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• Simulation of phytoplankton phenology was improved by merging observations with models
• Uncertainty on plankton community structure and production decreased
• Uncertainty of trophic efficiency and POC might be increased by chlorophyll assimilation
• Controllability depended on carbon to nutrient and to chlorophyll formulations
• Assessment of controllability should be a standard practice in operational modeling

Abstract

To protect marine ecosystems threatened by climate change and anthropic stressors, it is essential to 
operationally monitor ocean health indicators. These are metrics synthetizing multiple marine 
processes relevant to the users of operational services. Here we assess if selected ocean indicators 
simulated by operational models can be controlled (here meaning constrained effectively) by 
biogeochemical observations, by using a newly proposed methodological framework. The method 
consists in firstly screening the sensitivities of the indicators with respect to the initial conditions of 
the observable variables. These initial conditions are perturbed stochastically in Monte Carlo 
simulations of one-dimensional configurations of a multi-model ensemble. Then, the models are 
applied in three-dimensional ensemble assimilation experiments, where the reduction of the 
ensemble variance corroborates the controllability of the indicators by the observations. The method 
is applied for ten relevant ecosystem indicators (ranging from inorganic chemicals to plankton 
production), seven observation types (representing data from satellite and underwater platforms), 
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and an ensemble of five biogeochemical models of different complexity, employed operationally by 
the European Copernicus Marine Service. We demonstrate that all the indicators are controlled by 
one or more types of observations. In particular, the indicators of phytoplankton phenology are 
controlled and improved by the merged observations from the surface ocean colour and chlorophyll 
profiles.  Similar observations also control and reduce the uncertainty of the plankton community 
structure and production. However, the uncertainty of the trophic efficiency and POC increases when 
assimilating chlorophyll-a data, though observations were not available to assess whether that was 
due to a worsen model skill. We recommend that the assessment of controllability proposed here 
becomes a standard practice in designing operational monitoring, reanalysis and forecast systems, to 
ultimately provide the users of operational services with more precise estimates of ocean ecosystem 
indicators.  

 Keywords: marine ecosystem models, ocean indicators, operational oceanography, data assimilation, 
biogeochemical observations, ocean colour, biogeochemical-Argo floats, Copernicus Marine Service, 
sensitivity analysis, controllability, plankton, carbon fluxes

1. Introduction

The ocean ecosystems provide us with vital services, by absorbing 30% of the anthropogenic carbon 
emissions and supporting the livelihoods of over three billion people (UNESCO-IOC, 2021). These 
services are endangered by human pressures and the climate crisis; therefore, the ocean health is 
routinely monitored by marine operational centers (Fennel et al., 2019). These centers use satellite 
sensors, in situ observing networks and operational marine ecosystem models to observe and predict 
the state of the ocean (Le Traon et al., 2019). The state can be characterized by means of ecosystem 
indicators, which are metrics synthetizing multiple marine processes and responding to the needs of 
stakeholders concerned by changes in ocean health and services. An example of biogeochemical 
indicator is the UN Sustainable Development Goal (SDG) Indicator 14.3.1 “Average marine acidity (pH) 
measured at agreed suite of representative sampling stations”. This indicator is used to monitor the 
ocean acidification caused by the human emission of carbon dioxide in the atmosphere (Barbiere et 
al., 2019). 

Biogeochemical indicators are computed operationally by constraining model states with 
observations, by using data assimilation approaches (Le Traon et al., 2019). In such approaches, 
trusted-but-sparse observations correct continuous-but-uncertain model estimates of ocean 
biogeochemistry. This leads operational centers to provide more accurate and precise predictions of 
the “true value” of the biogeochemical states in the real system. For this to happen, however, the 
biogeochemical states need to be “controllable”, i.e. they can reach a subspace that includes the truth, 
by means of a suitable choice of values of the “control” variables. The latter can be the biogeochemical 
variables linked to the ocean observations that are assimilated in the operational model (see, e.g., 
Gelb et al., 1974, for the equivalence of the controllability problem in system engineering and data 
assimilation).

Most of the modern operational centers are assimilating ocean-colour chlorophyll-a, which is a proxy 
of the phytoplankton biomass driving the biogeochemical cycles in lower trophic level models 
(Sathyendranath et al., 2023). Such data are retrieved from satellite swathes, which typically cover 
large part of the ocean surface with high spatial and temporal resolution, if not covered by clouds 
(resolutions in the order 101-103 m and 1-3 days, Groom et al., 2019). The controllability of indicators 
by ocean colour, here defined as the effectiveness of the assimilated data to constrain simulated 
indicators, might be limited (i) to the ocean upper layers, and (ii) to the indicators with strong 
dynamical link to surface chlorophyll-a (Wang et al., 2020, 2022). These limits add up to the 
uncertainty of the ocean-colour data and the representation error of complex ecosystem dynamics, 
intrinsic to all types of observations and data assimilation systems (Janjić et al., 2018).
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The limitations as well as benefits of observation alternative to ocean colour in controlling 
biogeochemical indicators have rarely been assessed in operational systems. Remarkable exceptions 
have led to breakthrough advances of these systems in estimating indicators, such as plankton 
community structure by assimilating remote sensing reflectance in the Great Barrier Reef (Jones at al., 
2016), air-sea carbon flux by assimilating phytoplankton functional types in the North West European 
shelf-seas (Skákala et al., 2018) and vertical phenology of plankton by assimilating profiles of 
chlorophyll-a and nutrients from biogeochemical-Argo floats in the Mediterranean Sea (Teruzzi et al, 
2021). However, these outcomes on controllability are hardly generalizable because they depend on 
the specific features of: (i) the investigated marine ecosystems (e.g. differences in open-ocean and 
shelf-sea trophic networks), (ii) the biogeochemical models (e.g. their level of details in representing 
the complex networks), (iii) their set-ups (e.g., hydrodynamic and climate forcings used to drive the 
models), and (iv) the assimilation methods (e.g., ensemble versus variational characterization of both 
model and data errors). Comparing how the above features i-iv impact the assimilative control of 
indicators is often prevented by the high computational cost of the three-dimensional assimilative 
models used in operational centers. One-dimensional configurations have therefore been used for 
objective multi-model comparisons, for example in parameter optimization studies (Friedrichs et al., 
2006 and 2007). However, as the portability of optimized parameters from 1D to 3D configurations 
might be unstraight (e.g., Wang et al., 2020), so might be the still unexplored portability of control 
analysis from 1D to 3D systems.   As an ultimate consequence, new opportunities to better simulate 
ecosystem indicators by integrating novel observing systems are currently hindered by a knowledge 
gap on the controllability of indicators by observations.

The objective of this work is to assess the controllability of ecosystem indicators simulated by 
assimilative operational models, by using a generalizable framework. 

The framework includes ten indicators, seven observation types, and five biogeochemical models of 
different complexity, employed operationally in the European regional seas and global ocean by the 
Copernicus Marine Service (see Methods in Section 2). Firstly, one-dimensional model configurations 
underwent a controllability screening analysis, by using the same forcing and ensemble set-up for all 
the models (see results and discussion in Section 3.1). Then, the controllability of the most relevant 
indicators and observations was corroborated in three-dimensional configurations of the models used 
in real operational systems (see results and discussion in Section 3.2). The 1D screening and 3D 
corroboration results are compared and discussed in Section 3.3. Recommendations on exploiting the 
controllability assessment framework in operational centers are provided in the concluding Section 4.

2 Methods

2.1 The biogeochemical models

We used five well-established biogeochemical models which run operationally in the Monitoring and 
Forecasting Centres (MFCs) of the Copernicus Marine Service (Table 1). The models differ for 
complexity level, here approximated by the number of phytoplankton functional types (PFTs): two in 
the model PISCES, three in ECOSMO and ERGOM, four in ERSEM and BFM. Previous studies have 
defined model complexity as a function of the total number of state variables, but found that the 
number of PFTs was the critical feature influencing model skill and portability (Friedrichs et al., 2007) 
The models equations, implementations and validations have been described thoroughly in previous 
publications (see the review by Le Traon et al., 2019 and references therein) and we recall only the 
model features that are relevant here.

The PISCES model (Aumont et al. 2015) is an intermediate-complexity, carbon-based model that 
simulates marine biological productivity and carbon biomass based upon five main nutrients: nitrate, 
ammonium, phosphate, silicate and iron. Its architecture includes twenty-four biogeochemical 
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variables grouped into four main compartments: nutrients, phytoplankton, zooplankton, and detritus. 
The phytoplankton compartment is represented by two different PFTs, namely the 
nanophytoplankton and the diatoms, while the zooplankton compartment contains two size classes, 
namely micro- and mesozooplankton. The detritus compartment is divided in two pools: the dissolved 
organic matter (DOM) and the particulate organic matter (POM) including the small particles and the 
big particles which mostly differ by their sinking velocity. PISCES is used in both the Copernicus Marine 
Service MFCs of the global ocean (GLO) and of the Iberian-Biscay-Irish Seas (IBI).

The ECOSMO model (Daewel and Schrum, 2013) is an intermediate-complexity model with four 
nutrients (nitrate, ammonium, phosphate and silicate) and three PFTs (flagellates, diatoms and 
nitrogen fixing cyanobacteria, though the latter group was turned off in this study). Zooplankton are 
represented by two size classes (micro and meso). The model includes DOM, POM and oxygen. A 
simple representation of the sediment layer including sedimentation, resuspension, remineralization 
and denitrification under low oxygen conditions is included in the model. The model currency is 
carbon, and a fixed Redfield ratio is applied to the other elements. ECOSMO was originally developed 
for the North and Baltic Sea. It was then coupled to the ocean model HYCOM and adapted to the North 
Atlantic and Arctic with a new formulation for prognostic chlorophyll-a (ECOSMO II(CHL); Yumruktepe 
et al., 2022). ECOSMO II(CHL) is used by the Arctic (ARC) MFC and was investigated in this work.

The ERGOM model (Neumann, 2000; Lessin et al., 2014) is an intermediate complex nitrogen-based 
model that simulates the biogeochemical cycling in the coastal seas using three PFTs (cyanobacteria, 
flagellates, diatoms), two zooplankton size groups (micro and meso), four nutrient groups (nitrate, 
ammonium, phosphate, and silicate), two detritus groups (N-Detritus and Si-Detritus), oxygen and 
labile dissolved organic nitrogen in the water column. A carbonate system is included to compute 
partial pressure of CO2 (pCO2), alkalinity and pH. In the original ERGOM formulation investigated here, 
chlorophyll-a concentration is computed diagnostically from the phytoplankton nitrogen biomass, 
with implications on the controllability discussed in Section 3.1. ERGOM was originally developed for 
the Baltic Sea and later extended for the North Sea (Maar et al., 2011). It is used by the Baltic (BAL) 
MFC in the configuration by Neumann et al., (2015). 

The high-complexity models are ERSEM (Baretta-Bekker et al., 1995, Butenschön et al., 2016) and BFM 
(Vichi et al., 2015 and Salon et al., 2019). They have several features in common, both in their 
structures and outputs, making it convenient to list their difference rather than describing them 
separately, both here and in the section of the results. Both models distinguish between five chemical 
components: carbon, nitrogen, phosphorus, silicon and chlorophyll-a, using variable stoichiometry for 
the simulated plankton groups (e.g., Geider et al., 1997; Baretta-Bekker et al., 1995). The models split 
phytoplankton into four PFTs largely based on their size (e.g., Baretta-Bekker et al., 1995): 
picophytoplankton, nanophytoplankton, diatoms and dinoflagellates. Each PFT biomass is 
represented in terms of variable chlorophyll-a, carbon, nitrogen and phosphorous components, with 
diatoms also represented by silicon. Model predators are composed of three (ERSEM), or four (BFM) 
zooplankton types, with organic material being decomposed by one functional type of heterotrophic 
bacteria. The model inorganic component consists of carbon, nutrients (nitrate, phosphate, silicate, 
ammonium) and dissolved oxygen. One versus two particulate matter size-classes are included in BFM 
and ERSEM, respectively. The carbonate system is included in both ERSEM (Artioli et al., 2012) and 
BFM (Cossarini et al., 2015; Canu et al., 2015). Here we used the ERSEM configuration by Butenschön 
et al. (2016), with the addition of a bio-optical module and two-way physical-biogeochemical coupling 
in the three-dimensional configuration (Skákala et al., 2022). The BFM configuration is the one 
described in Salon et al. (2019), Lazzari et al. (2012, 2016). ERSEM and BFM are used in the North-
West Shelf-Seas (NWS) and Mediterranean (MED) regions, respectively.

Table 1 Main differences in the features of the five biogeochemical models considered in this work
PISCES ECOSMO ERGOM BFM ERSEM
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Complexity Intermediate Intermediate Intermediate High High

Number of phytoplankton types Three Three Three Four Four

Number of zooplankton types Two Two Two Four Thee

Number of size classes particulate matter Two One One One Two

Number of bacteria functional types None None None One One

Carbon:Nutrients Fixed (C-based) Fixed (C-based) Fixed (N-based) Variable Variable

Chlorophyll-a:Carbon (or Nitrogen) Variable Variable Fixed Variable Variable

2.2 The marine ecosystem indicators

In this work, we evaluated the controllability of ten ecosystem indicators that are relevant to 
operational systems because they are linked to the: (1) United Nations Sustainable Development Goals 
(UN SDGs; United Nations, 2023); (2) The Global Ocean Observing System Essential Ocean and 
Biodiversity Variables (EOVs and EBVs; Muller-Karger et al., 2018); (3) Copernicus Marine Service 
Ocean Monitoring Indicators (Le Traon et al., 2019) and Copernicus Marine Service user needs 
(European Commission, 2019). Additional criteria for the selection of the indicators were: (i) the 
capability to simulate them with operational models; (ii) the verifiable capability to constrain their 
simulation by using new operational monitoring infrastructures, besides ocean-colour chlorophyll-a 
normally used in operational models, such as biogeochemical-Argo floats and gliders. Here the 
indicators were defined and adapted to the features of the operational models (Section 2.1) as follows: 

A) the Particulate Organic Carbon (POC) is defined here as the non-living carbon fraction of particulate 
organic matter, i.e., the detritus, and is computed as the average concentration of the 0-200m layer 
from the model output, or 0m-bottom in shallower areas. Three models (BFM, ERGOM and ECOSMO) 
have only one state variable for the particulate detritus, while ERSEM and PISCES have two detritus 
state variables, which are summed to compute POC. The unit is mmolC m-3.

B) the trophic efficiency (TE) is the ratio of production at one trophic level to production at the next 
lower trophic level, here approximated by the ratio between the biomass of zooplankton and 
phytoplankton in carbon units for all the models, but using nitrogen biomass for ERGOM. In all the 
models, the sum of all the simulated types of phytoplankton (respectively zooplankton) provided the 
biomass of producers (respectively consumers). The only exceptions were the producers in BFM, 
which excluded heterotrophic nano-flagellates to avoid excessive fluctuations, and producers in 
ECOSMO, which included detritus grazed by the zooplankton. Biomasses were computed as the 
vertical integral in the 0-200m layer in deep ocean waters. Trophic efficiency is dimensionless.

C) the net primary production (NPP) is the synthesis of organic compounds from dissolved carbon 
dioxide through photosynthesis as source of energy. Models compute NPP as the difference between 
gross primary production (photosynthesis) and the internal phytoplankton respiration according to 
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their specific formulations.  NPP is computed as the vertical integral of the 0-200m layer. The unit is 
mmolC m-2 d-1.

D) the pH is a measure of the ocean acidity. All the models feature a carbonate system formulation 
that provides the pH as a diagnostic variable in total scale and at the in-situ condition. The pH is 
computed as the vertical average of the 0-200m layer from the model output. pH has no unit.

E) the dissolved oxygen (DO) is a state variable in all the models. The oxygen indicator refers to the 
concentration of oxygen at the depth of 150m (model output is averaged in the layer 145-155m) or at 
the bottom of the water column for areas shallower than 150 meters. The unit is mmolO2 m-3.  

F) the Phytoplankton Functional Types (PFT ratio) indicator is defined here as the ratio between the 
large and total phytoplankton carbon biomasses over 0-200m. Given the different formulations of the 
models, the large phytoplankton consists of the diatoms group in ECOSMO, ERGOM and PISCES, and 
the sum of diatoms and dinoflagellates groups in ERSEM and BFM. The ratio is dimensionless.  

G) the Phytoplankton phenology (PHE), based on chlorophyll-a (CHL), consists of four indicators that 
account for both surface blooms and deep chlorophyll-a maxima: (i) PHE_maxsc is the value of the 
maximum of chlorophyll-a concentration in the surface layer 0-5m computed from seven-day moving 
average of  chlorophyll-a time series (mgChl m-3) and (ii) PHE_maxst is the timing of the surface 
maximum (day), (iii) PHE_maxdc is the value of the maximum of chlorophyll-a concentration in the 
deeper layer 10-150m (mgChl m-3) and (iv) PHE_maxdd is the depth of the deep maximum (m). 

2.3 The observable variables

The controllability of the indicators was assessed with respect to biogeochemical observable variables, 
i.e., variables that are both simulated by the models, and can be observed by state-of-the-art 
operational monitoring platforms, including ocean colour, biogeochemical Argo floats and gliders. The 
list and computation of the observable variables depended upon (i) the model complexity (e.g., the 
number of PFTs contributing to total chlorophyll-a), (ii) the features of the assimilation systems of the 
Copernicus Marine Service MFCs (e.g. the plankton nutrient contents were observable if they are 
directly constrained in the chlorophyll-a analysis step, as in Skákala et al., 2018) and (iii) the 
observation capacity of the monitoring platform (e.g., ocean-colour chlorophyll-a refers just to the 
surface chlorophyll-a, while floats and gliders refer also to chlorophyll-a in the deeper layers) (Table 
2).

Table 2. List and definition of the observable variables included in the controllability assessment. In 
the screening analysis, all the observable variables were perturbed from 0 to 1000 m depth (or to the 
bottom in shallower waters), except for chlorophyll-a from satellite ocean colour, which was 
perturbed from 0 the variable OCdepth specified in Table 3. The notation of the variables used in the 
figures is also reported.

Observable ocean 
variable

Notation Correspondent observable model variables

1 Chlorophyll-a (from 
ocean colour)

OC Surface total chlorophyll-a and carbon, nitrogen, phosphorus and 
(for diatoms only) silicate content of PFTs 

2 Chlorophyll-a profiles
ARGO_CHL Total chlorophyll-a and carbon, nitrogen, phosphorus and (for 

diatoms only) silicate content of all PFTs
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3 Particulate Organic 
Carbon

ARGO_POC Total carbon content of plankton and detritus < 20 micron

4 Nitrate
ARGO_NO3 Nitrate concentration

5 Phosphate
ARGO_PO4 Phosphate concentration

6 Oxygen
ARGO_O2 Dissolved oxygen concentration

7 Dissolved Inorganic 
Carbon

ARGO_DIC Dissolved Inorganic Carbon (DIC) concentration

2.4 Controllability assessment

Controllability is here defined as the capacity of the observed variables to constrain the indicators, in 
a framework reproducing relevant features of operational assimilation systems. This definition is 
coherent with formal definitions in optimal control theory and data assimilation (e.g., Gelb, 1974). 
Data assimilation analyses typically compute new initial conditions of the observed variables, toward 
the assimilated observations of those variables. Re-initializations in assimilative analysis can impact 
also model variables that are not observed, either (i) directly, by computing initial conditions of 
unobserved variables by means of correlations with the observed variable, or (ii) indirectly, by 
integrating the model equations starting from re-initialized conditions of the observed variable. 
Ultimately, we expect that data assimilation reduces the uncertainty of the biogeochemical estimates. 
In the following, uncertainty and precision refers to the dispersion of the ensemble of biogeochemical 
estimates, while bias and accuracy refer to their closeness to the unknown “true” value of the 
biogeochemical state or, for practical purposes, the closeness to independent biogeochemical 
observations when available (see similar conventions in, e.g., Carrassi et al, 2018).

Based on the features above, our framework to assess the indicator controllability by the observable 
variables is two-pronged. Firstly, an overall controllability screening analysis is performed to rank the 
controllability of all the indicators, based on the Monte Carlo sensitivity analysis of the indicators with 
respect to the initial values of the observed variables, in computationally affordable, one-dimensional 
configurations of the models. Secondly, the controllability of a few top-ranked indicators is 
corroborated by assessing the reduction of their uncertainty with the computationally demanding, 
three-dimensional ensemble configurations of the operational models.

We note that formal definitions and approaches to assess controllability have been proposed in the 
scientific literature for ocean and biological models (e.g., Garcia et al., 2011, Gebbie and Hsieh 2017, 
Villaverde, 2019, Carrassi et al., 2022, Diaz-Seoane et al., 2023), but not for large operational 
biogeochemical models as the ones considered in this paper, to the authors’ knowledge.

2.4.1 Controllability screening analysis

The controllability screening analysis consists in a sensitivity analysis of the indicators with respect to 
the initial conditions of the observable variables, in a Monte-Carlo simulation approach. This mimics 
reinitializing the observable variables in assimilative simulations. In the analysis presented here, (i) the 
initial conditions of the observed variable were perturbed stochastically, (ii) ensemble simulations 
were performed, and (iii) temporal averages of the ecosystem indicators were computed and 
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evaluated. Regarding point (i) above for chlorophyll-a, the original PFT chlorophyll-a ratios and internal 
nutrient ratios were preserved when perturbing the correspondent observable model variable (see 
Table 2).

The sensitivities are defined here as follows:

𝑠𝑖,𝑗,𝑘 =
1/𝑀∙∑𝑀

𝑚=1 (𝑦𝑖,𝑘,𝑚 𝑦𝑖,𝑘 )2 

𝑦𝑖,𝑘

1/𝑀∙∑𝑀
𝑚=1 (𝑥0

𝑗,𝑚 𝑥0
𝑗 )2 

𝑥0
𝑗

  eq. 1

 Where 𝑠𝑖,𝑗,𝑘 is the sensitivity of the ecosystem indicator i, output of the model k (i.e., 𝑦𝑖,𝑘), with respect 

to the initial condition of the observable variable  𝑥0
𝑗 . The single average bar ( ) indicates that the initial 

condition of the observable variable was averaged across its definition depth (see Section 2.3). The 

double average bars ( ) indicate that the indicator was computed across its definition depth (see 
Section 2.2) and then averaged with respect to the time-length of the simulation period (see Table 3). 
In eq. 1, the symbol < > represents the mean value of the indicator or the observable variable across 
the Monte Carlo ensemble of m=1, …, M simulations.

The sensitivity 𝑠𝑖,𝑗,𝑘 normalizes the dispersion of the variables by their average values and is therefore 
dimensionless. The higher its value, the higher is the impact of the observed variable on the ecosystem 
indicator, i.e., the controllability of the indicator with respect to the observable variable simulated by 
one model k, in our approximation.

The generalized ensemble sensitivity of the indicator with respect to the observable variable is the 
mean of  𝑠𝑖,𝑗,𝑘 in eq. 1 computed across the ensemble of K=5 biogeochemical models:

  < 𝑠𝑖,𝑗 >  =  1/𝐾∑𝐾
𝑘=1 𝑠𝑖,𝑗,𝑘 eq.2

And the coefficient of variation of the sensitivity across the multi-model ensemble of is:

𝐶𝑉 𝑖,𝑗 =  1/𝐾 ∙ ∑𝐾
𝑘=1 (𝑠𝑖,𝑗,𝑘 ―  < 𝑠𝑖,𝑗 > )2 / < 𝑠𝑖,𝑗 >  eq.3

i.e. the standard deviation of the sensitivity across the multi-model ensemble, normalized by the mean 
value of the multi-model ensemble.

Our set-up of the sensitivity analysis followed well-established practices:

• The probability distributions of the observable variable were set as uniform, centred on the 
climatological value of the variable at the study sites, with a threshold of +/- 50% of the 
nominal values of all variables, to explore a relatively large variability space; the threshold was 
lowered to 10% for DIC, since its high nominal absolute value could induce unrealistic 
stochastic fluctuations (see comparable choices for Monte Carlo perturbations of ocean 
biogeochemical variables by Ciavatta et al., 2011)

• Monte-Carlo ensemble simulations of M = 100 members were performed to compute the 
distributions of the ten indicators for each of the seven observable variables perturbed 
separately, following the common practice of setting M one order of magnitude higher than 
the number of random variables (e.g., Saltelli et al., 2000)

The analysis was performed using the sensitivity analysis libraries of the parsac software (Bruggeman 
and Bolding; 2020; Andersen et al., 2021) extended for the purpose of SEAMLESS to do Monte Carlo-
based sensitivity analysis. 
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2.4.2 Controllability corroboration analysis

The corroboration analysis of controllability assesses the reduction of the uncertainty of the indicators 
in ensemble assimilative simulations, by using three-dimensional model configurations, comparable 
to the operational ones. Here we corroborated the controllability of indicators selected in the 
screening analysis, by performing ensemble assimilation of ocean colour and/or biogeochemical 
profiles, with both high and intermediate complexity models (see Section 2.5 for details on the set-up 
of the ensemble assimilation simulations).

The reduction of the uncertainty of the indicator i was evaluated by computing the ratio of the 
coefficients of variation of the ensembles posterior (cvpost) and prior (cvprior) the assimilation of the 
observations:

𝐶𝑉 𝑟𝑎𝑡𝑖𝑜𝑖 =  𝐶𝑉𝑝𝑜𝑠𝑡
𝑖

𝐶𝑉𝑝𝑟𝑖𝑜𝑟
𝑖

= 1/𝑁∙∑𝑁
𝑛=1 (𝑦𝑝𝑜𝑠𝑡

𝑖,𝑛 𝑦𝑝𝑜𝑠𝑡 )2 

𝑦𝑝𝑜𝑠𝑡
1/𝑁∙∑𝑁

𝑛=1 (𝑦𝑝𝑟𝑖𝑜𝑟
𝑖,𝑛 𝑦𝑝𝑟𝑖𝑜𝑟 )2 

𝑦𝑝𝑟𝑖𝑜𝑟
 eq. 4

Where  𝑦𝑖,𝑛 is the ecosystem indicator i output of the member n of the data assimilation ensemble of 
size N. The symbol < 𝑦 >  represents the mean value of the indicator across the data assimilation 
ensemble, calculated for either the prior or the posterior. By scaling the standard deviation of the data 
assimilation ensemble by the mean value of the data assimilation ensemble, we focussed on the 
relative uncertainty of the model. Values of CV ratios below 1 indicate that the assimilated observation 
both controlled and benefited the simulated indicator by increasing its precision (i.e., the posterior 
distribution had a lower percentage spread that the prior distribution). Values of CV RATIO higher than 
1 indicate that the assimilated observation controlled the indicator but deteriorated the precision. 
Values close to one suggest lack of control of the indicator by the observations.

We computed time series and vertical profiles of the members of the data assimilation ensemble, their 
mean and the CV ratio at single point locations, to assess the changes in uncertainty and controllability 
of the indicators with time and depth. Horizontal gradients of the controllability were evaluated by 
plotting regional maps of the prior mean, assimilation increments and the CV ratio of the indicators.

2.5 Set-up of the models and assimilation systems

In the controllability screening analysis (Section 2.4.1), all the five biogeochemical models were 
coupled via the Framework for Aquatic Biogeochemical Models (FABM, Bruggeman and Bolding, 2014) 
to the same hydrodynamic General Ocean Turbulence Model (GOTM, Umlauf and Burchard, 2005). 
GOTM is a one-dimensional (1D) water column model that uses traditional and state-of-the-art 
turbulence closure equations for the parameterisation of vertical turbulent fluxes of momentum, heat 
and dissolved and particulate matter.

The 1D ensemble of biogeochemical models was set-up in two contrasting marine ecosystems and 
contrasting starting times of the simulations, since these factors can affect the controllability of the 
indicators. The two sites are (1) the coastal mesotrophic site Station “L4”; and (2) the oligotrophic 
open ocean station “BATS”, which are characterized by different trophic regimes, phytoplankton 
cycles, and vertical hydrodynamics as synthetized in Table 3. The two starting times of the simulations 
at each Station were chosen to capture contrasting hydrodynamic conditions at the study sites, i.e. (1) 
fully mixed versus (2) stratified water column. The different hydrodynamic conditions are expected to 
influence the trophic state and disperse the magnitude and profiles of the biogeochemical variables 
perturbed in our simulations. These were therefore started at different seasons and run in three-
month long periods characterized by contrasting hydrodynamic conditions, at both L4 and BATS (Table 

http://dx.doi.org/10.1016/j.csr.2004.08.004
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3). The results are presented for the multi-model ensemble in the main text, and detailed for the single 
models in the Supplementary material (Figure S1).  Selected forcings of the simulations in the two sites 
and seasons are presented in the Supplementary Material (Figure S2) along with simulated nutrient 
ratios computed at BATS (Figure S3), useful for the discussion of the results. To confirm further the 
dependence of the observability of the indicators on the start period of the simulations, we computed 
the sensitivity in eq. 1 for starting period lagged by two months, at one site (L4) and one model 
(ERSEM) and the results are presented in the supplementary material (Figure S4). To evaluate further 
the robustness of the screening analysis, we repeated the sensitivity analysis in eq. 1 at the station 
BOUSSOLE in the Mediterranean Sea for the model BFM, which is used in 3D both here for the 
corroboration analysis, and in the Copernicus Marine Service for operational predictions. The results 
are presented in the supplementary material (Figure S5).

All the biogeochemical models used the same climatological values for the initial conditions of the 
state variables, derived from public datasets of the two data-rich sites. Atmospheric reanalyses were 
used to force the coupled models (see Table 3). Multi-year long spin-ups were performed to stabilize 
the levels of the physical and biogeochemical variables prior the target year of the analyses (Table 3). 
During the spin-up simulations, both biogeochemical and physical variables were nudged to 
climatological monthly values derived from available data (Table 3), by using nudging routines 
available in GOTM (Umlauf and Burchard, 2005). During the target periods, only physical nudging was 
applied, to guarantee an unconstrained evaluation of the sensitivities of the biogeochemical 
indicators.

The multi-model ensemble and their one-dimensional configurations at BATS and L4 are available 
here: https://github.com/BoldingBruggeman/seamless-notebooks). The sensitivity analysis was run 
on the CINECA High-Performance Computer. 

Table 3. Set-up of the multi-model simulations at the two contrasting sites BATS and L4. OCdepth is the 
depth of the profile initial conditions of ocean colour perturbed in the sensitivity simulations.   

Site BATS L4

Location Sargasso Sea (31°40′N 64°10′W) English Channel (50°15’ N 4°13’ W)

Site main 
features

Oligotrophic open-ocean site; 4500 m 
deep; general strong stratification

Mesotrophic coastal site; 50 m deep; seasonally 
stratified

Initial 
conditions

Climatology from data of BATS station 
(www.bats.bios.edu/bats-data/)

Climatology from data of Western Channel 
Observatory 
(www.westernchannelobservatory.org.uk/)

Meteo 
forcings

ERA5 reanalysis of Copernicus Climate 
Change Service Climate Data Store 
(https://cds.climate.copernicus.eu)

ERA5 reanalysis of Copernicus Climate Change 
Service Climate Data Store 
(https://cds.climate.copernicus.eu)

Spin-up 5 years 7.5 years

http://dx.doi.org/10.1016/j.csr.2004.08.004
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Stratified 
period

15/06/2019-14/09/2019 (OCdepth =    5m) 01/06/2014-01/09/2014 (OCdepth =    5m)

Mixing 
period

01/01/2019-31/03/2019 (OCdepth =100m) 01/11/2014-31/01/2015 (OCdepth =50m)

In the corroboration analysis of the controllability (Section 2.4.2), we used three-dimensional (3D) 
configurations of two biogeochemical models of contrasting complexity (intermediate PISCES versus 
complex BFM) and different types of assimilated data (from satellite only versus multi-platform): see 
Table 4. Both the PISCES and BFM biogeochemical models were coupled to the Nucleus for European 
Modelling of the Ocean (NEMO; Madec et al., 2017) ocean model for the simulation of the three-
dimensional ocean dynamics. The same coupled models are being run operationally in the Copernicus 
Marine Service for the simulation or assimilation of ocean colour in the GLO and IBI centers (PISCES, 
Lamouroux et al., 2022; Gutknecht et al., 2019) and for assimilation of both ocean colour and 
biogeochemical ARGO float data in the MED center (BFM, Salon et al., 2019; Teruzzi et al., 2021). Here, 
we employed the models with different flavours of ensemble approaches for generation and data 
assimilation (Table 4). Referring to the publications describing the two assimilation methods in detail, 
here we mention that the controllability corroboration in the North Atlantic sector of the global 
Copernicus operational system was performed by assimilating ocean colour data during 2019, by using 
a four-dimensional (4-D) stochastic ensemble methodology (Popov et al., 2024). A prior 40-member 
ensemble was first generated by using a stochastic version of the NEMO-PISCES global model at ¼° 
that accounts for uncertainties originating from biogeochemical model parameters, unresolved sub-
grid scale processes and coupled physical/biogeochemical effects. The posterior distribution is then 
computed in the subdomain around PAP station using the Localized Ensemble Transform Kalman filter 
(LETKF) analysis scheme implemented in 4D and space-time ensemble correlations between state 
variables. In the Mediterranean Sea, we used a sequential ensemble assimilation approach (SEIK-
OGSTM, Spada et al., 2023). This includes the three-dimensional OGSTM-BFM model of the 
Mediterranean Sea, at 1/24° resolution, which couples the BFM biogeochemical model forced offline 
by the NEMO model. The ensemble assimilative component is based on the Singular Evolutive 
Interpolated Kalman filter (SEIK, Pham et al., 2001). The SEIK-OGSTM system was applied in the 
corroboration analysis in two 2.5 month-long simulations, for the contrasting winter-mixed and 
summer-stratified seasons, with weekly sequential assimilation of satellite chlorophyll-a. An ensemble 
of 24 members was generated by perturbing seven biogeochemical model parameters, which were 
found the most relevant in a separate sensitivity analysis. The main difference in the two assimilation 
methods used here is them representing the two broad assimilation classes of (1) four-dimensional 
schemes (space plus time) which assimilate all the available data available in a time window and (2) 
three-dimensional schemes (space) that assimilate the data in sequential time steps, when they 
become available across the spatial domain. Crucially, the common feature of the two methods is 
them being ensemble approaches, which in our framework is essential to estimate the controllability 
of the simulated indicators through the analysis of changes in the uncertainty, i.e. in the distribution 
of the model ensembles (eq. 4). The sizes of the ensembles were chosen compatibly with the available 
computational resources and seminal papers (Spada et al., 2023 and Popov et al., 2024).

The controllability of the indicators in time and depth was corroborated at two additional sites with 
respect to the ones of the screening analysis, namely the PAP station in the North Atlantic (Hartman 
et al., 2021) and the BOUSSOLE station, in the Northwest part of the Mediterranean Sea (Antoine et 
al., 2002). The controllability at depth was evaluated in correspondence of the peak of ocean-colour 
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chlorophyll-a concentration at PAP (15th May), thus in conditions representative of spring 
phytoplankton blooms at the two sites. Horizontal patterns of the controllability were assessed at 
the scale of the whole Mediterranean Sea, and shown at two representative periods in a blooming 
winter (11th March) and summer (8th August) days, when the satellite coverage of the basin was 
relatively high and included the BOUSSOLE station.

Table 4. Set-up of the 3D corroboration analysis in two representative marine ecosystems. 
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Atlantic Ocean Mediterranean Sea

MFC domain Global (GLO)

Iberian-Biscay-Irish seas (IBI)

Mediterranean Sea (MED)

Model NEMO-PISCES (medium complexity) NEMO-BFM (high complexity) 

Assimilated 
data

Chlorophyll-a from ocean colour 
(Copernicus Marine Service L3 
product, i.e., gridded and quality-
controlled data)

Chlorophyll-a from ocean colour (Copernicus 
Marine Service L3 product and a specific re-
gridding and quality control); chlorophyll-a and 
nutrients from biogeochemical ARGO floats

Ensemble 
generation

Perturbation of biogeochemical 
parameters, sub-grid scales and

location of features

Perturbation of initial conditions of the state 
variables and of the biogeochemical parameters

Assimilation 
method

Stochastic ensemble filter (Popov et 
al., (2024)

Singular Evolutive Interpolated Kalman filter (SEIK; 
Pham et al., 2001)

Multivariate 
analysis

Phytoplankton types and nitrate Phytoplankton types, nitrate and phosphate

Assimilation 
time

Full year 2019 cycle

(January-December)

Winter 2019 (February-March)

Summer 2019 (July-August)

Ensemble 
members

40 24

Site of 
assessment

Porcupine Abyssal Plain (PAP), 16°30' 
W, 48°50'N, 4850 m deep, seasonal 
stratification, mesotrophic 
conditions

BOUSSOLE, 7°54’E ,43°22’N, 2400 m deep, seasonal 
stratification, oligotrophic conditions

Verification 
data

Chlorophyll-a from ocean colour 
(Copernicus Marine Service L4 
product)

Same as the assimilated data
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3 Results and discussion

3.1 Screening analysis

The controllability of the indicators was highly dependent on the observable variables, as shown by 
the large range of sensitivity values in Figure 1. High sensitivities and low CV indicate relatively high 
controllability and consistency among models, respectively. In general, the features of the marine 
ecosystems (L4 versus BATS) and the hydrodynamic conditions (mixed versus stratified water column) 
impacted the controllability. The controllability was influenced also by the specific models employed 
by the ensemble (see Fig S1 in the Supplementary Material), since the coefficient of variation of the 
multi-model ensemble was even higher than 2 (see yellow colour for BATS in Figure 1). However, the 
controllability was not clearly linked to the complexity of the models, here approximated by the 
number of PFTs, but rather to the specific formulation of the processes.

In more detail, all the indicators were controllable by at least one observable variable, with some 
notable examples. The maximum concentration of surface chlorophyll-a was controlled by all the 
observable variables (but DIC), although the magnitude of the controllability depended on the site and 
hydrodynamic conditions. Differently, the oxygen and pH indicators were controlled by only one 
observable variable, either oxygen or DIC, respectively. This latter result holds at both sites and 
seasons. Still, stratified conditions favoured the controllability of oxygen in the water column, arguably 
because the oxygen profile keeps memory of the initial conditions throughout the simulation period 
when the water column is stratified. Differently, when the water column is mixed, the air-sea flux 
forces the oxygen concentration throughout the water column, rather than initial conditions, likely 
explaining the lower controllability of oxygen.

The controllability of the indicators in Figure 1 was in general higher at BATS than at L4. This reflects 
the lower production levels and fluctuations in the oligotrophic ocean site than in the mesotrophic 
coastal site. This is shown by the one-order lower concentrations and fluctuations of chlorophyll-a at 
BATS than at L4, for the phenology indicators in Figure 2. These features imply that the models 
preserve the memory of the initial conditions for a longer time at BATS than at L4, explaining the 
higher controllability of the indicators at BATS.  

The controllability of specific indicators depends also upon the trophic regimes of the two sites (Figure 
1). At the oligotrophic BATS, the primary production is phosphate-limited in the simulations of most 
of the biogeochemical models exploited here (Figure S3 in the Supplementary Material), and this is 
coherent with previous literature findings (e.g., Salihoglu et al., 2008). That explains the control of 
phosphate observations (ARGO_PO4) upon all the ecosystem indicators simulated at BATS, in both 
mixed (more evident) and stratified conditions (less evident). Confirming indirectly the relevance of 
nutrient balance in determining the nutrient control on the simulated indicator, ARGO_PO4 and 
ARGO_NO3 have a comparable control for some of the indicators in the BATS simulations of PISCES 
and ERSEM (Figure S1), which indeed have the lowest N:P ratio among the models in Figure S3. On the 
other hand, in the mesotrophic site L4, nutrients limit production at the surface only in the summer 
stratified season. This explains the marked control of phosphate profiles on both the maximum and 
timing of the surface chlorophyll-a during the stratified season in summer (PHE_maxsc and 
PHE_maxdst, respectively). At site L4, nutrient profiles do not control indicators in the winter fully 
mixed conditions, when nutrient concentrations are higher and plankton production is mainly light-
limited (Widdicombe et al., 2010).
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Figure 1. Results of the screening analysis of the controllability of the ecosystem indicators with 
respect to the observed variables at stations BATS (upper panel) and L4 (lower panel).  The height of 
the bars shows the average magnitude of the controllability by the model ensemble, i.e., the 
sensitivities in eq. 2, for the ten ecosystem indicators (rows), with respect to the seven observed 
variables (columns), during two representative periods, i.e. hydrodynamic conditions (mixed and 
stratified water column). The colours represent the coefficient of variation (CV) of the sensitivities 
across the ensemble of 5 models, eq. 3. 
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Figure 2. Multi-model ensemble reference simulations of the phenology indicators of maximum 
chlorophyll-a concentrations at the sites BATS (top plots,) and L4 (bottom), at both surface 
(PHE_maxsc 0-5 m; left) and depth (PHE_maxdc below 5 m; right). The colours of the lines distinguish 
the five different models of the ensemble (see section 2.1). The dots represent the chlorophyll-a 
observations available for comparison at the two sites. The one year-long simulation includes both 
the stratified and fully mixed three month-long periods targeted in the screening analysis.

The hydrodynamic conditions determine which specific observable variables can control the 
indicators. The most remarkable example is ocean colour, which is defined as chlorophyll-a in the 
surface layer (Section 2.2). When the column is stratified, ocean colour can control just the surface 
plankton phenology, i.e., the surface chlorophyll-a maximum concentration (PHE_maxsc) and timing 
(PHE_maxst), and not the deep chlorophyll-a maximum concentration (PHE_maxdc) and depth 
(PHE_maxdd). On the other hand, ocean colour can control most of the biogeochemical indicators 
when the water column is mixed, at both sites. At BATS, the simulated maximum depth of the mixed 
layer reached 200 m, and ocean colour can control the POC, NPP and the phytoplankton indicators 
that are integrated from the surface to that same depth (see the definitions in Section 2.2). At SITE L4, 
ocean colour can control indicators integrated from surface to the bottom at 50 m depth, because the 
mixed layer reaches the bottom of the water column when fully mixed in winter. 

The dependency of the controllability of the indicators on the trophic regimes and hydrodynamic 
conditions implies that the sensitivities are clearly dependent upon the starting time of the simulations 
that are run to compute equation 1. Such dependency is evident in Figure 1, where different ensemble 
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sensitivities were computed for simulations started in the mixed and stratified season at the two sites. 
Such dependency is supported further by figure S4, in the Supplementary Material, which shows the 
fluctuations of the sensitivities computed at lags of two-month start time of the simulations. These 
results suggest that complementary biogeochemical observation platforms should be used at different 
periods of time to control the indicators simulated by biogeochemical models.

The controllability of the indicators depended upon the specific models employed in the screening 
analysis, as demonstrated by the relatively high coefficients of variation (CV) in Figure 1 (e.g. CV>2 at 
BATS for PHE_maxdd versus ARGO_NO3). The highest CVs were often linked to outlier models (Figure 
S1 in the Supplementary Materials). For example, linked to the outlier PISCES’ controllability of the 
depth of chlorophyll-a maximum by nitrate at BATS, or to the outlier ERSEM’s controllability of 
plankton-related indicators by oxygen profiles at both BATS and L4. Such latter controllability by 
oxygen, noticeable also for BFM in Figure S1, is possibly related to the oxygen control on bacteria and 
the microbial loop, which are represented only in ERSEM and BFM as path of nutrients alternative to 
the plankton herbivorous chain (Butenschön et al., 2016; Vichi et al., 2015). Besides for controllability, 
the models were in some instances rather different in their reference simulations of the indicators 
themselves, as exemplified in Figure 2. This shows the simulations of two phytoplankton-related 
indicators, along with observations of chlorophyll-a for comparison. At BATS the chlorophyll-a 
concentration (linked to the phenological indicators PHE_maxdc and PHE_maxdd) had comparable 
mean annual values in all the model simulations, but had larger seasonal oscillation in ECOSMO and 
ERSEM than in BFM, PISCES, ERGOM and the observations. For example, ERSEM and PISCES simulated 
a change of the average values of PHE_maxdc at depth at BATS, close to 0 mgChl m-3 between January-
March, to  0.6 mgChl m-3 in May-September, matching the higher solar radiation in the summer 
months (see Figure S2 for the solar radiation at BATS in the stratified summer simulation), with 
superimposed fluctuations due to the simulated zooplankton grazing (see e.g. the drop of PHE_maxdc 
at BATS in the ERSEM simulation). Differences in the reference model simulations might lead to some 
differences in the single models to control the indicators, which might be in part captured by the CVs 
in Figure 1 (see for examples the relatively high values of the CVs of PHE_maxdd and PHE_maxdc 
across observable variables at BATS). The effect of such differences in the reference simulations might 
be not obvious in the stochastic Monte Carlo simulation framework of our controllability screening. 
These outcomes highlight the benefit of using a multi-model ensemble approach to screen the 
controllability. They also foster to quantify and possibly address the consistency of the models within 
the ensemble, e.g., by computing synthetic indexes of the dispersion of the simulated indicators.  

The controllability was not linked clearly to the complexity of the models, here approximated by the 
number of plankton types (Section 1.1), but it was rather linked to model formulation of the plankton 
physiology. For example, ERSEM and BFM were neither systematically similar each other in controlling 
the indicators, nor systematically different from the simpler models, a part for their control by oxygen 
noted above. More than to complexity, the controllability was linked to chlorophyll-to-carbon and 
nutrient content formulations in phytoplankton, in either complex or simpler models. For example, 
the carbon-based indicators of plankton production (NPP) and structure (PFT ratio), and of trophic 
efficiency (TE) were often more sensitive to the POC profiles than to the chlorophyll-a ones, at both 
sites and both water column conditions (Figure 1). This is because chlorophyll-a is a prognostic variable 
in all the models (but ERGOM), and its ratio to carbon varies in ERSEM, BFM and PISCES as a function 
of the light conditions, based on the model of Geider et al. (1997). That suggests that the carbon-
related observations of POC have a relative stronger control than chlorophyll-a observations on 
carbon-based production indicators. This is consistent with the conclusions of Wang et al. (2020), who 
demonstrated that a variable chlorophyll-to-carbon ratio model could better estimate primary 
production and deep carbon export fluxes when using BGC-Argo float backscattering observations, in 
addition to chlorophyll-a. In contrast, when the chlorophyll-carbon ratio was fixed, the controllability 
of NPP, PFT ratio, TE and POC itself by the chlorophyll-a profiles was comparable to the one by POC 
profiles (see ERGOM in Figure S1 of the Appendix). Including variable chlorophyll-to-carbon ratio in 
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phytoplankton not only improves the reliability of models (Geider, 1987), but also influence the 
controllability of the indicators simulated by the models. All the operational models of the Copernicus 
Marine Service represent this feature, including the version of the ERGOM model now used in the 
Baltic Monitoring and Forecasting center (Ringgaard et al., 2024). 

We stress that the controllability of an indicator by a model does not automatically imply that the 
model is skilled or preferable to less controllable models. As an example, Ciavatta et al (2011) showed 
that chlorophyll-a assimilated into a simplified version of ERSEM model using a constant chlorophyll-
to-carbon and Redfield formulation, was capable to control nutrients more strongly than the standard 
ERSEM formulation with variable chlorophyll-to-carbon and carbon-to-nutrients formulation. 
However, the model validation showed a deteriorated skill for ERSEM with the fixed chlorophyll-to-
carbon ratio, even to the degree that the model dynamics became unstable eventually, because the 
model had lost plasticity. These findings are in line with the suggestions of Friedrichs at al. (2006 and 
2007) that variable chlorophyll-to-carbon ratio, besides the number of phytoplankton functional 
types, can contribute to the higher portability of complex models across multiple locations, even 
though simple model can have better skill when optimized and applied at single locations.

Two supplementary sensitivity analyses (see Methods Section 2.5) confirmed further the dependency 
of the controllability on the trophic regime and hydrodynamic conditions, already shown in Figure 1. 
The first test showed that the controllability of the selected indicators with respect to the selected 
observed variables depended upon the two-month lagged starting times of the ERSEM simulations at 
L4 (Supplementary Material, Figure S4). In particular, the sensitivity of both NPP and PFT ratio were 
higher during the mixed, autumn/winter months (October, December, February) than during the 
stratified spring/summer months (April, June August), for perturbations of chlorophyll-a from both 
ocean colour and profiles. Winter controllability of POC increased more in winter than in summer for 
ocean colour only. Sensitivities to PO4 profiles were higher in spring/summer than in winter, though 
they laid one order magnitude lower than the sensitivities to chlorophyll-a. These supplementary 
results are coherent with the different sensitivities of ERSEM in the winter-mixed and summer-
stratified periods at L4 detailed in Figure S1 and synthetized in Figure 1. Ultimately, the different 
seasonal hydrodynamic and trophic conditions simulated at L4, as well as at BATS, can be related to 
the differences of the meteorological forcings used in the simulations in the two periods, as 
exemplified in Figure S2. Relatively higher winds trigger water column mixing in winter, when plankton 
growth is limited by the low light but not by nutrients (hence the higher sensitivities of the indicators 
to the background values of chlorophyll-a but not to nutrients). Differently, in summer, the solar 
radiation drives stratification and fuel primary production, which however might be limited by 
nutrients (hence the higher controllability by nutrients).

The supplementary test presented in Figure S5 showed that the results on controllability in Figure 1 
at BATS are portable to a different site, with analogous trophic and hydrodynamic regimes. In fact, the 
sensitivities of BFM at the oligotrophic, open-ocean Mediterranean site BOUSSOLE were consistent 
with those of BFM at BATS in Figure S1. The most striking examples are the similarly high sensitivities 
of the indicators to the profiles of phosphate at BATS and BOUSSOLE (Figures 1 and S5 respectively), 
for being both the sites phosphate-limited in the 1D BFM simulations. Interestingly, also the 3D 
Mediterranean model used in the corroboration analysis simulate phosphate-limited conditions in the 
BOUSSOLE area (Lazzari et al., 2012). This supplementary evidence suggests that the results in Figure 
1 can represent the controllability in contrasting trophic and hydrodynamic conditions (open-ocean 
oligotrophic condition versus coastal mesotrophic conditions) that we can encounter in the North-
East Atlantic and Mediterranean Sea considered in the corroboration analysis (see also the discussion 
in Section 3.3 on the portability of the control results from 1D to 3D model configurations). 
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3.2 Corroboration analysis

3.2.1 Atlantic Ocean: PAP station

When corroborating the controllability of the indicators with the (pre)operational model of the 
Atlantic Ocean, the assimilation of surface ocean colour improved the simulation of chlorophyll-a 
observation at the PAP station (Figure 3). In addition, assimilation effectively controlled the temporal 
and vertical simulation of the unobserved indicators at the same site (Figure 3 and 4). This is shown 
by (i) CV ratios that are typically below 1 in both Figures 3 and 4, indicating assimilation decreased the 
ensemble spread (eq. 4), as well as by (ii) relevant shifts of the ensemble means of all the indicators, 
indicating significant assimilative changes of the indicator trajectories. The points (i)-(ii) are more 
evident from March to October in Figure 3 and confirmed by the vertical profiles shown in Figure 4.

The comparison of the prior and posterior time series in Figure 3a and 3b indicates that the 
assimilation of chlorophyll-a (L3 product) not only controlled, but also significantly improved the 
simulation of the phytoplankton phenology, i.e., the initiation and amplitude of the spring bloom from 
mid-March to May. This period had the highest uncertainty of the prior distribution (i.e. the largest 
spread of the ensemble of states enveloping the observations, before the assimilation of the 
observation), and the assimilation improved the model precision around the observations by halving 
the ensemble spread in the posterior distribution (see CV ratios = ~0.5 in March-April in Figure 3b), 
explaining the lowest values of the variance ratio. The assimilation corrected a negative bias of 
chlorophyll-a in summer from June to September, when the a priori uncertainty was halved. The CV 
ratio reached 0.6 in October (Fig 3b), when the posterior captured an observed chlorophyll-a peak 
neglected by the prior. This increase of phytoplankton in autumn is often observed at PAP in 
correspondence with seasonal water column mixing and surface nutrient repletion (e.g., Binetti et al., 
2020). From November to February, the CV ratio approached 1 (Fig 3b), indicating a lower control of 
the assimilated ocean colour on the simulated chlorophyll-a in late autumn and winter than in spring 
and summer. This can be explained by the fact that the mean and variance of the prior ensemble were 
already in quite good agreement with the observations, requiring smaller correction for the bias and 
uncertainty components in winter than in summer (Figure 3a and 3b). Furthermore, at the latitude of 
the PAP station, the ocean colour observations are typically fewer in winter than in the summer, due 
to cloud cover and low solar zenith angle (Sathyendranath et al., 2019), implying a lower constrain in 
winter than in summer. The corroboration also indicated that ocean colour can control the indicators 
at the onset of stratification and phytoplankton bloom (April-May in Figure 3a and 3b), which is a 
transition phase that was not explored in the controllability screening analysis in Figure 1.
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Figure 3. Time series of the indicators at PAP station, for the prior (left panel) and posterior (right 
panel) ensembles, in the months 2019. The dispersions of the 40 member ensembles (grey lines) are 
shown along with their mean value (black line) and the ratios of the coefficients of variation in eq. 4 
(red lines in the plots of the posteriors on the right). The plots show chlorophyll-a (CHL, a and b), 
phytoplankton type ratio (PFT ratio, c and d), net primary production (NPP, e and f), trophic efficiency 
(TE, g and h) and particulate organic carbon (POC, i and j).

Figure 4. Vertical distribution of the chlorophyll-a concentration (CHL, upper panels) and POC (lower 
panels) at PAP station. For each indicator, the distributions of the prior (left graph) and posterior (right 
graph) and the ratio of their variance (eq. 4, right graph, red line) are presented for 15th May. 
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Ocean colour assimilation also markedly controlled the unobserved indicators in Figure 3, which all 
have CV ratios below one for most of the year (Fig. 3d, 3f. 3h, 3j). For these indicators, however, the 
skill of the analysis cannot be validated due to the lack of observations. The temporal patterns of the 
changes in both the ensemble mean and variance reflect the patterns of chlorophyll-a. In spring and 
summer, for all unobserved indicators, ocean colour assimilation reduced markedly the high 
uncertainty of the prior (see CV ratios below ~0.4, in general, from mid-March to September for all 
the indicators in Figure 3) and markedly shifted the ensemble mean, often in not obvious ways. For 
example, assimilation of total chlorophyll-a changed the plankton community structure differently 
depending on the season (PFT ratio in Figure 3c and 3d, i.e., the ratio of diatoms to diatoms plus 
nanophytoplankton in PISCES; see Section 2). The reduction of the unobserved peaks of chlorophyll-a 
in the prior in March and April (Fig 3b) led to peaks of PFT ratio in the posterior (Fig. 3d). These are 
due to a strong reduction of the nanophytoplankton biomass. On the other hand, large PFTs biomass 
slightly increased with respect to small PFTs (PFT ratio from ~0.422 in Fig 3c to ~0.427 in Fig 3d) to 
produce the chlorophyll-a bloom observed in May (Fig 3b). These changes are consistent with previous 
findings that total chlorophyll-a assimilation changes primarily the simulated dominant PFT (Ciavatta 
et al., 2011, 2018). Differently, the PFT ratio remained substantially unchanged, and in favour of the 
nanophytoplankton fraction, from June to September (Fig 3d), when the chlorophyll-a in the posterior 
(Fig 3b) corrected the summer negative bias of chlorophyll-a in the prior (Fig 3a). The correction of 
this bias was rather linked to the increase of primary and secondary production and POC in summer 
(see the maxima in August and September of the posterior of NPP: Fig 3f, TE: Fig 3h and POC: Fig 3j). 
All the above changes are consistent with biogeochemical and trophic dynamics that had been 
previously observed at PAP, i.e., shifts from large to small phytoplankton from spring to summer, 
accompanied by increased primary production, grazing and sinking of particulate organic carbon 
(Binetti et al, 2020).

Ocean colour assimilation produced smaller changes of the unobserved indicators in late autumn and 
winter, when CV ratio reached values around one in some instances (see, e.g., PFT ratio: Fig 3d, TE: 
Fig 3h and POC: Fig 3j in November and December). This corresponds to the small changes of 
chlorophyll-a due the close fit of the prior to the observations, as well as by the sparsity of chlorophyll-
a data available for assimilation. Both factors led to smaller changes of the prior of the unobserved 
indicators in late autumn and winter.

Figure 4 shows that the assimilation of surface ocean colour had a significant impact on the estimated 
vertical distribution of chlorophyll-a during the spring bloom: the CV ratio (top-right panels of Fig. 4) 
is ~0.2 along the whole water column, indicating that the ocean colour’s control extended below the 
simulated mixed layer depth (~20 m at the time of the year in Fig. 4). The posterior ensemble mean 
increased significantly in the top 40 meters, reproducing the bloom peak missed by the prior, as noted 
for the surface layer peak in mid-May shown in Figure 3a. While the prior was exhibiting a sub-surface 
maximum at ~ 60 meters for some ensemble members, such maximum is absent in the posterior 
ensemble.  Instead, the posterior slightly enhanced the chlorophyll-a maximum at ~20-meter depth, 
more consistent with previous observational evidence at the study site (Binetti et al., 2020). Although 
the ensemble means of the posterior and prior are not significantly different below 70 meters, the CV 
ratio remains ~0.2 also in the deeper waters.

Figure 4 also shows that the assimilation of surface ocean colour controlled the ensemble spread of 
POC: the CV ratio is ~0.3 up to 70 m depth and ~0.4 in deeper waters. The prior and posterior ensemble 
mean, in this case, were not significantly different, similarly to the results for POC in May shown in Fig 
3j.
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3.2.2 Mediterranean Sea and BOUSSOLE station

The results of the corroboration of the indicator controllability with the 3D model of the 
Mediterranean Sea (Figures 5 and 6) shows that ocean colour assimilation reduced the ensemble 
dispersion in the simulation of the chlorophyll-a and phenological indicators at BOUSSOLE, as shown 
by the CV ratio below 1 for most of the simulated periods (Figure 5b). Assimilation also significantly 
impacted the simulation of all the other unobserved indicators, in both mean values and dispersion 
(fig 5d, f, h, and j). The ensemble spread, however, was increased in some instances leading the CV 
ratio to values higher than one (e.g., for POC in fig 5j). In general, we noted quite different effects on 
the indicators in the winter and summer (see, e.g., the CV ratio values above and below 1, respectively, 
for TE in Fig 5j).

In winter, the assimilation controlled chlorophyll-a by shifting its peak form February to March, thus 
delaying the initiation of the simulated bloom (Fig. 5b). In this case the uncertainty was decreased, 
since the CV ratio was below 1, in February. In summer, the assimilation halved the CV. 

Assimilation controlled also the estimation of the unobserved indicators in Figure 5. In some instances, 
assimilation decreased the uncertainty of the estimates, in particular for the PFT ratio and trophic 
efficiency in summer, with CV ratio of ~0.5 (Fig 5d) and 0.7 (Fig. 5h), respectively. In other instances, 
the strong control increased the uncertainty, in particular for POC and trophic efficiency in winter 
(CV>1 in Fig 5j and 5h, respectively). The temporal patterns of the changes in the mean values and the 
spread of the ensemble were linked to the ones described for chlorophyll-a (Fig. 5b).

The capability of the assimilation to control indicators at BOUSSOLE (Figure 5) and at PAP (Figure 3) 
shows some similarities. For example, at both BOUSSOLE (Fig 5d) and PAP (Fig 3d) total chlorophyll-a 
assimilation impacted the PFT ratio differently in winter than in the summer. At BOUSSOLE, the 
phytoplankton bloom was corrected in February by lowering the dominant large phytoplankton type 
relatively to the small phytoplankton (the ratio decreased from 0.55 to 0.43 in February). On the other 
hand, in summer the mean PFT ratio was kept substantially unchanged in favour of the small fraction, 
while the ensemble spread halved. As in PAP, the correction of the summer chlorophyll-a bias 
substantially increased the primary and secondary production and POC (see the posterior maxima of 
NPP: Fig. 5f, TE: Fig. 5h and POC: Fig 5j in August and September). These changes in the structure of 
the plankton community in winter and in plankton production in summer are coherent with previous 
findings on plankton and biogeochemical dynamics at BOUSSOLE, i.e., shifts from large to small 
phytoplankton and increased primary production from winter to summer (Álvarez et al., 2023; Mayot 
et al., 2017).

Figure 6 shows that ocean colour assimilation controlled the vertical patterns of chlorophyll-a and POC 
at BOUSSOLE in both winter and summer. During the winter bloom (top-left panels) the assimilation 
reduced the uncertainty of the chlorophyll-a profile in the first 70 meters, while the mean value of the 
profile did not change significantly with respect to the prior non-assimilative ensemble simulation. 
Such persistence of the chlorophyll-a mean was contrasted by POC, which decreased in concentration 
(by one order magnitude) and increased in relative uncertainty (CV ratio up to 2) throughout the water 
column (bottom-left panels), possibly because of the continued decrease of POC during the previous 
months (Figure 5j). In summer (Fig. 6, right-panels) the ensemble mean and spread of the deep 
chlorophyll-a maximum shallowed and increased in magnitude, and this was reflected by analogous 
changes in the distribution and uncertainty of POC.
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Figure 5. Time series of the indicators at BOUSSOLE station, for the prior (left panel) and posterior 
(right panel) ensembles. The simulations were performed for winter and summer 2019.
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Winter Summer

Figure 6. Vertical distribution of the chlorophyll-a concentration (upper panels) and POC (lower 
panels) at BOUSSOLE station.  For each indicator, the distributions of the prior (left graph) and 
posterior (right graph) and the ratio of their variance (right graph, red line) are presented for winter 
(11th March 2019) and summer (8th August 2019). 

The controllability of the indicators by multiplatform assimilation at the scale of the whole 
Mediterranean Sea is evaluated for winter in Figures 7 and summer in Figure 8. 

In winter (11th of March, Figure 7), assimilation produced three different types of effect in the different 
Mediterranean sub-domains. Firstly, the satellite data strongly controlled the spatial distribution of 
chlorophyll-a in the most productive areas of the Mediterranean Sea (i.e, the northwestern basin) 
producing both positive and negative chlorophyll-a increments during the bloom (see Fig. 7b). 
Secondly, systematic positive increments occurred in the two marginal seas (i.e., Aegean and Adriatic 
Seas). Finally, the assimilation mostly decreased the chlorophyll-a concentration in the rest of the 
Mediterranean Sea. The map of the CV ratio of chlorophyll-a shows that corrections mostly lower the 
chlorophyll-a uncertainty (see the Aegean, Alboran, Levantine and northern Ionian seas in Fig. 7b). In 
the north-western Mediterranean, the control of the complex spatial pattern of the bloom impacts 
the spatial variability of the uncertainty of chlorophyll-a. The CV ratio of NPP decreased quite 
homogeneously in space (Fig. 7d). On the other hand, the uncertainty of the PFT ratio decreased 
spatially similarly to the uncertainty of chlorophyll-a, confirming the link between this indicator and 
chlorophyll-a (Figure 7c). In several areas, the decrease of chlorophyll-a favours the small 
phytoplankton groups which are characterized by faster growth rate (e.g. 3.5 d-1 for smaller 
picophytoplankton versus 1.5 d-1 for larger dinoflagellate in BFM: Lazzari et al, 2012), leading NPP to 
increase in Fig. 7d. Reducing biomass of the large phytoplankton group decreased the rate of transfer 
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of organic matter toward zooplankton and detritus (e.g., negative anomaly > 0.6 in the central 
Mediterranean, Fig. 7e). Such decrease over time decreased TE and POC and increased their 
uncertainty in large areas of the Mediterranean (Figures 7e and 7f, respectively). The concentration 
of large phytoplankton was increased by chlorophyll-a increments in March in some productive areas, 
e.g., in the northwestern Mediterranean as already noted in Figure 5. In this case, NPP increased in 
relation to the overall higher biomass of the primary community. Here POC still decreased, because it 
integrated the POC decrease in the previous simulated months (Fig. 5).

A b c

d e f

Figure 7. Ocean-colour chlorophyll-a [mg m-3] (a) observed and (b) a-priori simulated in the 
Mediterranean Sea on 11th March. Second and third rows in (b) report the assimilation increments on 
chlorophyll-a and the coefficient of variation (CV) ratio. A priori, increments and CV ratio for large over 
all phytoplankton: PFT ratio, (c) primary production: NPP (d), trophic efficiency: TE (e), and POC (f).  
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In summer (8th of August, Figure 8), the assimilation controlled chlorophyll-a and reduced the CV ratio 
in the whole Mediterranean Sea (Fig. 8b). In summer, however, the impact of assimilation was lower 
than in the winter. This is due to the lower values of chlorophyll-a observed in summer than in winter 
in general (up to one order magnitude differences in chlorophyll concentration in Fig 7a and 8a) along 
with one order magnitude smaller bias in winter than in summer (Figure 5a). This led the increments 
of chlorophyll (Fig. 8b) to be ten-fold lower than those observed in the winter (Fig. 7b). Consequently, 
the impact of chlorophyll-a assimilation on the indicators was relatively low and the spatial patterns 
of the indicator increments are not straightforwardly linked to those of chlorophyll-a, see, e.g., the 
PFT ratio (Fig. 8c). Local trophic and physical conditions likely significantly changed the spatial 
structure of the ensemble covariances, hence the spatial changes of the plankton analysis driven by 
chlorophyll-a assimilation. For example, NPP had positive increments in the Northern part of the 
Mediterranean (in particular in the northwestern basin) and negative increments elsewhere with 
decreasing uncertainty (lower CV) across the whole Mediterranean Sea (8d). 

The change in phytoplankton influenced the TE increments (Fig. 7e). For example, the increases of TE 
in the eastern Mediterranean Sea are linked to chlorophyll-a decreases. This counterintuitive feedback 
can be related to a delay in the response of zooplankton to phytoplankton changes. Higher 
uncertainties correspond to the positive TE increments, highlighting that small changes of 
phytoplankton dynamics in stratified and oligotrophic conditions can produce amplified responses in 
the higher trophic levels of the BFM model. In the rest of the Mediterranean Sea, the corrections of 
TE were very small, and TE uncertainty decreased, as the CV ratio of the other indicators. 

POC corrections were not always linked to the increments of chlorophyll-a, and POC uncertainty 
mostly increased with assimilation (Fig. 8f). Interestingly, POC dispersion increased less in the areas 
where BGC-Argo profiles were available for assimilation, i.e., in the northwestern Mediterranean, in 
the areas east and south of Crete, south of Cyprus, and in the southern Adriatic Sea. This suggests that 
the assimilation of chlorophyll-a profiles might have mitigated the increase in POC dispersion.

a b c
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Figure 8. Ocean-colour chlorophyll-a [mg m-3] (a) observed and (b) a-priori simulated in the 
Mediterranean Sea on 8th August 2019. Second and third rows in (b) report the assimilation increments 
on chlorophyll-a and the coefficient of variation (CV) ratio. A priori, increments and CV ratio for large 
over all phytoplankton (c) primary production: NPP (d), trophic efficiency: TE (e) and POC (f).  

3.3. Portability of the control results from 1D to 3D systems

The 3D corroboration analysis overall confirmed the results of the 1D screening analysis, but it also 
showed that the actual assimilation of observations can expand the number of indicators that can be 
controlled operationally. 

For example, in the North Atlantic modelling system, the 3D assimilative results in Figure 3 and Figure 
4 corroborated that the ecosystem indicators are controlled by the assimilation of ocean colour during 
winter mixed conditions, similarly to the 1D sensitivity analysis (Figure 1). However, in Figure 3b we 
noted that the assimilated ocean colour chlorophyll had a lower control of chlorophyll-a in late 
autumn and winter than in spring and summer, in relation to the season-dependant misfit of the 
model to the ocean colour data, and the season-dependant availability of ocean-colour data for 
assimilation. This outcome differs from, but does not contradict, the screening in Figure 1, which 
showed OC controlling the phenology indicators more in the mixed winter season than in the stratified 
summer period (higher sensitivities of most indicators with respect to OC in “mixed” than “strat”, at 
both BATS and L4 in Figure 1). The difference in the control results for the 1D and 3D analyses are 
therefore explained by the “real operational situations” of a 3D simulation which might be biased, and 
ocean colour data that might be unavailable for assimilation. These situations encountered in the 3D 
North Atlantic simulation were not represented in the 1D screening analysis. 

In the Mediterranean modelling system, the results in Figures 5-8 corroborate the outcome of the 
sensitivity shown in Figure 1 on the capacity of ocean colour chlorophyll-a to control the indicators. 
They confirm the ocean colour control of the surface concentration of chlorophyll-a (PHE_maxsc) in 
winter. However, ocean colour assimilation controlled the indicators also in summer in the 3D 
Mediterranean simulations (e.g. on POC in Figure 6 and 8), while the OC control of the indicators in 
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the 1D analyses was negligible in the summer (“strat” season in Figure 1). In the Mediterranean Sea, 
the above links between the controllability evaluated in 1D and 3D are further confirmed by the results 
of the supplementary 1D screening analysis of BFM at BOUSSOLE (Figure S5 in the Supplementary 
Material). Again, the ocean colour control on indicators was evident in winter mixed conditions but 
not in the summer stratified conditions in 1D (Fig. S5 in the supplementary material). 

The portability of results from 1D model configurations to 3D set-ups is a relevant, open matter in 
marine ecosystem modelling, in particular in the framework of parameter optimization (e.g. Wang et 
al., 2020; Hoshiba et al., 2018; Kane et al., 2011; Friedrichs et al. 2007, Oschlies and Schartau, 2005). 
Computationally cheap 1D models allow much faster analysis than expensive 3D configurations. 
However, horizontal transport and ecosystem variability make challenging using 1D optimized 
parameters in 3D. For example, Hoshiba et al (2018) found that parameters optimized by data 
assimilation in 1D model and used in the 3D model led the 3D model to outperform the 1D, by 
benefiting from horizontal transport. On the other hand, Wang et al. (2020) found that the direct use 
of 1D optimized parameters led to some degradation of the 3D simulations, because of both advection 
and the ecosystem heterogeneity. This latest issue has been addressed successfully in 3D applications, 
by simultaneously optimizing parameters at different stations to obtain one single set for the 3D 
model (Kane et al., 2011; Oschlies and Schartau, 2005) or by optimizing the parameters at contrasting 
sites and use regionally variable parameters in the 3D model (Hoshiba et al., 2018).

Our analysis of portability of indicators control from 1D to 3D configurations is unprecedented, to the 
authors’ knowledge. The results presented here suggest that some features of realistic operational 
systems such as time-variable model bias and data availability can lead assimilation to control 
ecosystem indicators differently than the simple perturbation of the initial conditions in the 1D 
screening analysis. Arguably, additional sources of difference between the screening and 
corroboration results are the 3D horizontal transport, the ecosystem variability, and the use of 
multivariate ensemble data assimilation methods. At one specific location in a 3D framework, 
horizontal transport of nearby water masses that underwent ocean colour analysis can preserve 
memory of the assimilative control through time, in particular when the gradients are relatively low 
in the assimilated two-dimensional ocean colour fields. This memory is not available in 1D 
configurations. Our screening at 1D sites with contrasting trophic and hydrodynamic conditions (i.e. 
L4 and BATS in the Atlantic, supplemented by BOUSSOLE in the Mediterranean, in both fully mixed 
and stratified seasons) took account of different conditions encounterable within the three-
dimensional domains of the controllability corroboration, in analogy with Hoshiba et al., 2018, Kane 
et al., 2011; Oschlies and Schartau, 2005 for parameter optimization. Still, the 1D screening cannot 
capture the whole spatial-temporal gradients of the 3D simulated ecosystems. Finally,  the ensemble 
multivariate assimilation schemes applied here in the 3D corroboration corrected a larger sub-set of 
model variables (phytoplankton and nutrients: see Table 4) than the initialization in the 1D screening 
(phytoplankton only: see Table 2). This leads the 3D ocean colour assimilation to correct different 
levels of the trophic web simultaneously, with an overall stronger control on the 3D simulation of the 
indicators than in the 1D screening. 

4. Conclusions and recommendations

All the marine ecosystem indicators were constrained by the observable variables investigated in this 
work. The indicators of phytoplankton phenology were controlled, and also improved, when merging 
the biogeochemical observations with the models. The indicators of the plankton community 
structure and production were also controlled, and their uncertainty decreased in general. Trophic 
efficiency and POC were also controlled, but their uncertainty increased in some instances. The degree 
of controllability of the indicators was in general higher when internal trophic processes dominated 
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over external forcings in driving the variability of the indicators, i.e., dissolved nutrient limitation 
versus air-sea oxygen flux. The model formulations of the processes, rather than their complexity, 
influenced the controllability of the indicators.

The methodological framework proposed here is unique in the fact that it assembled five operational 
biogeochemical models to assess the controllability of the indicators, by using the same physical and 
forcing set-ups. Such multi-model ensemble approach makes the assessment of controllability more 
robust with respect to the potential differences among the specific biogeochemical models. The use 
of the one-dimensional configuration allowed us to perform an extended Monte Carlo-based 
sensitivity analysis, which would not be feasible with the three-dimensional operational systems. We 
note that the screening results were more conservative than those of the corroboration. In fact, 
indicators controllable in 1D were in general confirmed controllable in the 3D systems, while indicators 
non controllable in 1D were found, in several cases, controllable in the 3D corroboration analysis. This 
was related to differences between realistic operational situations (i.e., time-variable model bias and 
availability of data for assimilation), though horizontal processes, ecosystem variability, as well as 
multivariate assimilative analysis are likely additional sources of difference. Therefore, the portability 
of the results from one- to three-dimensional configurations is not straightforward and requires 
focussed corroboration analyses with the operational system, informed by preliminary screening 
analyses with computationally efficient model configurations.  

The ensemble framework proposed here provides a tool to assess the uncertainty of the indicators. 
The definition of controllability based on the reduction of the ensemble spread is useful in providing 
a quantitative index synthetising results across models, domains, and seasons. Here we considered 
also shifts of the ensemble mean value as an indication of control in qualitative discussion of the 
results. Future applications should include shifts of the mean in the control-index quantitatively 
(Skákala et al., 2024).

Controllability can in some cases increase the uncertainty of the estimated indicators because non-
linear dynamics can increase the spread of the ensemble fuelled by perturbations of the observable 
variables. Also, controllability does not necessarily imply model skill in estimating the indicators: this 
needs to be validated with independent observations. In our case the only available observations were 
for the plankton phenology indicators. We recommend increasing and sustaining the observation of 
biogeochemical and biological variables to be able to validate more extensively the indicators 
simulated by models. Of particular interest is the observation of biogeochemistry in the ocean interior 
and the acquisition of more data of plankton biomass, composition, and production.   

Ultimately, we recommend that the assessment of controllability becomes a standard practice in the 
design of operational monitoring, reanalysis and forecast systems, along with other established 
practices such as product validation. The controllability analysis will define what observations should 
be monitored and assimilated to effectively constrain the indicators delivered to the users of 
operational marine services.
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Supplementary material

Figure S1. Results of the sensitivity analysis of the ecosystem indicators with respect to the observed 
variables at station BATS (upper panel) and L4 (lower panel). The height of the bars shows the 
magnitude of the sensitivities in eq.1, for the ten ecosystem indicators (rows), with respect to the 
seven observed variables (columns), during two representative seasons (mixed and stratified water 
column), computed with each of the five biogeochemical models (colours).
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Figure S2. Wind speed and solar radiations data used as meteorological inputs in the screening analysis 
in the ninety-days long simulations of the mixed and stratified seasons at stations BATS and L4 
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Figure S3 Multi-model reference simulations of the nitrogen to phosphate ratio at BATS. The colours 
of the lines distinguish the five different models of the ensemble (see section 2.1). The one year-long 
simulation includes both the stratified and fully mixed three month-long periods targeted in the 
screening analysis.
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Figure S4. Dependency of the controllability of biogeochemical indicators on the time of the year when 
the model simulation is started. The plots show the sensitivities in eq. 1 for three selected indicators 
(net primary production: NPP, particulate organic carbon: POC, and plankton community structure: 
PFT ratio) with respect to three observable variables (surface ocean colour and profiles of chlorophyll-
a and profiles of phosphate) computed in six simulations of the model ERSEM, starting with two-
month lags, lasting for three-months, at Site L4.
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Figure S5. Results of the sensitivity analysis of the ecosystem indicators with respect to the observed 
variables at station BOUSSOLE, in the Northwestern Mediterranean Sea. The height of the bars shows 
the magnitude of the sensitivities in eq.1, for the ten ecosystem indicators (rows), with respect to the 
seven observed variables (columns), during two representative seasons (mixed and stratified water 
column), computed with the same model BFM of the 3D Mediterranean Sea corroboration analysis.
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