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Abstract:  

Coastal margin habitats are globally significant in terms of their capacity to sequester and 

store carbon, but their continuing decline, due to environmental change and human land 

use decisions, is reducing their capacity to provide this ecosystem service.  In this paper the 

UK is used as a case study area to develop methodologies to quantify and value the 

ecosystem service of carbon sequestration and storage in coastal margin habitats. Changes 

in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of 

carbon stored by these habitats are calculated, and the capacity of these habitats to 

sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal 

habitats are then projected for 2000-2060 under two scenarios, the maintenance of the 

current state of the habitat and the continuation of current trends of habitat loss. If coastal 

habitats are maintained at their current extent, their sequestration capacity over the period 

2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). 

However, if current trends of habitat loss continue, the capacity of the coastal habitats both 

to sequester and store CO2 will be significantly reduced, with a reduction in value of around 

£0.25 billion UK sterling (2000-2060; 3.5% discount rate).  If loss-trends due to sea level rise 

or land reclamation worsen, this loss in value will be greater.  This case study provides 

valuable site specific information, but also highlights global issues regarding the 

quantification and valuation of carbon sequestration and storage. Whilst our ability to value 

ecosystem services is improving, considerable uncertainty remains. If such ecosystem 

valuations are to be incorporated with confidence into national and global policy and 

legislative frameworks, it is necessary to address this uncertainty. Recommendations to 

achieve this are outlined.  
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1. Introduction 

Ecosystem services are commonly defined as “the outputs of ecosystems from which people 

derive benefits” (NEA 2011). The ecosystem service of carbon sequestration and storage, 

linked to the provision of an equable climate, is a rapidly growing research field (Chung et al. 

2011). Whilst there is extensive literature regarding the role of terrestrial habitats as a 

source and sink of greenhouse gases, the role of marine and coastal habitats is 

comparatively unknown. Recent research has shown however that “blue carbon”, that is 

carbon sequestrated and stored by marine and coastal habitats (Nellemann et al. 2009), 

could play a significant role in the global carbon budget (McLeod et al. 2011, Chung et al. 

2011). At present, an estimated one third (~2 Gt C yr-1) of anthropogenic CO2 emissions are 

sequestered by the oceans (Orr et al. 2001, Takahashi et al. 2002). In addition, coastal 

habitats such as mangroves, sand dunes and saltmarsh have the capacity to sequester 

carbon at a rapid rate (Alongi et al. 2012, Jones et al. 2008, Chmura et al. 2003) and, on 

accreting coasts, this may occur to considerable depth or lateral extent (Chmura et al. 

2003). The relative carbon storage potential of coastal habitats is now considered to play a 

significant role in the regulation of both local and global climate (Pendleton et al. 2012, 

Nellemann et al. 2009, Irving et al. 2011). 

 

Coastal habitats are at risk and in decline across the world (Martinez et al. 2004, French 

1997). Drivers of this decline include urban and industrial development, aquaculture, 

agriculture, tourism, forestry, coastal erosion and sea level rise (Jones et al. 2011). For 

example, ‘reclamation’ of coastal land for agricultural or industrial use alone, here termed 

‘land claim’, has accounted for an estimated 25% loss of intertidal land in estuaries 

worldwide (French 1997). In the UK, coastal margin habitats have been subject to 

considerable land use change over the last 100 years (Delbaere 1998, French 1997), with 

land claim through draining occurring on an industrial scale since the 1700s (Hansom et al. 

2001). With conversion, degradation or loss comes a decline in their potential to sequester 

and store carbon. Pendleton et al. (2012) estimate that 0.15 – 1.02 Pg (billion tons) of CO2 
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are released annually through the conversion of vegetated coastal ecosystems resulting in 

economic damage, estimated to be in the order of $US 6-42 billion annually (£ 4-27 billion).  

 

The social and economic significance of this ecosystem service in coastal systems is however 

poorly represented in policy and management decisions, and rarely features in global 

climate change mitigation discussions or documentation. In the context of coastal 

management, it is critical to recognise that any change in type, functioning and area of these 

ecosystems has the potential to influence carbon sequestration and storage (Everard et al. 

2010). In addition to policy at a global scale, this capacity is also of importance for local scale 

ecosystem service accounting, for example when making decisions on coastal flood defence 

options such as managed realignment (Andrews et al. 2006).  

 

Global level studies have raised awareness of coastal carbon (Pendleton et al. 2012), yet 

there is a continuing need for methodological development regarding the calculation of 

carbon sequestration rates, carbon stocks, and the valuation of this ecosystem service. In 

addition there is an on-going requirement for site specific data to support meaningful 

national and local scale policy. It is the aim of this study to address these issues using the UK 

as a case study.  

 

The UK is selected as a case study partly because few studies have been published in this 

area. For example, published carbon sequestration rates in saltmarsh rely predominantly on 

US studies of saltmarsh (Kirwan and Mudd 2012) which are geomorphologically different 

from European saltmarshes. Sequestration rates in saltmarsh have been estimated from 

extrapolation of sedimentation rates and carbon content of established saltmarsh 

sediments (Cannell et al. 1999; Adams et al. 2012) but do not quantify carbon stocks. In 

sand dune grasslands and dune wetlands, chronosequence approaches have been used to 

estimate carbon sequestration rates (Jones et al. 2008). However, no study has yet 

attempted an inventory of carbon stocks in these habitats and the implications of coastal 

change for carbon stocks are largely unquantified.  

 

This paper is organised in three sections. Firstly, carbon sequestration rates and stocks are 

calculated. This study provides the first comprehensive inventory of carbon stocks and 
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sequestration for the principal UK coastal margin habitats of saltmarsh, sand dune and 

machair dune grassland, including change over time from 1900 to 2060. Information is 

collated from published sources, the grey literature and unpublished data to calculate C 

stocks, and estimate the impact of future change. Given the rate of conversion of coastal 

habitats to other land uses globally and within Europe, the implications of this decline, both 

for the carbon stocks held and for future carbon sequestration, are explored. It is essential 

to understand the extent and stability of those carbon stocks and therefore to understand 

the permanence of storage.  

 

Secondly, a valuation of the ecosystem service of carbon sequestration is undertaken. 

“Carbon stock” is used to define the carbon stored in the given ecosystem, often shown in 

static units of g/m2 or g/m3. This is different to an “ecosystem service stock”, which in the 

case of carbon storage and sequestration is the ecosystem structure and processes (Luisetti 

et al. 2013), sometimes known as the natural capital. Neither stock is valued here. The 

carbon stock currently stored in coastal ecosystems is not valued as although stand alone 

environmental values are useful in raising awareness (Costanza et al. 1997, Beaumont et al. 

2008), they do not aid the decision making process with regard to balancing trade-offs and 

selecting between different development options.  

From the ecosystem service stock flows a variety of ecosystem services, one of which is 

carbon sequestration, or the rate of carbon uptake, which is generally measured in dynamic 

units such as g m-2 yr-1. The carbon stock has the potential to increase, via the ecosystem 

service of carbon sequestration (a positive flow of this ecosystem service), or decrease via 

habitat destruction and an accompanying release of CO2 (which could be interpreted as a 

negative flow of this ecosystem service, or dis-service). It is the net carbon sequestered 

which is valued here, and both aspects, the potential service and dis-service, are explored. 

The third and final section discusses the significance of these figures in terms of global 

coastal management and future recommendations are made. This approach will provide 

information to policy makers and coastal managers, and an improved methodology which 

will be transferable to coastal habitats elsewhere. 
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2. Carbon sequestration and storage by UK coastal margin habitats 

Sand dune habitats and sandy beaches, saltmarsh and machair dune grassland comprise 

93% of the UK coastal margin habitat, the remainder consisting of vegetated shingle and 

shingle beaches; saline lagoons; and maritime cliffs and slopes and small islands. In this 

study the focus is on the first three habitats, henceforth termed sand dunes, saltmarsh and 

machair since almost nothing is known about the carbon stock or sequestration rates in 

vegetated shingle, maritime cliff grasslands or saline lagoons, and they occupy less than 10% 

of the UK coastal margin area. However, it is acknowledged that further work needs to be 

done to study carbon sequestration and storage in these habitats.  Sand dune systems 

contain a variety of vegetation types, from mobile sand dunes to fixed dune grassland, scrub 

and dune slacks, and seasonal wetland habitat. Saltmarsh comprises vegetated inter-tidal 

habitat in a range of communities defined primarily by the frequency of tidal inundation. 

Machair systems are unique to Britain and Ireland and typically consist of a cordon of 

mobile sand dunes bordering fixed machair grassland which is occasionally cultivated and 

fertilised with seaweed. Machair may also contain seasonal wetlands and may grade to 

peaty wetlands inland. 

 

 

2.1 Trends and drivers of change in coastal margin habitat area 

There is a downward trend in the area of all UK coastal margin habitats (Jones et al. 2011). 

In sand dunes this decline is mainly due to urban expansion, forestry planting, agricultural 

improvement, tourism and leisure (e.g. golf and caravan parks), and sea level rise. Decreases 

in saltmarsh area are primarily a result of land claim from agriculture and industry, and 

coastal erosion. The downward trend in machair area is due to infrastructure development, 

coastal erosion and sea level rise. Increased statutory protection over the last few decades 

has slowed the rate of loss of coastal margin habitats, but coastal erosion and sea level rise 

continue to pose a significant threat.  Changes in habitat quality, and natural successional 

development within existing areas, will also alter rates of carbon sequestration (Jones et al. 

2008). Table 1 summarises habitat area by country, and changes in their extent over time.  
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Current sand dune area (Table 1) is ca. 71,000 ha (JNCC; Dargie 2000), of which 71.4% is in 

Scotland (Angus et al 2011).  Since 1900 some 30% of the UK dune area has been lost, 

including 9,127ha of the Scottish resource (Delbaere 1998; Angus et al 2011). Prior to 1945 

losses were mainly due to urban expansion and forestry planting, in the period 1945-1970 

losses were primarily due to agricultural improvement and continued infrastructure 

development for tourism, while between 1970-2000 losses decreased due to statutory 

protection of most large sites, however smaller or unprotected sites continued to be lost to 

agricultural improvement or tourism infrastructure (e.g. golf) (Doody 1989; Sturgess and 

Atkinson 1993). In the future, sand dune extent is projected to decline by 2% over 20 years 

due to coastal erosion and sea level rise (JNCC 2007), with linear extrapolation in this study 

to a decline of 6% over the period 2000 to 2060. By region, the percentage of habitat lost 

will be greater in England and lower in Scotland due to differences in the rates of relative 

sea level rise (Shennan et al. 2009), while losses in Wales and Northern Ireland will remain 

more-or-less constant. Further losses are projected to occur in small sites lacking statutory 

protection (Packham and Willis, 1997) as a result of agriculture or tourism development.  

 

UK saltmarsh area (Table 1) is ca. 47,000 ha (JNCC; Burd 1989) of which between 6,000ha 

and 7,000ha is in Scotland (Angus et al 2011). Since 1945 there has been approximately 15% 

loss in UK saltmarsh area (Cooper et al. 2001, Baily and Pearson 2001) much of this loss 

being in estuaries and inlets. For example, 2860ha or 51% of the mudflat and saltmarsh area 

of the Forth estuary in Scotland has been lost to agricultural and industrial reclamation over 

the last 400 years (Hansom et al 2001). Future losses to sea level rise were projected to be 

4.5% over 20 years (French 1997), extrapolated forward to 2060.  

The majority of machair, 67%, is found in Scotland and the remainder in Ireland (Jones et al. 

2011). The total area of machair in the UK (i.e. that occurring in Scotland) is around 20,000 

ha (Dargie 2000) (Table 1). Past extent has been estimated based on losses of 1.2 ha per 

linear km over the period 1945-2010 due to coastal erosion (Hansom 2010), calculated 

assuming the average width of a machair system is 0.5km. However, losses due to grassland 

improvement (particularly in the Orkney Islands and Tiree) and infrastructure are as yet 

unquantified. Future losses are projected to be 2% loss in area over 20 years due to sea level 

rise (JNCC 2007) with linear extrapolation to 6% by 2060.  
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[Insert Table 1: UK areas (ha) of the three main UK coastal margin habitats, by country.] 

 

2.2 Carbon sequestered and stored by UK coastal margin habitats 

Long-term C sequestration rates in soil of the most significant coastal margin sub-habitats 

were derived from the literature as follows: In dune habitats a chronosequence study 

covering 160 years (Jones et al. 2008) calculated mean sequestration rates (+/- s.d.) of 

58.2±26.2 g C m-2 yr-1 in dry dune grasslands and 73.0±26.2 g C m-2 yr-1 in wet dune slack 

habitats. Based on the relative area of dry dune and dune slack habitats (91% and 9% of UK 

dune area respectively) a proportional average sequestration rate for dune habitats of 

59.5±25.8 g C m-2 yr-1 was calculated. There have been no estimates of long-term C 

sequestration in machair systems. However, since they are ecologically similar to sand dune 

grasslands, a sequestration rate of 34.9±15.7 g C m-2 yr-1 is estimated, based on the ratio of 

soil carbon measurements in the two habitats. The assumption is made that they have been 

developing over similar time periods, based on common trends of change in dune systems 

across north west Europe (Provoost et al. 2011). It is acknowledged that this may be an 

under-estimate of sequestration rates since machair systems undergo frequent disturbance 

through cultivation (Hansom and Angus 2001, 2006) and so the observed stocks may have 

built up over shorter timescales. Sequestration rates in UK saltmarsh range from 64 – 219 g 

C m-2 yr-1 (Cannell et al. 1999; Chmura et al. 2003; Adams et al. 2012), with typical figures 

around 120 – 150 g C m-2 yr-1. Using the wider ranges above and converting to CO2 

equivalents, the following estimates are calculated: 1.25 - 3.12 tonnes CO2 ha-1 yr-1 

(composite dune), 0.70 - 1.87 tonnes CO2 ha-1 yr-1 (machair) and 2.35 – 8.04 tonnes CO2 ha-1 

yr-1 (salt marsh). By combining these figures with data on changes in UK areas of the sub-

habitats (Table 1), estimates of the changes in the capacity of these habitats to sequester 

CO2 can be derived (Figure 1) 

 

[Insert Figure 1: Estimated change in annual CO2 sequestration provided by UK coastal 

habitats, 1900 – 2060, due to changes in area, applying a constant sequestration rate.] 
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These values relate to gross changes due to loss of coastal margin habitat. Calculating net 

values requires detailed information on what land classes the coastal margins are being 

converted into, and the carbon storage and sequestration potential of these new land 

classes. The implications of this are discussed in detail below.  

 

2.3 Carbon stocks in UK coastal margin habitats 

In addition to sequestration rates, stocks of carbon stored can be calculated for coastal 

margin habitats for the period 2000 – 2010. In terms of stock, coastal margin vegetation and 

soils are estimated to hold at least 9.4 MtC (Table 3).  

[Insert Table 2: Underpinning data used to calculate carbon stocks in soils and vegetation for 

sand dunes, machair and saltmarsh. For data sources please refer to section 2.3] 

 

Carbon stock in sand dunes was calculated separately for carbon stored in above-ground 

and below-ground (root) plant biomass, and for soil (to 15 cm), excluding roots. Calculations 

were made separately for three classes of dune habitat: mobile and semi-fixed dunes, fixed 

dune grassland and dune slacks. Strandline communities and dune scrub or woodland were 

not included. The area of each community type from JNCC inventory data of the sand dune 

survey of Great Britain (Dargie 1995, Dargie 2000, Radley 1994) was summed to these 

habitat classes for England, Scotland and Wales. Data on the proportions of these habitats in 

Northern Ireland were not available therefore the sand dune resource was allocated to 

habitat classes in proportion to the average proportions of these classes in Great Britain. 

Above-ground biomass carbon data for these habitat classes were based on biomass 

samples and bulk %C content from a survey of eleven dune systems around Great Britain 

(Jones et al. 2002, 2004). Below-ground (root) carbon for each habitat class was scaled from 

above-ground data based on biomass ratios and %C content of dune habitats from Jones et 

al. (2005). Soil C stocks to 15 cm, which included the full organic profile in all but a few dune 

slack soils, were calculated from the survey of eleven sites, where soils were acidified to 

remove carbonates prior to C content being measured on a CSN analyser (Jones et al. 2004). 

Data for machair grassland used the same above and below-ground plant carbon content 

and biomass as those of fixed dune grassland, scaled by machair area (Dargie 2000). Soil 
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carbon stocks to 15 cm in machair were based on %loss on ignition (LOI) of eight soils (Table 

2) sampled from six sites in the Outer Hebrides: Seilebost, Horgabost (Harris); Berneray; 

Clachan Sands, Balranald (North Uist); Bornish (South Uist) in 2010, of which three samples 

were taken in areas which had been recently cultivated. The carbon proportion of the 

machair soil organic matter was 0.3, calculated for a subset of nine machair soils sampled 

from the Outer Hebrides in a previous study (Jones et al. 2004), which were acidified to 

remove carbonates before combustion on a CSN analyser (most non-carbonate soils have an 

organic carbon ratio of ~0.5-0.6). Machair soils from the 2004 were not used as they lacked 

bulk density information. 

 

[Insert Table 3: Carbon stocks (t), by habitat, vegetation and soil pools and by country] 

 

Saltmarsh above and below-ground biomass and loss on ignition data were obtained from 

nine sites on the west coast of England and Wales, representing a range of livestock grazing 

intensities, including grazed and ungrazed systems, and from nine sites in the south east of 

England to adequately characterise regional differences (Table 2). The salt marshes of west 

coast UK generally have a shallow organic-rich clay layer (<1m) underlain by sandy substrate 

and are frequently grazed by livestock (May and Hansom 2003). The marshes of the south 

and east UK coasts are characterised by a deep (>10m) organic-rich clay substrate and are 

most commonly ungrazed. The west coast sites were: Four Mile Bridge and Newborough 

(Anglesey); Y Foryd and Morfa Harlech (Gwynedd); the Dyfi and Dyfi RSPB reserve (Powys); 

the Dee estuary (Flintshire/Wirral); Llanfairfechan (Conwy); Banks Marsh on the Ribble 

estuary (Merseyside). On the west coast sites two samples of soil and vegetation were taken 

from grazed and ungrazed, mid or upper marsh at each site. Above-ground biomass was 

harvested from 25x25cm plots. Below ground biomass C was estimated for all sites based on 

the ratio of below: above ground plant C from a separate study on the Ribble estuary (Ford 

2012b). Soils were sampled to 15 cm to incorporate the majority of the organic-rich 

sediment, following methods in Ford et al. (2012a). The carbon content of the underlying 

sandier substrate was calculated using soils sampled at 30 cm depth from the nine sites, and 

this figure was extrapolated for the remaining soil profile to a depth of 50 cm, taken to be 

the average sediment depth for these systems. Bulk density for west coast soils was 
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calculated from 36 samples on the Ribble estuary, to 15 cm depth (Ford et al. 2012b). On 

the East coast of England nine salt marshes were sampled along the coast of the county of 

Essex, following methods in Burden et al. (2013). Four 30cm soil cores were taken from each 

marsh, homogenised and %loss on ignition and bulk density measured on each. Calculations 

for underlying substrate to 100 cm used a LOI of 5% for data from intertidal mudflats 

(Centre for Ecology and Hydrology, unpublished data). Above and below-ground vegetation 

biomass carbon for the east coast sites was based on west coast data, but are similar to 

published values for the Blackwater estuary (Burden et al. 2013).  

Above and below ground biomass was dried at 105 deg C over 24 hours to obtain oven dry 

weight. Loss on ignition was measured for saltmarsh soils at 375 degree C for 8 hours, which 

minimises loss of carbonates (Ball 1964). A ratio of 0.52 was used to convert %LOI to soil C 

for all saltmarsh soils. For west coast and particularly for east coast sites, it is acknowledged 

that the %carbon ratio may be an overestimate due to loss of carbonates during 

combustion, but overall this is likely to be an under-estimate of saltmarsh soil carbon stocks 

since organic sediments may be considerably deeper than sampled in this study. For 

upscaling of soil C stock data, values for the sandier west coast-type sediments were applied 

to sites in Wales, North West England and Scotland, while  the deeper, more organic rich 

south and east coast-type sediments were used to upscale C stocks for sites in the South 

West, Southern, Eastern and North east UK coasts.    

 

3. Valuing the ecosystem service of carbon sequestration and storage by UK coastal 

margin habitats 

Understanding the underlying processes which support C sequestration and storage enables 

the quantification of this ecosystem service, and in turn more effective sustainable 

environmental management. However, valuation, both monetary and non-monetary, can 

facilitate transparency in the discussion of trade-offs between different ecosystem services 

(and associated beneficiaries) when different development options are considered.  

To avoid double counting, valuation of ecosystem services should focus on the benefits 

provided, rather than on the services themselves (NEA 2011, Fisher et al. 2009). In this case 
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the final ecosystem service is that of carbon sequestration. The benefits of this service 

include a stable and equable climate, which can be assessed using non-monetary techniques 

(NEA 2011) or valued monetarily using a proxy such as a carbon price.  In this case a carbon 

price approach is taken. A wide range of studies present a variety of carbon prices, many of 

which are based on the estimation of damage costs avoided, or the value of the welfare loss 

to society of emitting an extra tonne of CO2, in the form of human health impacts, 

environmental disasters etc.  (Tol 2005; Defra 2007, Stern 2006). In 2009 the UK 

Department of Energy and Climate Change (DECC 2009) changed their CO2 value appraisal 

guidance to use the costs of mitigation (DECC 2011), or the costs of reducing emissions. The 

DECC (2011) values are slightly higher, but fall within a similar range to previous studies. As 

the case study of this research is UK based, and as the research aims to be policy relevant, 

the recommended DECC values are applied (DECC 2011). DECC (2011) provide a low, 

medium and high range of carbon prices which are all applied to investigate the sensitivity 

of the analysis to the price.  

Both traded and non-traded values of carbon are provided by the DECC (2011) guidance, but 

as environmentally sequestered carbon is not traded in the EU Emission Trading System, it is 

recommended to use the non-traded price. These non-traded values represent the 

maximum marginal abatement cost that will need to be incurred to ensure that the 

emissions reductions targets in the non-traded sector are met, based on current emissions 

projections. In the case of environmental carbon sequestration the validity of this approach 

depends upon the implication that this is the additional cost that would have to be incurred 

elsewhere in the UK in order to meet our reductions targets if this carbon sequestration 

were not to occur in the environment. This is currently not the case, but with an increasing 

understanding and recognition of the role of habitat type in CO2 budgets it seems 

increasingly possible that coastal habitats could, and potentially should, be mainstreamed 

and incorporated into overall country-wide carbon budgets.  

With regard to hindcasting the first date for a carbon price from the DECC non-traded 

carbon values is for 2008. Given the policy context and technological landscape, the 2008 

value is considered to hold for the years 2000-2008, but no further back due to the different 

and rapidly changing policy landscape prior to this point in time (NEA 2011). 
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3.1 Valuing carbon sequestration by UK coastal margins 

Combining the previously calculated sequestration rates with the mid DECC (2011) CO2 price 

the £/ha/yr values can be derived for the provision of CO2 sequestration by the sub-habitats 

in 2009:  

Sand dune = 18.36 – 45.9 £/ha/yr 

Machair = 10.26 – 27.54 £/ha/yr  

Saltmarsh  = 34.56 – 118.26 £/ha/yr  

 

Combining these £/ha/yr values with data on changes in UK areas of the sub-habitats (Table 

1) it is possible to value these coastal habitats with regard to their CO2 sequestration 

potential (Figure 2). The extent of carbon sequestration service provided by coastal margin 

habitats decreases over time (Figure 1), as a direct result of habitat loss, but the value of this 

service increases due to the fact that the applied carbon prices will increase over time. This 

reinforces the increasing importance, and value, of this service into the future, and as a 

result the increasing importance of maintaining the habitats which provide this service.  

 

[Insert Figure 2: Estimated value of annual C02 sequestration service provided by UK coastal 

habitats, sand dune, saltmarsh and machair, 2000 – 2060. Applying average C sequestration 

rate and mid DECC (2011) non-traded carbon value.] 

 

There is uncertainty in both the carbon sequestration rates, and also in the DECC (2011) 

carbon value. Figure 3 provides a combined UK annual value for the carbon sequestration 

service of the UK coastal habitats of sand dune, saltmarsh and machair, but also 

incorporates the uncertainty in both the DECC price and the carbon sequestration rate. As a 

result there is considerable variation in potential values, with the significant driver of the 

uncertainty being attributable to the variability of the sequestration rate. This variability 

arises primarily due to climatic factors, soil type, and successional age. 
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[Insert Figure 3. Uncertainty in the estimated value of annual C02 sequestration service 

provided by UK coastal habitats (combined sand dune, saltmarsh and machair) 2000 – 2060. 

Applying a range of C sequestration rates and low, mid and high DECC (2011) non-traded 

carbon values.] 

 

3.2 Long term values of carbon sequestration by UK coastal margin habitats 

Annual values of this ecosystem service do not adequately reflect the true long term value 

of this habitat with regard to carbon sequestration. It is particularly important to consider 

this long term value if these habitats are being compared to other long term development 

options. Thus, in addition to calculating values for the annual flow of the carbon 

sequestration service, the Net Present Value (NPV) of this service is also calculated. To sum 

the amount of carbon sequestered each year in order to produce a 60 year total of carbon 

sequestered is not sufficient, as it cannot be assumed the carbon sequestered in any given 

year will be permanent (Table 1). If habitat is lost previously sequestered carbon will be 

released. To calculate total net carbon sequestration, and long term storage over a 60 year 

period, the areas of habitat which are lost, and the likely associated release of carbon, must 

also be considered. This loss of carbon could be termed the potential “dis-service” 

associated with these habitats if they are destroyed.   

 

It is the net carbon sequestration which is valued here, and both aspects, the potential 

service (CO2 sequestration) and dis-service (CO2 release), are calculated. Firstly the positive 

value of the service of carbon sequestration is calculated. Using a baseline year of 2000, and 

applying an average sequestration rate, it is possible to determine the yearly amount of 

carbon sequestered and stored using equation 1 (below), where R is the rate of CO2 

sequestration (tonnes/ha/yr) and At is the area (ha) of habitat at year t.   

 

Secondly the potential dis-service, of CO2 release, associated with these habitats is 

calculated. Since coastal habitat is anticipated to be lost in the future (Table 1) it is possible 

to estimate the associated CO2 released through the application of a linear loss of habitat 

between 2000 and 2060. The amount of carbon released is calculated in two stages. The 

long term carbon stored within each habitat type at the baseline year, 2000, is known (table 
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3), thus if 1 ha of habitat is lost it is possible to calculate the CO2 released using equation 2, 

where Q is the CO2 stored (tonnes/ha) and ALt is the area (ha) of habitat lost in year t. In 

addition any CO2 sequestered since 2000 will also be released (equation 2).  It is notable 

that the amount released per given area is dependent upon the time since sequestration 

began, in this case the year 2000, but  older and more established habitats will have 

accumulated more carbon per ha.  

The net carbon sequestered by the habitat is then calculated using equation 3. However, 

this is not the true net value as to calculate this it would be necessary to know what the 

coastal habitat was converted into when it was lost. However, as it is most likely that the 

coastal habitats will be converted into man made alternatives, such as urban developments 

and for industrial and tourism uses, it is likely these alternatives will provide minimal carbon 

sequestration capacity so this is not expected to be a major source of error.  

 

Eq. 1: Total C02 Sequestered (S) = ∑ 𝑅𝑎𝑡𝑒 (𝑅) ∗ 𝐴𝑟𝑒𝑎 (𝐴𝑡)𝑁
𝑡=0  

Eq. 2. Total CO2 Released (L) =  

∑
𝑆𝑡𝑜𝑐𝑘 (𝑄) ∗ 𝐴𝑟𝑒𝑎 𝑙𝑜𝑠𝑡 (𝐴𝐿𝑡)

𝑁

𝑡=0

 

+ 

∑
𝑅𝑎𝑡𝑒 (𝑅) ∗ 𝐴𝑟𝑒𝑎 𝑙𝑜𝑠𝑡 (𝐴𝐿𝑡) ∗  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑡 − 1)

𝑁

𝑡=0

 

Eq. 3: Net CO2 sequestered = S - L 

 

The mid DECC (2011) carbon price is applied to calculate the difference in value between 

the predicted future scenarios of habitat loss, and no further habitat loss.  In the case of 

highly uncertain, long term flows of environmental benefits the appropriate discount rate is 

disputed (Pearce and Ulph 1995, Price 2010). Previous authors have argued that the 

discount rate should take its lowest possible limiting value (Weitzman 1998), whilst others 

go further and propose that in such cases a zero discount rate should be applied (Broome 
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1992). Others have argued against this (Fisher and Krutilla 1975), and the current 

recommended social discount rate from the HM Treasury Green Book (2011) is of 3.5% 

diminishing with time.  Given the variability in the literature two discount rates are applied: 

0% to explore what happens to the values under this scenario, and 3.5% to be more closely 

in line with UK policy.  

 [Insert Table 4: Estimation of long term CO2 sequestration and release by UK coastal 

habitats, 2000 – 2060, and associated monetary values. Monetary values expressed as NPV 

UK£] 

If current coastal habitats are maintained in the time period 2000- 2060 they will have 

provided an ecosystem service valued at over £UK 1 billion (3.5% discount rate) in terms of 

CO2 sequestered. If however current projections of habitat loss are followed £UK 0.25 billion 

(3.5% discount rate) of this service will not be realised as the CO2 will instead either remain 

in the atmosphere, or will be released into the atmosphere following the conversion of 

coastal habitats. The habitat loss projections made in Table 1 may turn out to be 

conservative but are based on expert judgement projections of coastal erosion, and do not 

account for other habitat losses due to land conversion which are difficult to predict. As a 

result, the difference in value could be greater, with a greater significant reduction in the 

value of this service.  

 

4. Discussion  

Coastal habitats are declining in both area and habitat quality in the face of increasing 

pressures related to climate change (such as the effect of coastal erosion and sea level rise) 

as well as increasing pressure resulting from human-driven change  (conversion of habitat 

due to development). This study has used the UK as a case study to quantify the extent of 

habitat decline that has already occurred, and provided plausible future projections of 

continued habitat loss. The potential implications of this loss in terms of carbon 

sequestration and storage are explored, including a discussion of how this coastal carbon 

can be valued. In order to value the long terms benefits of the ecosystem service of carbon 

sequestration in these habitats, it is critical to recognise that carbon sequestration may not 

always be permanent. In this case, both the carbon sequestered and the carbon released 
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are included in the valuation calculations, enabling the development of an approach which 

quantifies and values the dynamic long term sequestration and release of CO2 from coastal 

habitats under two future scenarios.  

 

In addition the results provide UK specific data which can be actively applied in a policy 

context and to support evidence-based ecosystem management. The results shown here are 

presented at a national scale, but could be readily applied at a smaller scale, enabling local 

decision making for policy decisions regarding different coastal development options. Given 

the extent of CO2 stored and sequestered, the accompanying value of this service, and the 

vulnerability and decline of these habitats, it seems increasingly relevant to mainstream the 

role of these habitats into overall country-wide carbon budgets.  

With an increasing tendency to value the suite of ecosystem services provided by natural 

habitats, and to utilise these values in the decision making process, comes a requirement to 

ensure both that these values are as accurate as possible and that uncertainty is 

transparent. As shown in Figure 3 there is potential for considerable uncertainty in valuation 

estimates, arising from uncertainty in the C sequestration rate and the CO2 price. The 

application of the different discount rates also causes a significant difference in the value of 

the ecosystem service. This case study demonstrates the potential variability and 

uncertainty in the results depending on the approach taken, which has the potential to 

make a significant difference to the outcome when a variety of development options are 

being considered.  

The estimates presented here reflect the best currently available information. However, 

there remain sources of uncertainty in four key areas which are discussed below, along with 

recommendations for future research aimed at improving and refining the estimates:   

i. Stocks and sequestration rates 

Soil carbon stocks accumulate over time and this can be both rapid and measurable in the 

case of coastal habitats. The assessment of saltmarsh C stocks down to 0.5 m (west coast) 

and 1.0 m depth (east coast) is an improvement on previous methodologies but is probably 

still an under-estimate primarily because the depth of organic sediment on accreting east 

coast sites has not been consistently measured. Information from the limited 
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chronosequences and dateable sites on the east coast suggests that accretion is keeping 

pace with sea level rise of between 2-6mm a year (van der Wal and Pye 2004), and deep soil 

cores made on the east coast suggest that carbon rich sediments may extend to much 

greater depth than 1 m. Therefore, a substantial soil C pool may not be accounted for here. 

On the sandy north and west UK coasts of the UK, extrapolation to 50 cm depth captures 

the majority of the sediment C stock. Nevertheless, there remains a need to more widely 

assess carbon stocks and organic sediment depths on these coasts also. There is 

considerable potential to improve the estimates of carbon sequestration rates in saltmarsh 

through the sampling of sites of known age, and this could provide validation of the 

sequestration rates derived from first principles by Cannell et al. (1999). On the other hand, 

for saltmarsh soils, the majority of these estimates use %loss on ignition values rather than 

measures of C content, which may overestimate actual carbon content in marine and 

calcareous sediments due to combustion of carbonates. The low furnace temperature of 

375°C used minimises this but future data collection should address this issue. In this paper, 

we publish carbon densities and calculate for the first time carbon stocks in machair. 

However, calculation of total stocks is made difficult by varying opinions on the true areal 

extent of this habitat, which partly depends on the definition of machair (Angus, 2006). 

Latest estimates suggest this lies somewhere between 17,500 (Angus et al 2011) and 20,000 

ha (Dargie, 2000). 

The calculations presented here assume that sequestration rates remain the same over time 

and UK location. Sequestration rates vary with successional stage, being slowest at the point 

of initial vegetation colonisation, then increasing rapidly for a while before slowing as the 

organic profile develops (Jones et al. 2008), a pattern also shown over much longer 

timescales (Syers et al. 1970). For dunes and, by extrapolation, machair grassland, the 

figures used here represent average sequestration rates over a 60-year period. They are 

based on sequestration at a mid-latitude west-coast site, Newborough Warren, rainfall 850 

mm/a, and probably represent an acceptable UK average between slower C accumulation in 

the dry south and east, and faster accumulation in the wetter north and west UK, so the 

assumption of transferability of sequestration value may not be unreasonable. In the future 

additional information may become available to show how the carbon sequestration rates 
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vary with factors such as temperature, CO2 concentrations, water table depth and UK 

location, but currently these data do not exist.    

ii. Net values 

In all three habitats there is a loss of habitat extent over time, with an accompanying decline 

in C sequestration and release of previously stored CO2. The monetary values associated 

with this decline have been estimated but fall short of true net values. This occurs because 

coastal margin habitat is replaced with an alternative habitat, which may also have some 

capacity for C sequestration. Conversions to urban or infrastructure expansion or 

agricultural land claim will lower sequestration potentials yet conversion to forestry or 

leisure activities may not. Ideally, the carbon sequestration rates of the areas of the new 

habitats would be calculated to determine the overall net change of C sequestered. 

However, although some of the sequestration rates are available, the areas that might be 

converted are not, and so at the present time this aspect cannot be accounted for. 

Historically, the bulk of coastal margin loss has occurred to land uses with lower C 

sequestration rates. Therefore, whilst an exact net loss in sequestration cannot be 

calculated, overall there will still be a decrease in the provision of this service. 

 

iii. Other gases sequestered and emitted 

The coastal margin habitats may also emit other greenhouse gases to an unknown extent. 

Methane (CH4) emissions from saltmarsh have previously been thought to be negligible due 

to sulphate inhibition of methanogenesis, but recent evidence suggests they can be locally 

high, particularly in grazed systems (Ford et al. 2012b). Nitrous oxide (N2O) emissions may 

be important (Andrews et al., 2006; Dausse et al. 2012) but are relatively un-studied. Ford et 

al. (2012b) suggest for saltmarsh that the carbon budget represents the bulk of the 

greenhouse gas forcing, therefore the contribution of other gases to climate regulation can 

probably be ignored for this habitat. Both nitrous oxide and methane emissions are 

unstudied in dune grassland and machair systems but are likely to be negligible in these 

predominantly dry habitats. 

iv. A satisfactory carbon price 
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None of the current carbon prices are truly applicable to carbon sequestration and storage 

in natural environments. The price used in this case is the DECC non-traded Marginal 

Abatement Costs, as it most closely aligned to current UK policy, but as environmental 

carbon is currently not included in the mainstream carbon budgets this is not ideal. Carbon 

prices are increasingly applied to natural environments often with little consideration of 

what this price means. Given the rapid growth in the application of these prices, it is 

strongly advised that greater consideration and resource is invested in developing robust 

values which are specific to the natural environment. However, despite the uncertainty 

associated with these estimates Tol (2005) concludes that they do provide a useful 

benchmark to compare against costs of emission reduction policies. 

5. Conclusions 

This study has investigated how the value of the carbon sequestration service in coastal 

margin habitats changes over time providing, where possible, a hindcast and a forecast. It 

has demonstrated that coastal habitats can have significant value in terms of CO2 stored and 

sequestered. If the current extent of UK coastal habitat is maintained their sequestration 

capacity over the period 2000-2060 is valued to be in the region of £1 billion (3.5% discount 

rate). However, if current habitat loss trends continue, the capacity of the coastal habitats 

both to sequester and store CO2 will be significantly reduced, with a reduction in value 

estimated to be in the region of £0.25 billion over the period 2000-2060 (3.5% discount 

rate). If habitat loss is greater due to greater sea level rise, more rapid coastal erosion or 

unforeseen land conversion, this value has the potential to increase significantly. 

 

Finally, it is noteworthy that carbon sequestration and storage is only one of many 

ecosystem services provided by coastal habitats. Other services from coastal habitats 

include coastal defence, recreation, nutrient and contaminant storage and cycling, and fish 

nursery grounds. Thus whilst the values of carbon sequestration and storage presented here 

make a convincing case to maintain these habitats, the argument to conserve these margin 

coastal habitats becomes all the more compelling when the full range of ecosystem services 

provided by coastal habitats is considered.  
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Tables and Figures 

Table 1. UK areas (ha) of the three main UK coastal margin habitats by country. See Section 

2.1 for details. 

 

 Area (ha) Year 

  1900 1945 1970 2000 2010 2060 

Sand 
dune 

England 16996 14446 12407 11897 11778 10707 

N. Ireland 2244 1908 1638 1571 1555 1430 

Scotland 71429 60714 52143 50000 49500 45857 

Wales 11573 9837 8448 8101 8020 7534 

UK 102241 86905 74636 71569 70853 65528 

 

Saltmarsh England  39476  34327 33572 29795 

N. Ireland  288  250 244 216 

Scotland  6900  6000 5865 5190 

Wales  8173  7107 6950 6168 

UK  54836  47683 46631 41369 

 

Machair England       

N. Ireland       

Scotland  20171   19698 18516 

Wales       

UK  20171   19698 18516 
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Table 2: Underpinning data used to calculate carbon stocks in soils and vegetation for sand dunes, machair and saltmarsh. For data sources 
and methods please refer to section 2.3. Mean ± standard deviation. ‘–‘ not applicable. 
 

 
Vegetation Soils 

 
N 

Above-
ground 

biomass (g 
m-2) 

Above 
ground plant 

%C 

Ratio 
Below 

ground: 
Above 
ground 

C N 

Bulk 
density (g 

cm-3) Soil %C 
Soil C density 

(g cm-3) 

Mobile dunes 62 1375 ± 855 43 ± 1.8 1.77 62 1.449 ± 
0.155 

0.33 ± 
0.22 

0.0047 ± 
0.0003 

Fixed dunes 66 1221 ± 783 41.9 ± 1.7 2.10 66 1.206 ± 
0.244 

1.84 ± 
1.71 

0.0222 ± 
0.0042 

Dune slacks 28 1257 ± 750 43.2 ± 1.5 3.02 28 0.97 ± 0.33 4.38 ± 
3.32 

0.0425 ± 
0.011 

Machair1 - 1221 ± 783 41.9 ± 1.7 2.10 8 1.107 ± 
0.259 

1.16 ± 
0.51 

0.0128 ± 
0.0013 

Saltmarsh, west coast 
(and soils 0-15 cm) 

18 470 ± 390 60.0 3.43 18 0.766 ± 
0.103 

4.27 ± 
1.98 

0.0327 ± 
0.002 

west coast soils 15-50 cm 18 - - - 18 0.766 ± 
0.103 

1.27 ± 
1.34 

0.0097 ± 
0.0014 

Saltmarsh, east coast (and 
soils 0-30 cm) 

36 470 ± 390 60.0 3.43 36 0.448 ± 
0.03 

5.45 ± 
1.35 

0.0244 ± 
0.0004 

east coast soils 30-100 
cm2 

- - - - - 0.448 ± 
0.03 

2.6 0.0116 

 
1Machair biomass data use that for fixed dune grassland 
2East coast saltmarsh soils (30-100 cm) use estimates of organic matter content from intertidal mudflats.   
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Table 3. Carbon stocks (t) by habitat, vegetation and soil pools and by country. AG = Above 

Ground. 

Habitat Pool Scotland England Wales N. Ireland UK 

Mobile and 
semi-fixed 
dune 

AG Veg C (t) 30.3 24.4 20.4 2.7 77.8 

BG (Root) C (t) 53.5 43.1 36.1 4.8 137.6 

Soil C (t)1  Negligible Negligible Negligible Negligible Negligible 

Subtotal  83.8 67.5 56.5 7.6 215.4 

Dune 
grassland 

AG Veg C (t) 193.7 30.2 15.6 4.5 244.0 

BG (Root) C (t) 406.7 63.5 32.7 9.5 512.3 

Soil C (t)1 1145.2 178.7 92.0 26.9 1442.9 

Subtotal  1745.6 272.4 140.3 40.9 2199.2 

Dune slack 

AG Veg C (t) 14.1 4.7 5.6 0.7 25.2 

BG (Root) C (t) 42.7 14.3 17.0 2.2 76.2 

Soil C (t) 1  137.3 46.0 54.7 7.1 245.1 

Subtotal  194.1 65.1 77.3 10.1 346.6 

Machair 

AG Veg C (t) 103.8 n/a n/a n/a 103.8 

BG (Root) C (t) 217.9 n/a n/a n/a 217.9 

Soil C (t) 1 361.1 n/a n/a n/a 361.1 

Subtotal  682.9       682.9 

Saltmarsh 

AG Veg C (t) 16.9 94.7 19.6 0.7 132.0 

BG (Root) C (t) 58.1 324.9 67.3 2.4 452.6 

Soil C (t) 2 494.8 4324.7 573.1 20.6 5413.2 

Subtotal  569.7 4744.3 660.0 23.7 5997.8 

Total all 
habitats  3276.1 5149.3 934.1 82.3 9441.8 

1 Soil C to 15 cm 

2 Soil C to 50 cm on north and west UK coasts, and to 100 cm on south and east UK coasts. 
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Table 4: Estimation of long term CO2 sequestration and release by UK coastal habitats, 2000 

– 2060, and associated monetary values, expressed as Net Present Value, NPV UK£ 

 Habitat Type 

 Sand dune Saltmarsh Machair Total 

CO2 sequestered, tonnes 9,073,004 13,955,301 1,504,711 24,533,016 

CO2 released,  
tonnes 

1,433,463 4,026,735 202,996 5,663,194 

Net CO2 carbon stored*, 
tonnes 

7,639,542 9,928,566 1,301,714 18,869,822 

 

Value of CO2 sequestered 
No habitat loss scenario 
Not discounted 

£1135 million £1794 million £185 million £3114 million 

Value of CO2 sequestered 
– value of CO2 released 
Habitat loss scenario 
Not discounted 

£878 million £1109 million £150 million £2137 million 

Loss in value as a result of 
habitat loss scenario 
Not discounted 

£257 million £685 million £35 million £977 million 

 

Value of CO2 sequestered 
No habitat loss scenario 
Discounted 

£342 million £541 million £56 million £939 million 

Value of CO2 sequestered 
– value of CO2 released 
Habitat loss scenario 
Discounted  

£278 million £362 million £48 million £688 million 

Loss in value as a result of 
habitat loss scenario 
Discounted 

£64 million £179 million £8 million £251 million 

 

*net stored by given habitat, not incorporating calculations of sequestration by replacement 
habitat.   
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Figure 1: Estimated change in annual C02 sequestration provided by UK coastal habitats, 
1900-2060, due to changes in area, applying a constant sequestration rate 
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Figure 2:  Estimated value of annual C02 sequestration service provided by UK coastal 
habitats, Sandune, Saltmarsh and Machair, 2000 – 2060. Applying average C sequestration 
rate and mid DECC (2011) non-traded carbon value. 
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Figure 3: Uncertainty in the estimated value of annual C02 sequestration service provided 
by UK coastal habitats (combined Sandune, Saltmarsh and Machair) 2000 – 2060. Applying a 
range of C sequestration rates and low, mid and high DECC (2011) non-traded carbon 
values. 
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