7k-n). 396	

 397	

 398	

4. Discussion and Conclusions 399	

 400	

4.1 Sensitivity of ecological indicators to the distribution of missing data in the CZCS 401	

time-series 402	

 403	
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The present sensitivity analysis provides an original assessment of the impact 404	

that the distribution of the missing data in the CZCS time-series is having on the 405	

estimation of six ecological indicators. The impact estimated here is based on multi-406	

year composite of an annual cycle in phytoplankton dynamics, and not on a year-to-407	

year basis, in which case the gaps, and hence the uncertainties, would be greater. The 408	

selected indicators are key to characterize and monitor the composition, structure and 409	

functioning of the marine ecosystem on seasonal, interannual, decadal and longer 410	

time-scales. Thus, an evaluation of the confidence range in the estimates is essential, 411	

especially for detection of trends influenced by large-scale environmental and climate 412	

drivers (Vantrepotte and Mélin, 2009; Martinez et al., 2011; Thomalla et al., 2011; 413	

Racault et al., 2012; Zhai et al., 2013; González-Taboada and Ricardo-Anadón, 2014).  414	

Annual coverage of chlorophyll data in the CZCS record is low compared 415	

with that of more recent sensors such as SeaWiFS and the distribution of the CZCS 416	

missing data is non-uniform both spatially and temporally (Fig. 2 and 3). These gaps 417	

make it difficult to estimate phenology indicators on annual time-scale, which is why 418	

the present analysis is limited to multi-year climatologies. To further limit the 419	

negative impact of missing data, data were averaged spatially (i.e. re-gridding 4 km x 420	

4 km to 1° x 1° grid-box), though we have maintained the 8-day temporal resolution 421	

as a requirement for studying phenology (Fig. 1). Other approaches to reducing 422	

missing data include implementation of interpolation procedures: gaps can be filled 423	

by interpolating spatially and temporally-adjacent values (e. g., Beaugrand et al., 424	

2008; Pottier et al., 2008; Racault et al., 2012) or by using the climatology of the 425	

annual cycle as a basis for interpolating across gaps for particular years in a time-426	

series (Land et al., 2014). The use of climatology allows us to constrain potential 427	

errors in phenology estimates, which are associated with missing data in annual time-428	
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series (Cole et al., 2012; Land et al., 2014). In spite of the limitations imposed by 429	

missing data, the 8-day climatology of CZCS provides the most comprehensive 430	

dataset available to compute many ecological indicators during the 1970s and 1980s 431	

and to study their long-term changes in relation to climate drivers by comparison with 432	

later satellite sensors such as SeaWiFS, MERIS or MODIS. 433	

The indicators of annual mean and median chlorophyll concentrations showed 434	

the lowest RMSE and bias associated with the presence of missing data (Fig. 4b, c, 435	

Fig. 5e-h and Tables 1 and 2). Low RMSE and bias values indicate that the mean and 436	

median chlorophyll concentrations can be estimated with relatively high confidence 437	

from a climatology which includes the gap distribution of the CZCS time-series. This 438	

feature is consistent throughout the global oceans. The linear interpolation procedure 439	

(i.e. spatial and temporal filling of missing data with adjacent values performed 440	

before calculating the climatology) reduced the global average of RMSE values in the 441	

median and the mean from 12 and 13% respectively to 8% (for both). The magnitude 442	

of the RMSE increased with increasing missing data (Fig. 5e-h). In addition, for these 443	

two indicators, the mean bias for the global oceans was particularly low (within ±2%) 444	

regardless of application of the interpolation procedure. But of course the global 445	

averages do not tell the whole story, and what is really important is the regional 446	

distribution of uncertainties. In fact, regionally, the bias could be greater, reaching 447	

±8%. Even though the uncertainties in these indicators are relatively low, they are 448	

based on absolute values of chlorophyll concentrations, and hence would be 449	

vulnerable to any inter-sensor biases in estimated chlorophyll values arising from 450	

differences in sensor design or in algorithms. Such potential errors would also have to 451	

be quantified before these indicators derived from CZCS and SeaWiFS can be 452	

compared. 453	
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The indicators of peak chlorophyll concentration and duration of the bloom 454	

have higher RMSE (33 and 47% on average respectively for the global oceans) and 455	

bias (+18 and -20% on average respectively for the global oceans) associated with the 456	

presence of missing data even after interpolation (Fig. 4a, 4d, Fig. 6a, 6d, and Tables 457	

1 and 2). The RMSE and bias values are lower in oceanic regions where the density of 458	

data collected during the CZCS time-series is higher, demonstrating the sensitivity of 459	

these indicators to missing data. As a result, the reduction of gaps in data using linear 460	

interpolation significantly decreases the RMSE and bias for both the peak chlorophyll 461	

concentration and the duration estimates (Fig. 4a, 4d, Fig. 6a, 6d). The regions with 462	

higher confidence (i.e. RMSE values < 30% and bias < 10%) on the estimations of 463	

peak chlorophyll concentration and duration of the growing period include the North 464	

Atlantic Ocean between 10°N-50°N, the Pacific Ocean between 10°N-40°N, the 465	

western coast of North America, the eastern coast of Africa, and the eastern and 466	

western coast of Australia and New Zealand. Outside of these regions, the RMSE and 467	

bias tend to increase markedly, because of reduction in the density of observations, 468	

rendering difficult the detection of long-term trends in these indicators.  469	

The timing of bloom initiation and timing of peak chlorophyll estimated from 470	

SeaWiFS with CZCS-like gaps climatology had RMSE values of 62 and 61 days 471	

respectively on average for the global oceans (Table 1). The high RMSE values 472	

reported here underline the sensitivity of indicators of timing of events to the missing 473	

data in the CZCS sampling. The mean biases for the global oceans in the timings of 474	

initiation and peak were -1 and -13 days respectively, after applying linear 475	

interpolation (Table 2). The linear interpolation used here to fill gaps in data nearly 476	

doubles (Table 1) the number of pixels in the global oceans where these phenology 477	

indicators can be estimated with an RMSE of less than one month (~30 days). 478	
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Moreover, the linear interpolation allows the phenological estimates to gain coherence 479	

in most of the coastal regions, across the North Atlantic Ocean, the eastern North 480	

Pacific Ocean and the western coast of Australia (Fig. 4e, f and Fig. 6e, f). Increased 481	

confidence in the phenology estimates, even over limited regions of the oceans, is 482	

extremely useful for the detection of long-term trends or differences.  483	

The error estimates (RMS uncertainty and bias) presented here are specifically 484	

designed to evaluate the impact of the distribution of missing data in the CZCS 485	

sampling, compared with the SeaWiFS coverage. The computed biases provide a 486	

basis for correcting for systematic differences in estimates of these ecological 487	

indicators for every one degree grid for which the computations have been carried 488	

out. The RMSE, once corrected for the bias, yields the standard deviation in the 489	

results, which can then be used to constrain interpretation of differences in indicators 490	

estimated from SeaWiFS with CZCS-like gaps and SeaWiFS reference data sets: the 491	

observed differences cannot be significant if they are less than the standard deviation 492	

in the results. 493	

Cole et al. (2012) estimated the differences between phenology metrics from 494	

the GlobColor time-series and those from the NASA Ocean Biogeochemical Model 495	

(treated as the gap-free time series). In sub-polar regions, where the percentage of 496	

missing data is high, the authors showed typical differences of 30 days for the timing 497	

of initiation and 15 days for the timing of peak. The differences were lower (typically 498	

below 20 days for the timing of initiation and less than 10 days for the timing of peak) 499	

in the tropics and the subtropics where the percentage of missing data is low. Though 500	

their measures of errors are different from ours, their results are coherent with ours, in 501	

the sense that the RMSE and bias values shown here decrease when the percentage of 502	

missing data decreased.  503	
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A further cautionary note is that the present study identifies and quantifies 504	

only one source of uncertainty: gaps in data. Other factors will have an influence on 505	

the uncertainty associated with the estimation of phenological indicators. Although it 506	

is beyond the scope of the present study, it would be extremely interesting to provide 507	

a comprehensive analysis of the propagation of uncertainties associated with: (1) the 508	

presence of missing data due to persistent cloud cover, high-sun zenith angle, and 509	

sensor sampling; (2) the variability of the annual chlorophyll cycle; and (3) the 510	

uncertainties in the calibration of satellite sensors and in the chlorophyll-retrieval 511	

algorithm (Moore et al., 2009).  512	

All the results presented here are based on analyses carried out using multiple 513	

sets of years. This was done to increase the generality of results and to avoid the 514	

impact of any particular year or a particular combination of years on the results. 515	

However, when actual comparisons are made between phytoplankton indicators from 516	

particular sets of CZCS years and SeaWiFS years, it would be more useful to repeat 517	

the analyses presented here, but for those particular sets of years, to evaluate the 518	

uncertainties for that special case. 519	

In summary: 1) lowest uncertainty due to missing data is observed in the 520	

indicators of annual mean and median chlorophyll concentration (global mean RMSE 521	

< 10% and |bias| ≤ 1%) while higher uncertainty is observed for peak chlorophyll and 522	

duration (global mean RMSE < 50% and |bias| ≤ 20%) and for timing metrics (global 523	

mean RMSE < 2 months and |bias| ≤ 2weeks); 2) gap filling (by linear interpolation) 524	

increases precision by 4-10% and ~2 weeks (global mean RMSE) and increases 525	

accuracy by 0.5-13% and ~10 days (global mean |bias|); 3) regional differences are 526	

apparent, and lowest uncertainty is recorded where CZCS coverage is greater than 527	

40%. 528	
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 529	

4.2 Implications for estimation of long-term trends in ecological indicators 530	

 531	

The low error values for annual mean and median chlorophyll concentrations 532	

indicate a low sensitivity of these two indicators to the distribution of missing data in 533	

the CZCS time-series, lending confidence that the assessments of decadal changes 534	

reported in the re-analysis efforts of Gregg and Conkright (2002) and Antoine et al. 535	

(2005) were not affected much by the missing data. They had applied the CZCS data 536	

distribution to SeaWiFS to minimize, if not eliminate, the impact of differing data 537	

distributions in comparing average chlorophyll levels. Therefore, the discrepancies in 538	

the decadal changes reported in the two publications are probably a consequence of 539	

the differences in the approaches followed by the two authors. For example, Gregg 540	

and Conkright (2002) blended in situ results with remotely-sensed data, whereas 541	

Antoine et al. (2005) avoided using in-situ data, relying instead on an improved 542	

algorithm. Other factors influencing the estimation of long-term trends include the 543	

direction or sign of the dominant climate drivers (such as El Niño Southern 544	

Oscillation, or ENSO) occurring during the periods under assessment (Martinez et al., 545	

2009). In fact, Gregg and Conkright (2002) compared the CZCS 1979-1986 archive 546	

with SeaWiFS 1997-2000 data, whereas Antoine et al. (2005) compared the CZCS 547	

(1978-1986) and SeaWiFS (1998-2002) records. Both the CZCS and SeaWiFS 548	

periods were marked by major El Niño (1997) and La Niña (1998) events, which 549	

profoundly influence phytoplankton production, composition and phenology in the 550	

global oceans (Dandonneau et al., 1986; Harris 1987; Comiso et al., 1993; Chavez et 551	

al., 1999; Behrenfeld et al., 2001; Yoder and Kennelly, 2003; Hirawake et al., 2005; 552	

Behrenfeld et al., 2006; Chavez et al., 2011; D’Ortenzio et al., 2012).  This also raises 553	
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the possibility that the characteristics of the errors associated with missing data may 554	

also be specific to the pairs of CZCS and SeaWiFS years considered in any particular 555	

analysis. It would therefore be prudent to repeat the analysis presented here, but for 556	

the particular years relevant for any analyses, to lend further confidence that the 557	

missing data do not introduce any significant errors into the results. 558	

Given the rapid response of phytoplankton chlorophyll concentration to these 559	

variations in climate and environmental conditions, as well as the sensitivity of 560	

absolute chlorophyll values to sensor-specific differences in chlorophyll retrieval, 561	

indicators of phytoplankton phenology (which are not sensitive to errors in the 562	

absolute values of chlorophyll) may be robust for studying long-term climate change 563	

impacts on the state of the first trophic level of the marine ecosystem. However, 564	

phenological studies do require data well distributed in time, to enable resolution of 565	

timings of seasonal events with sufficient precision. The sensitivity analysis presented 566	

here provides the first comprehensive and quantitative evaluation of errors in 567	

ecological (including phenological) indicators associated with gaps in the CZCS data, 568	

when pooled to create a nine-year climatology at 8-day temporal resolution. The 569	

results demonstrate that the coverage of CZCS is adequate for many climate-related 570	

studies on the marine ecosystem. Phytoplankton annual mean biomass can be 571	

estimated with low error from the nine-year climatology in approximately 95% of the 572	

global oceans and the phenological patterns can be estimated with low error in 573	

approximately 25% of the global oceans (i.e. regions where the indicators can be 574	

estimated with RMSE values of less than 30% and bias within ±10%). In particular, 575	

oceanic regions where estimates of ecological indicators can be used reliably to 576	

extend the remote-sensing record back three decades and thus assess long-term trends 577	

in the state of the marine ecosystem, include the North Atlantic Ocean between 10°N-578	
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50°N, the Pacific Ocean between 10°N-40°N, the western coast of North America, the 579	

eastern coast of Africa, and the eastern and western coast of Australia and New 580	

Zealand. 581	

It is noteworthy that the surest way to avoid errors of the type discussed here 582	

is to limit the analysis to areas where the CZCS observations are matched in time with 583	

SeaWiFS, and where the temporal resolution is sufficient to extract the indicators with 584	

sufficient confidence. But, as one can see from Figure 3, for any given 8-day 585	

composite, areas of the world where we have both SeaWiFS and CZCS data are 586	

limited to approximately 30-40%, and even in these areas the uncertainties due to 587	

missing data can be high for some of the indicators (Tables 1 and 2). The analysis 588	

carried out here suggests ways in which the areal coverage can be extended by linear 589	

interpolation. Furthermore, having an idea of the potential bias (Table 2), this type of 590	

errors can be corrected for, and knowing the RMSE allows us to place confidence 591	

intervals on the results. Finally, these results demonstrate some of the issues 592	

associated with comparing or blending phytoplankton datasets with different spatial 593	

and temporal coverage. The method developed here helps to assess uncertainties in 594	

comparison of two phytoplankton datasets (CZCS and SeaWiFS) arising from this 595	

source, and thus, to improve confidence in inferred long-term trends (Mackas et al., 596	

2011). 597	
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List	of	Figure	Captions	795	

	796	

Fig. 1: Schematic view of the data processing steps to estimate the six ecological 797	

indicators used to quantify the uncertainty due to the distribution of gaps in the CZCS 798	

time-series. The steps numerated 1) to 5) are further described in the method section. 799	

The gap-filling step is marked with a star (*) as it was only applied in the analyses 800	

labelled “after applying a linear interpolation” (shown in Figs. 2, 3, 4, 5, 6, 7).  801	

 802	

Fig. 2: Spatial density of ocean-colour data from CZCS (1978-1986) and SeaWiFS 803	

(1997-2010) in the global oceans. (a) SeaWiFS coverage before applying linear 804	

interpolation to fill gaps; (b) CZCS coverage before applying linear interpolation to fill 805	

gaps; (c) SeaWiFS coverage after applying a linear interpolation to fill some of the 806	

missing data; (d) CZCS coverage after applying a linear interpolation to fill some of 807	

the missing data. The colour scale indicates the number of 8-day composites available 808	

during the sensors’ periods of operation.  809	

 810	

Fig. 3: Temporal density of CZCS 8-day composites expressed as percentage of 811	

SeaWiFS climatological coverage (i.e. the latter is treated as the reference against 812	

which the former is compared). (a) CZCS percentage coverage before applying linear 813	

interpolation; (b) CZCS coverage after applying linear interpolation to both CZCS and 814	

SeaWiFS time-series. In black, coverage for the global oceans and in blue, coverage 815	

for the Northern Hemisphere. The coverage for the Southern Hemisphere corresponds 816	

to the difference between global and Northern Hemisphere coverage. An assessment of 817	

the temporal density of CZCS data at monthly resolution is available from the NASA 818	
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ocean color webpage about CZCS mission at: 819	

http://oceancolor.gsfc.nasa.gov/CZCS/czcs_datacollect.html. 820	

 821	

Fig. 4: Root-mean-square-error (RMSE) on the estimation of six ecological indicators 822	

arising solely from missing data. The RMSE is calculated as the difference between the 823	

estimates from the SeaWiFS time-series with CZCS-like gaps minus the estimates from 824	

the SeaWiFS reference time-series. (a-d) RMSE are expressed in percent and (e-f) 825	

RMSE are expressed in days. Left panel: RMSE before applying linear interpolation to 826	

fill missing data; Right panel: RMSE after applying linear interpolation to fill missing 827	

data (see Fig. 2 and 3 for changes in data coverage). Black colour indicates that the 828	

indicators could not be estimated (because there were too few data available). 829	

 830	

Fig. 5: Root-mean-square-error (RMSE) of each indicator as a function of the gaps. The 831	

percentage of missing data is estimated at each pixel as the fraction of the total number 832	

of 8-day composites in the SeaWiFS nine-year climatology with the CZCS-like gaps to 833	

the total number of 8-day composites in the SeaWiFS reference nine-year climatology. 834	

Left panel: Before applying linear interpolation to fill missing data; Right panel: After 835	

applying linear interpolation to fill missing data. (a) and (b) Number of pixels in the 836	

global oceans for every increment of 5% in missing data. (c) to (n) Median RMSE 837	

values (plain black line) and upper and lower quartiles (dashed black lines) for each 838	

class interval of 5% missing data for the six ecological indicators discussed in this paper. 839	

Note that, for the left panel, no RMSE values are presented for percentage of missing 840	

data <20% because of lack of data. It is probable that the increase in RMSE at the low 841	

end of missing values for the phenology metrics (i, k and m) is associated with low 842	

number of observations in those class intervals. 843	
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 844	

Fig. 6: Bias on the estimation of six ecological indicators arising solely from missing 845	

data. The bias is calculated as the difference between the indicator estimates from the 846	

SeaWiFS time-series with CZCS-like gaps minus the estimates from the SeaWiFS 847	

reference time-series. (a-d) Bias values are expressed in percent and (e-f) Bias values 848	

are expressed in days. Left panel: Bias before applying linear interpolation to fill 849	

missing data; Right panel: Bias after applying linear interpolation to fill missing data 850	

(see Fig. 2 and 3 for changes in data coverage). Black colour indicates that the indicators 851	

could not be estimated (because of there were too few data available). 852	

 853	

Fig. 7: Bias of each indicator as a function of the gaps. The percentage of missing data 854	

is estimated at each pixel as the fraction of the total number of 8-day composites in the 855	

SeaWiFS nine-year time-series with the CZCS-like gaps to the total number of 8-day 856	

composites in the SeaWiFS reference nine-year climatology. Left panel: Before 857	

applying linear interpolation to fill missing data; Right panel: After applying linear 858	

interpolation to fill missing data. (a) and (b) Number of pixels in the global oceans for 859	

every increment of 5% in missing data. (c) to (n) Median bias values (plain black line) 860	

and upper and lower quartiles (dashed black lines) for each class interval of 5% missing 861	

data for the six ecological indicators discussed in this paper.  862	
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 865	


