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ABSTRACT: Phytoplankton are essential for the health of our
oceans, yet existing in situ methods for monitoring phytoplankton
abundance and community structure are limited, with relatively
poor spatiotemporal coverage and taxonomic resolution, partic-
ularly among the nanoplankton size range. Here, we build on
previous work and present field testing of a novel reagent-free
fluoro-electrochemical technique for monitoring changes in nano-
plankton abundance and community structure in natural seawater
samples. This was achieved through the construction of a prototype
sensor, which was then tested over a 3-month Spring−Summer
period in 2023 with samples collected from the L4 station (Western
English Channel). The measurements made by our sensor were
successfully validated alongside microscope-based taxonomic
enumerations and analytical flow cytometry. Of the phytoplankton functional groups of interest, our results demonstrate
particularly strong correlations between the sensor and both microscope-based taxonomy and flow cytometry for enumerating small
coccolithophorids (i.e., calcifying Isochrysidales, of the Gephyrocapsa genus) and between the prototype and microscope-based
taxonomy for enumerating diatoms. We demonstrate that the inclusion of traditionally hard to identify nanoflagellates in our
classifications has minimal effect on our ability to monitor overall shifts in community structure and bloom detection. Taking things
forward, the potential for in situ deployment is discussed.
KEYWORDS: ocean sensors, ocean monitoring, marine phytoplankton, nanoplankton, nanophytoplankton, electrochemical sensors,
phytoplankton ecology

■ INTRODUCTION
Unicellular phytoplankton play an integral role in the health of
our oceans; they produce oxygen and fix the organic carbon
that drives the biological carbon pump, while also functioning
as the base of marine food webs, making them critical for
biodiversity and ecosystem services. To better understand the
impacts of climate change, and increased human impact on
marine ecosystems, there is a pressing demand for high-
resolution spatiotemporal monitoring of phytoplankton
communities, which act as passive sentinels of change.1 In
particular, there is a need to quantify shifts in the abundance of
ecologically relevant functional groups of phytoplankton, such
as coccolithophores, diatoms, and dinoflagellates.2 These
groups have members that are bloom-forming, and their
phenology typically reflects seasonal changes in environmental
forcing. Gaining detailed insight into how such community
dynamics are responding to a rapidly changing marine
environment is therefore essential for understanding the

broader ecological implications of climate change, along with
assessing the direct side effects of anthropogenic activities. This
is especially pertinent as new ventures seek to exploit the ocean
for a variety of clean energy and net zero technologies,
including growing interest in marine carbon dioxide removal
(mCDR).3

Existing methods for monitoring in situ phytoplankton
community structure and abundance have previously been
summarized,4 and include microscope-based taxonomy, flow
cytometry, imaging flow cytometry, spectroscopy, and
molecular techniques. While each method has its own merits,
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there are a number of trade-offs to be considered. Of relevance
to this study is the ability to accurately quantify the abundance
of cells belonging to relevant taxonomic or functional groups
per unit volume seawater and the feasibility of high
spatiotemporal resolution data collection. Microscope-based
taxonomy is often considered the most accurate method for
establishing the abundance of cells per unit volume, where in
most cases, unicellular phytoplankton can be identified by a
trained taxonomist at the genus and species level. In terms of
spatiotemporal resolution, microscope taxonomy is limited:
samples are collected at single points in space and time, and
cells must be preserved with a fixative and left for >24 h to
settle before identification and enumeration.5 Flow cytometry
provides rapid insight into community structure, and measure-
ments can be obtained within minutes of obtaining both living
and fixed samples from the environment. Cells can be grouped
by clustering of light scattering and autofluorescence proper-
ties. This is particularly advantageous to distinguish cyanobac-
teria from eukaryotic phytoplankton within the picoplankton
size range (<2 μm), and cryptophytes from the nanoplankton
range (2−20 μm), due to their unique autofluorescence
properties (driven by the presence of phycoerythrin).
However, when it comes to distinguishing other ecologically
relevant groups of the nanoplankton size fraction, only
coccolithophores are quantifiable due to their unique light-
scattering properties.6−8 The emergence and continual
development of imaging flow cytometry is a step forward in
terms of categorizing plankton into ecologically relevant
groups. These devices use a combination of images and
cytometry measurements to classify marine microorganisms.9

Importantly, they can be used in situ, either through ship-based
deployment or on buoys;10,11 thus, greatly enhancing the
potential spatiotemporal resolution of measurements. Although
it is evident that these devices perform well at the higher end of
the phytoplankton size scale, e.g., for microplankton (20−200
μm), the ability to classify accurately in the nanoplankton size

range is somewhat limited by the resolution of images and the
human input required to train the image-based machine
learning.12−17 To improve the characterization of the nano-
plankton size fraction, previous studies often complement
microscope taxonomy and cytometry analyses with molecular
interpretations;14,18 while this can offer improved taxonomic
resolution, molecular insight only provides values for relative
abundance, which can be subject to pronounced bias. Similarly,
in situ hyperspectral measurements of particle absorption
spectra can provide qualitative indications of the phytoplank-
ton community structure through the detection of different
chlorophyll pigments and phycoerythrin, but does not provide
a quantitative indication of abundance.19

A recently introduced fluoro-electrochemical technique
offers game-changing new opportunities for distinguishing
cells into functional groups, with potential for autonomous in
situ monitoring.4,20−23 This reagent-free technique relies on
controlled, electrochemically driven, oxidative destruction of
cellular chlorophyll a (herein, Chl a) fluorescence over 10s of
seconds in seawater samples, whereby the measured electrical
charge required to “switch off” the Chl a fluorescence of an
individual cell can be combined alongside basic properties of
two-dimensional (2D) cell images (e.g., effective cell radius) to
classify cells. The key novelty of this approach comes from the
differences in the relative susceptibility to oxidative stress
across different phytoplankton functional groups. Using
random forest machine learning, this method has demon-
strated an excellent degree of accuracy when tested with >50
laboratory cultures of marine phytoplankton.4 This prior work
focused on the classification of nanoplankton, as it was
identified that existing methods face more limitations when
classifying phytoplankton in this size range. From previous
studies of natural communities, in both coastal24−28 and open
ocean environments,7,14,29,30 it is considered that nanoplankton
can often dominate the phytoplankton biomass; with a large
proportion of this size fraction being bulk classified by

Figure 1. (a) Map of the UK’s South West Peninsula, showing the location of the L4 sampling station in the Western English Channel. (b)
Example of normalized Chl a fluorescence transient data for a single phytoplankton cell, following the onset of potential (at time 0 s, dotted black
line) and with a current ramping of 10 μA s−1. The dashed red markings highlight the time point, t50, where normalized fluorescence values were
reduced by 50%. (c) Simple schematic diagram of the prototype sensor (adapted from Barton et al. 2023), detailing the following components:
custom-built galvanostat (A) connected to the working electrode (disc) and counter electrode (rod); camera (B); light-emitting diode (LED) input
source (C); dichroic mirror and emission filter (D); peristaltic pump (E), for control of sample in, and waste out, with arrows indicating direction
of flow; and three-dimensional (3D) printed electrochemical cell chamber (F), where phytoplankton settle by gravity onto the surface of the
working electrode, allowing for the fluorescence of multiple cells to be monitored simultaneously. The optics are all part of a modular open-Frame
microscope design, and all of the components listed above are housed inside a “black box”, to aid prototype transport and to minimize
contamination from stray light when making fluorescence measurements. Sample uptake and waste output tubes are fed into vials kept on the
outside of the box (see Figure S1 for photographs of the prototype).
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taxonomists as “nanoflagellates” or “phytoflagellates”, when
cells are similar in organic structure, and lack inorganic features
for taxonomic identification.28,31 Indeed, a long-term study of
the pelagic phytoplankton community of the L4 station
(Western English Channel, see Figure 1a), has demonstrated
that on average, over a 15-year period, nanoflagellates can
make up >80% of cell counts per unit seawater volume.5

Taking this into account, for the fluoro-electrochemical
technique to usefully categorize individuals into key functional
groups, it must be able to minimize misidentification with this
broad group of unknown nanoflagellates; or, even better,
provide some indication of what these nanoflagellates might
be. Flow cytometry also conducted on samples from the L4
station has only been able to monitor changes in the following
groups of the nanoplankton fraction: coccolithophores,
cryptophytes, and unknown nanoeukaryotes.6,18 While pre-
liminary work using the fluoro-electrochemical technique on
laboratory cultures has demonstrated promising classification
accuracy for key functional groups in the nanoplankton
fraction,4 a true test of its potential is validating its ability to
quantify the abundance of functional groups in natural
samples.
To this end, a portable prototype sensor was assembled and

used to obtain fluoro-electrochemical measurements of the
phytoplankton community structure from natural seawater
samples collected at the aforementioned L4 station over a 3-
month period during Spring−Summer 2023. This coincided
with record high temperatures for June at the station,
associated with a marine heatwave across the North Atlantic
region.32,33 Working with the nanoplankton size fraction
specifically, we used our technique to classify unknown cells
on a weekly basis to track changes in the abundance of key
functional groups. This was validated against measurements
obtained by microscope taxonomy (both conventional light
microscopy and scanning electron microscopy), and cytometry
for calcified cells. Two iterations of the validation were
processed: one that classified cells based on the most abundant
key functional groups that were found at L4: diatoms,
dinoflagellates, and calcifying Isochrysidales (i.e., small
coccolithophorids <10 μm ⌀, dominated by the Gephyrocapsa
genus), and one that also included suspected nanoflagellates.
We assessed the performance of the technique for monitoring
the overall shift in the community over the 3-month period as
well as a more detailed investigation of the classification
performance of each group specifically.

■ MATERIALS AND METHODS
Electrochemical Technique and Prototype Sensor.

The underlying electrochemical principles and methodology
have been described in previous work.4,21 In summary,
phytoplankton cells deposited on the surface of a carbon
electrode are exposed to an increasing concentration of
oxidants in the seawater (hydrogen peroxide, hydroxyl radicals,
hypobromous acid, dichlorine, and possible others), driven in a
controlled manner by a constant ramping of electrical current
using a galvanostat (in this work, 10 μA s−1). As a result, a
rapid decay of Chl a fluorescence of individual phytoplankton
cells immobilized on the electrode is observed in the order of
10s of seconds (see Figure 1b); where the total electrical
charge (driven by the constant ramping current), after time
“t50”, required to switch off normalized Chl a fluorescence by
50% can be calculated for each cell.21 The distinctive nature of
this fluorescence decay, both in terms of half-life and the shape

of the decay transient, has been demonstrated to be highly
functional group specific.4 In addition to the fluorescence
imaging of Chl a, corresponding brightfield images of each
individual are analyzed to derive secondary information about
the 2D size and shape (e.g., effective cell radius, aspect ratio,
and circularity). A combination of both the charge at t50 and
size and shape measurements can then be used to classify cell
types against a trained “susceptibility library” derived from
laboratory culture measurements.
To test the applicability of this method in classifying and

enumerating unknown cells in natural seawater a custom-built
semiautomated prototype sensor was developed (see Figures
1c, and S1). The design of the prototype follows a previous
laboratory setup,4,21 with a primary focus of mobility and low-
power consumption, which are essential criteria for field testing
purposes. Specifically, the electrochemistry was controlled by a
galvanostat built using custom electronics. The body of the
sensor was adapted from an open-source “open-Frame”
microscope,34 supplied by Cairn Research Ltd., U.K. A blue
LED source (475 nm) was used, in conjunction with a dichroic
mirror and emission filter (Filter Set 15, Carl Zeiss) to excite
Chl a in fluorescence mode and allow wavelengths >590 nm
range to be transmitted to a USB-powered camera (Blackfly S
BFS-U3-89S6M, FLIR), and a 680 nm red LED source was
also used to image cells in brightfield mode. For sample
measurement, a variable-speed peristaltic pump was used to
pass each sample through a shallow 3D-printed electro-
chemical cell chamber up to a maximum rate of 0.45 mL
s−1. Flow was stopped and started in a semicontinuous fashion
to acquire data. When stopped, cells were deposited by gravity
onto the carbon electrode, and fluoro-electrochemical data
acquisition was initiated to obtain Chl a fluorescence “switch-
off” profiles for each individual cell on the electrode surface.
When flow through the cell chamber was resumed; waste
material was pumped clear of the chamber and fresh sample
was injected to repeat the process. The total number of fluoro-
electrochemical acquisitions recorded was then used to
calculate the total volume of the sample measured. All
operation of the prototype was conducted using a Python-
scripted interface. A small-form Odyssey computer
(X86J4125800, Seeed Studio) which contains an integrated
Arduino was used for the software-hardware communication
via SPI (Serial Parallel Interface). The entire setup was
designed to operate on a 12 V power supply. All fluorescence
and brightfield images for each set of measurements were
subsequently analyzed using ImageJ software (v1.53c, Fiji
distribution).
Sample Collection and Preparation. Seawater was

collected by Plymouth Marine Laboratory’s RV Plymouth
Quest from the L4 station on a weekly basis over a 3-month
period, between April to June 2023. 20 L Niskin bottles were
used to sample the water from a 10 m depth, and this was
decanted into two 10 L carboys, which was brought to shore
within 2−3 h of collection. Once in the laboratory (Marine
Biological Association, Plymouth, U.K.) the seawater was
gently filtered through a 30 μm nylon net (Merck Millipore
Ltd.) to remove any zooplankton and microplankton, thus
leaving nanoplankton of <30 μm in the filtrate. Given time
constraints, all filtered seawater was then left overnight in
controlled environment rooms that best represented the
conditions at the time of sampling (based on CTD data)
and on a 13:11 h light−dark cycle. The following morning the
nanoplankton fraction was processed for various analyses
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within a 3−4 h period. Samples were preserved for
conventional light microscope taxonomy and enumeration
using two approaches: 250 mL was fixed with a final
concentration of 1% Lugol’s iodine solution and 200 mL was
fixed with neutral formaldehyde (1% final concentration). The
latter was necessary as Lugol’s iodine solution contained ∼10%
acetic acid, which results in the dissolution of extracellular
calcite,35 making calcifying nanoplankton unidentifiable. In
addition, 400 mL was fixed with formaldehyde (1% final
concentration) for scanning electron microscopy (SEM) based
enumeration of calcified cell types; allowing more accurate
identification based on coccolith morphology. These samples
were stored in opaque bottles and refrigerated at 4 °C prior to
taxonomic enumeration. A 1 mL aliquot of the live
nanoplankton fraction was analyzed using a BD Accuri C6
benchtop flow cytometer (Becton Dickinson Ltd.) to
specifically enumerate the abundance of viable calcified cells
in the sample, distinguishable from other nanophytoplankton
through their unique side-scatter signal. The cytometer was set
to a medium speed (approximately 35 μL min−1), and events
were recorded over a 10 min period (resulting in
approximately 342 μL of sample measured). We referred to
Tarran and Bruun (2015) to determine the correct cytometry
gating, as previously reported for coccolithophore abundance
measurements at L4.
For use with the prototype sensor, 10 L of the <30 μm

filtrate was concentrated to 100× by gently filtering through
four 3 μm pore size, 45 mm ⌀, polycarbonate film track-etched
membranes (Nuclepore, Whatman), using a vacuum pump and
filtration manifold. Filtration was stopped when 25 mL
seawater was remaining above each membrane in order to
resuspend the concentrated residue and combine the
concentrate from each to a final volume of 100 mL.
Concentration was discovered to be a necessary step for
running the prototype, to obtain a greater number of individual
cells imaged per fluoro-electrochemical acquisition, and thus a
higher throughput with time-sensitive live samples. It also
resulted in the removal of picophytoplankton (cells <2 μm),
which are typically unidentifiable by microscope taxonomy.
Conventional Light Microscope-Based Taxonomy

and Enumeration. Nanoplankton samples fixed with 1%
Lugol’s iodine were identified to genus and species level using
a 50 mL Utermöhl settling and counting chamber (Hydro-
Bios, Germany). Well-mixed samples were poured into the
chamber cylinder and left to settle out for 18−20 h, the
cylinder was then exchanged with a coverslip, leaving behind
2.93 mL of sample containing the settled cells. The counting
chamber was viewed on an inverted microscope (Axiovert
S100, Carl Zeiss) using 200× and 400× magnification (the
latter was used to locate fine structures) for taxonomic
identification and enumeration. Once identified at genus and
species level, cells were classified into the following functional
groups: diatoms, dinoflagellates, ciliates, and nanoflagellates
(the latter being allocated to the following subgroups: round
<20 μm, round <10 μm, round <5 μm). Dinoflagellate
enumeration included autotrophic, mixotrophic, and hetero-
trophic species.
For identification and enumeration of calcified cells, 100 mL

of the 1% neutral formaldehyde preserved samples were
prepared in counting chambers (as described above). After
settling for >24 h, the concentrated samples were washed and
dried to remove any residual formaldehyde. A Leica
DMI4000B inverted microscope at 200× and 400× magnifi-

cation, equipped with polarized and Differential Interference
Contrast (DIC) filters, was used to identify and enumerate the
calcified nanoplankton cells.5 Unfortunately, due to issues with
preservation, there were no enumerations of calcified cells
using this method for 26th June.
SEM-Based Taxonomy and Enumeration. For the

SEM-based taxonomy of calcified cells, 400 mL of the 1%
formaldehyde-fixed nanoplankton fraction was passed through
a 0.8 μm pore size, 25 mm ⌀ cellulose nitrate filter (Whatman)
at a low vacuum pressure. Filters were dried in an oven at 60
°C for 6 h. A 0.5 cm square was cut from each filter and
prepared on a 13 mm SEM stub (Agar Scientific, U.K.) for
imaging using a low-vacuum environmental SEM (6390, JEOL
Ltd.). A total of 500 fields of view were studied per sample at a
magnification of 2000×, with intact calcified cells identified
and counted cumulatively. From the total counts per 500 fields
of view, assuming an even distribution of cells on the filter, the
density of cells per unit volume was back calculated, as in refs
36−38. See Supporting Information for more extensive
descriptions of all of the taxonomy procedures.
Training the Susceptibility Library for Natural

Community Samples. In our previous work,4 we presented
a random forest machine learning-based approach for training
and testing the classification accuracy of the technique using
two predictor variables: charge at t50 (in mC) and effective cell
radius (in μm). We have improved on this by including the
following additional predictor variables, all of which can be
derived from the 2D brightfield images of each cell using
ImageJ: aspect ratio, circularity, Feret and minFeret (the
maximum and minimum caliper diameters within the selected
2D cell shape boundary). The predictor variables were natural
log-transformed prior to training the random forest with the R
package “randomForest” (R version 4.2.2).
The data described above were collated for 38 strains from

experimental measurements made in our previous study.4

Within this data set, the following were identified as classifier
groups of relevance for making comparisons against the
grouped taxonomy enumerations (with the number of strains
representing each group provided): diatoms (10), dinoflagel-
lates (8), calcifying Isochrysidales (6), and nanoflagellates
(14). For the latter, we speculated that nanoflagellates could
belong to any of the following subgroups: Green algae (3),
noncalcifying Isochrysidales (4), Pavlovales (3), Phaeocystales
(1), and Prymnesiales (3). Each of these was included in the
random forest, and the total of all of these made up the
nanoflagellate group in the sensor-based enumerations. Given
that the number of individual cells measured per strain differed
substantially, to prevent skewing the representation of each
group, cell numbers of each strain were randomly balanced to
correspond with the strain of the lowest representation for
each group (as described in ref 4). Given the reliance on Chl a
fluorescence measurement, all dinoflagellates included in the
training and testing were either autotrophic or mixotrophic.
The number of individual measurements at the strain and
group level and their average predictor variable values are
summarized in Supporting Information Tables S1 and S2.
It is worth noting that no ciliates were included in the

culture-based training and testing of the random forest, despite
being observed in the taxonomy classifications. Subsequently,
when it came to comparing classifications across both methods,
ciliates were removed from the taxonomy data set. While this is
a limitation of the approach, typically ciliates only made up
between 0 and 1.2% of the total nanoplankton cell abundance.
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Furthermore, with the exception of 3 weeks during the field
sampling where <0.01% of the total cells included in the
taxonomy data set were identified as the coccolithophores
Coccolithus pelagicus and Acanthoica quattrospina, all other
calcified cells were identified as Gephyrocapsa huxleyi, reaching
up to a maximum of 40% of the total nanoplankton community
abundance across the weeks. The training of the random forest
subsequently only included coccolithophorids belonging to the
calcifying Isochrysidales order (with cell sizes <10 μm ⌀), of
which the species G. huxleyi is typically considered the most
globally abundant and ecologically relevant.39,40

Two iterations of the random forest training and testing
were carried out to demonstrate classification accuracy; both
without and with nanoflagellates included. This was relevant to
determine whether additional confusion due to the inclusion of
nanoflagellates hinders the classification of the key functional
groups. In each case, training and testing were conducted with
80 and 20% subsets of strain data, respectively. In summary,
following training, testing the random forest with just key
groups included yielded an overall 95% accuracy, with F1
scores of 0.95 diatoms, 0.85 for dinoflagellates, and 0.98 for
calcifying Isochrysidales (see Figure S2 and Table S3). When
nanoflagellates were introduced, this resulted in a reduction of
overall accuracy to 82%, and some reduction in F1 scores of
the key groups; 0.84 diatoms, 0.82 for dinoflagellates, and 0.90
for calcifying Isochrysidales. There was a large variance in the
performance across the suspected nanoflagellates, with F1
scores ranging from 0.84 (Pavlovales) to 0.25 (Green algae),
see Figure S3 and Table S4. Following training and testing,
100% of the data for both iterations (without and with
nanoflagellates, labeled throughout as v1 and v2, respectively)
was then used for training the random forest to classify the
data collected from the natural seawater samples.
Classification and Enumeration of Natural Samples.

For each sampling date, 100 mL of the concentrated
nanoplankton fraction was prepared. The concentrated sample
was pumped into the 3D-printed cell chamber in a semi-
continuous fashion, as described earlier. Each time the flow of
the sample was stopped, 10 min was given to allow for
deposition of the cells onto the electrode surface. Brightfield
images of the cells in the microscopic field of view (647 μm ×
341 μm) were initially obtained. Following this, fluorescence
mode was activated, and cells were given an equilibrium period
of 30 s to allow any natural Chl a fluorescence decay in
response to the intense exposure to blue light, before the
potential was applied using the galvanostat with a ramping
current of 10 μA s−1. Imaging was at the rate of 10 fps, and this
ceased after a suitable period of time for all Chl a fluorescence
in the field of view to be extinguished (10s of seconds).
Throughout the field testing, an average of seven cells were
measured simultaneously per fluoro-electrochemical acquis-
ition. Following each acquisition, the sample chamber was
pumped out for the next measurements.
Fluorescence transient data for each individual cell per

image time series was processed as described in previous work,
and a value for charge required to reach t50 was obtained.

4,21 In
instances where there was significant movement of cells
midtransient, these were voided from the data set to prevent
erroneous t50 calculation. For each cell, the corresponding
brightfield image was manually measured using ImageJ to
derive the same predictor variables as described above for the
training of the susceptibility library. Once the full data set was
collated for each sample, the random forest iterations trained

with 100% of the culture data (both with and without
nanoflagellates�as described above) were used to classify each
of the individual cells.
Sample abundance values (counts mL−1) were derived by

dividing the total number of cells classified in each group on
each sampling date by the total sample volume measured. The
total volume measured was estimated to be equivalent to the
volume of seawater directly above the field of view, ranging
from 0.176 to 0.309 μL (where the field of view is constant, as
detailed above, and depth of the chamber between the
electrode surface and the coverslip ranged between 800 and
1400 μm due to slight variance in the setup of the 3D sampling
chamber on each sampling date), multiplied by the number of
sequential semicontinuous fluoro-electrochemical acquisitions
made for each sample (an average of 13 per concentrated
sample on each date). This approach assumes that all cells
belonging to the volume of seawater directly above the field of
view were deposited on the electrode surface before each
acquisition. Abundance values were then corrected to the
original sample volume prior to concentration, with an average
equivalent preconcentration sample volume of 0.324 mL
(standard deviation (SD) ±0.11) across the sampling dates. In
addition to absolute abundance, measurements of relative
abundance can be highly useful for demonstrating shifts in
community structure, regardless of the change in total cell
numbers. Given that ciliates were removed from the original
taxonomy data set and that we present two interpretations of
the sensor-derived classifications to validate alongside micro-
scope taxonomy (with and without nanoflagellates), we have
calculated a proportion of those classified in each scenario.
This is simply the counts mL−1 of each classified group
presented as a percentage of the total count mL−1 for each
specific date. To compare sensor-based measurements with
taxonomic and cytometric enumerations, we obtained Pearson
correlation coefficients (R) were obtained. To give an idea of
sensitivity to high and low abundance throughout the testing
period, we also report the maximum and minimum abundance
values derived from each method (Table 1).
Artificial Intelligence: Neural Network Classification

of Calcifying Isochrysidales. Our previous work has shown
a particularly high degree of accuracy when using our
technique to classify calcifying Isochrysidales, a group with
remarkable resilience to the highly oxidative conditions relative
to cells of comparable size.4,23 To complement the output of
the random forest machine learning, a one-dimensional (1D)-
inception neural network was trained to use the full transient
profiles of Chl a switch off (not just t50), in combination with a
simple measurement of effective radius, to classify calcifying
Isochrysidales against all other types in the aforementioned
susceptibility library. This approach also used 80% of the full
data set for training and 20% for testing; obtaining an overall
testing accuracy of 97.7%, and F1 scores of 0.98 for calcifying
Isochrysidales and 0.96 for “other” (see Figures S4 and S5).
Since the 1D-inception neural network achieved high accuracy
on the testing data set, it was then applied to the field data to
classify calcifying Isochrysidales from all other cell types. For a
more extensive description, see Supporting Information.

■ RESULTS AND DISCUSSION
In this section, we present an overview of the phytoplankton
community structure throughout the time series, reporting on
both the taxonomy and sensor-based measurements. We then
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followed this up by examining the validation of the sensor
measurements at the level of each functional group.
Overview of Taxonomy Findings. Taxonomy data at the

genus and species level was separated into four main groups:
diatoms, dinoflagellates, calcifying Isochrysidales, and nano-
flagellates. The taxonomy work identified more than 50
different genera/species over the 3 months at L4, but only 3
of these species (G. huxleyi, Prorocentrum micans, Prorocentrum
minimum) and only 5 genera (Skeletonema, Thalassiosira,
Amphidinium, Heterocapsa, Karenia) were included in the
culture-based training of the sensor. This highlights that any
classification of cells into functional groups by the prototype
sensor was reliant on the culture-based random forest being
universally applicable to the much broader diversity found in
natural samples.
Generally, the succession of the phytoplankton community

over the Spring−Summer transition was as expected, based on
previous long-term records of the L4 station,5 see Figures 2a
and 3a. Initially, nanoflagellates were most abundant, though
this was soon followed by the arrival and dominance of the
spring diatom bloom from mid- to late-April; largely associated
with Chaetoceros socialis, Pseudo-nitzschia seriata, and Thalas-
siosira spp. Cell concentrations of diatoms rapidly declined in

early May, followed by a marked increase in abundance of
calcifying Isochrysidales (namely G. huxleyi, as confirmed by
the SEM taxonomy, see Supporting Information) and a smaller
peak of nanoflagellates. It is highly likely that this distinct shift
in the community was related to an extended period of
anticyclonic weather patterns in the study region from mid-
May to June, bringing low wind speeds and high solar
irradiance, resulting in increased stratification and sea surface
temperatures over the period of study. This trend continued
throughout June, and was subsequently categorized as a marine
heatwave.32,33 Such conditions, in addition to exhaustion of
silicate concentration due to the earlier diatom bloom,41 would
have been favorable for G. huxleyi bloom formation, which
peaked on 31st May in the taxonomy record. Dinoflagellate
concentrations remained relatively low over the 3-month
period (in the order of 10s of cells mL−1), with a slight peak in
numbers coinciding with the fall in diatoms and the increase in
calcifying Isochrysidales. There was a second and less
substantial peak in diatom abundance on 12th June; mainly
consisting of Leptocylindricus minimus and P. seriata .
Overview of Sensor-Based Findings. When nano-

flagellates were not included in the sensor classification, from
a qualitative perspective, it is clear that the sensor performed
well at capturing the general shifts in the community structure
that were also seen in the taxonomic cell counts over the time
series (see Figure 2b). There were notable differences in the
absolute magnitude of cells mL−1 determined by the sensor

Figure 2. (a) Plot showing the abundance of the key functional
groups enumerated by microscope-based taxonomy over the 3-month
time series. The dashed line illustrates dinoflagellate counts to be read
from the secondary y-axis, for visualization purposes. (b) The
abundance of the key functional groups as measured using the
prototype sensor over the time series, whereby nanoflagellates have
been excluded from the random forest training (v1). (c) Bar plot
showing the proportion of each of the key groups within the
community, using classifications from the taxonomy data set with
nanoflagellates excluded and (d) proportion of key groups in the
community based on the measurements by the prototype sensor (v1).
The color coding for (b)−(d) is the same as in (a). Due to poor
preservation of the formaldehyde-fixed taxonomy samples taken on
26th June, it was not possible to present proportions of community
abundance on this date. Therefore, to aid visual comparisons of
community structure across the methods, data for 26th June was
excluded from all plots in this figure.

Figure 3. (a) Plot showing the abundance of the functional groups
enumerated by microscope-based taxonomy over the 3-month time
series, with nanoflagellates included. The dashed line illustrates
dinoflagellate counts to be read from the secondary y-axis. (b) The
abundance of the functional groups as measured by the prototype
sensor over the time series, with nanoflagellates included in the
random forest training (v2). (c) Bar plot showing the proportion of
each of the groups within the community, using classifications from
the taxonomy data set with nanoflagellates included (d) proportion of
groups in the community based on the measurements by the
prototype sensor (v2). The color coding for (b)−(d) is the same as in
(a). Data for 26th June was excluded from all plots in this figure (see
Figure 2 for explanation).
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(v1) for each of the groups, for example: the maximum
calcifying Isochrysidales and dinoflagellate abundances were
∼1.5× and ∼6.1× greater than the taxonomic enumerations,
and the maximum diatom numbers were ∼2.1× lower than the
taxonomic enumerations. Despite these differences, it is
promising that for the 3-month time series, the values of
abundance were at least on the same order of magnitude for
each group across the methods. On this point, the values
derived by the sensor are also in a similar order of magnitude
to the average values reported for diatoms, coccolithophorids
(dominated by G. huxleyi) and dinoflagellates over the 15-year
time series at L4, and follow similar seasonal trends previously
observed.5 Furthermore, the proportions of cells classified into
each of the three key groups generally show the same pattern
across the two methods, with diatoms dominating the
community for the first 5 weeks, followed by an increasing
proportion of calcifying Isochrysidales and dinoflagellates over
the next 5 weeks throughout May and into June (see Figure
2c,d).
When nanoflagellates were included in the sensor classi-

fications (v2) it did not drastically alter the patterns in
community change seen across the time series; however, it did
result in a reduction in the abundance values of the key
functional groups, relative to the classifications without
nanoflagellates considered (see Figure 3b). In relation to
proportions of cells classified (Figure 3c,d), from a qualitative
perspective, the addition of nanoflagellates appears to result in
a time series that is in slightly less agreement with the
taxonomy. Nonetheless, as nanoflagellates appear to remain in
relatively high abundance throughout the time series, this
somewhat agrees with previous long-term tracking of the L4
phytoplankton community, where there are less notable
seasonal fluctuations in nanoflagellate abundance.5

Classification of Calcifying Isochrysidales (Coccoli-
thophorids, <10 μm). Of the key functional groups
monitored, the enumeration of calcifying Isochrysidales by
the sensor was successfully validated by both microscope
taxonomy and analytical flow cytometry. Figure 4a shows that
all methods are consistent in capturing the entire bloom
period, with all peak abundance values recorded on 31st May.
The taxonomy counts were significantly correlated against
both sensor counts (see Figure 4b,e, Table 1), with R values of
>0.95, however, it is evident that when nanoflagellates were
not included in training (v1) the sensor generally returned
larger values than the taxonomy, whereas with nanoflagellates
included in the training (v2) there was almost 1:1 correlation
with the taxonomy values. For the latter, it is possible that the
apparent lower abundance (relative to v1) is due to a
proportion of calcifying Isochrysidales being classified as
nanoflagellates, where testing of the random forest illustrated
confusion with the following nanoflagellates; noncalcifying
Isochrysidales and Pavlovales (see Figure S3). Furthermore, we
found significant correlations between the taxonomy-defined
proportion of abundance and that of both sensor-based
measurements (see Figure 4d,g, Table 1).
In addition to the successful validation by microscope

taxonomy enumerations, both sensor-based measurements
yielded an even stronger agreement with flow cytometry
enumerations of calcified cells (assumed to be entirely G.
huxleyi given the dominance of this species in the SEM
taxonomy record, see Supporting Information). This is
particularly evident in the sensor iteration without nano-
flagellates included (v1), where the correlation of abundance

values has an R of 0.98 (p < 0.001) (Figure 4c, Table 1), giving
an excellent agreement with flow cytometry (almost 1:1).
When nanoflagellates were included the correlation was equally
as strong (Figure 4f, Table 1), however, the sensor produced
values slightly lower than flow cytometry across most of the
time series. It is highly probable that this reduction is simply
due to an increased confusion with nanoflagellates, as
mentioned above. While the SEM taxonomy usefully clarified
that G. huxleyi was the dominant calcifier during the testing
period, it is evident that the SEM-based cell counts were less
accurate resulting in insignificant correlations with all other
methods despite capturing the onset bloom (see Figure S6,
Supporting Information). As can be seen from the methods for
SEM enumeration, the process of preparing the formaldehyde-
fixed samples has numerous steps, increasing the likelihood of
losing intact cells. Perhaps most crucially, there is an
assumption with the SEM method of uniform cell distribution
across the filter surface used for SEM imaging, which could
result in an erroneous back calculation of coccolithophore
abundance in the original sample. On the other hand, both the
prototype and cytometry measurements are obtained with live

Figure 4. (a) Plot showing the abundance of calcifying Isochrysidales
over the time series, as obtained through various methods. (b, e)
Scatterplots showing the correlation between taxonomic counts and
both sensor-based enumerations of calcifying Isochrysidales, without
nanoflagellates v1 (b) and with nanoflagellates v2 (e) included in the
random forest training. (c, f) Scatterplots showing the correlation
between flow cytometry enumerations and both sensor-based
enumerations, v1 (c) and v2 (f). (d, g) Scatterplots showing
proportions of calcifying Isochrysidales in the nanoplankton
community measured by taxonomic counts plotted against
proportions obtained by the sensor, v1 (d) and v2 (g). The bold
red and black lines (in b−g) represent signification correlation, as
demonstrated by R and p values. The fine dashed-black lines represent
the 1:1 line of the two measurements, in each instance.
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cells and with fewer stages of sample preparation; thus, making
comparisons across these two techniques favorable. We might
also expect that abundance of calcified cells will be more
accurately established by the prototype (relative to other
functional groups), given that deposition of cells on the
electrode surface was necessary before measurements are
made; this will have a natural bias toward accurate
enumeration of cells that are ballasted by extracellular
inorganic coatings, such as calcium carbonate coccospheres
of coccolithophores and silica frustules of diatoms,42 resulting
in successful deposition of these cell types in the 3D-printed
chamber.
Lastly, our 1D-inception neural network classifications (AI)

resulted in statistically significant correlations with both the
cytometry and taxonomy counts (Figures 4a and S6), however,
the absolute abundance values were in closer agreement with
the latter. The neural network interpretation of the prototype
data was to simply classify calcifying Isochrysidales from all
other cell types, using the full fluorescence transient data and a
simple estimate of effective radius, as opposed to the broader
suite of cell shape and size characteristics required with the
random forest. It is promising that the period of maximal
concentration could be detected from just the Chl a transient
profile and a simple measure of cell size, illustrating the
potential of artificial intelligence for making classifications with
future versions of the technology.
Classification of Diatoms. The sensor-based classifica-

tions of diatoms tracked the taxonomy enumerations,
indicating successful validation, with values that are com-
parable in magnitude across most of the time series (see Figure
5a). The biggest apparent mismatch with taxonomy is at the
peak of the spring bloom on 2nd May. This outlier results in a
nonsignificant correlation between the taxonomy and both
iterations of the sensor measurements (see Figure 5b,e).
However, based on the taxonomy findings, the most abundant
diatom on this date was C. socialis, making up 98.2% of the
diatom abundance, at a density of 1.2 × 104 mL−1 (which was
the highest abundance value of any identified genera/species

across the 3-month study). This is a chain-forming diatom,
common in coastal areas, and under fast growth at high
abundance it is highly plausible the chains were clumping and
forming globular-spherical colonies.43−45 While microscope
taxonomy enumeration involved counting individual cells
within the chains and colonies (which are likely to break up
following addition of Lugol’s, aiding the counting process), the
fluorescence imaging of the sensor relies on single regions of
fluorescence per cell. As a result, when such aggregates form,
the fluorescence signals of individual cells can be harder to
distinguish from one another, and thus colonies are poorly
measured. Indeed, aggregates of cells were observed in the
samples collected on May 2nd (see Figure S7). This raises
questions about the applicability of the sensor in its current
form, as it is likely to result in an erroneous abundance
measurement when chain-forming nanodiatoms known to
form such aggregates are in high abundance. Subsequently, it
was demonstrated that when the highest abundance data for
2nd May was removed from the time series, both iterations of
the sensor measurements result in a strong positive correlation
with the taxonomy data, returning R values of 0.82 (p = 0.002)
and 0.95 (p = <0.001) for classifications with (v2) and without
(v1) nanoflagellates included (see Figure 5c,f, Table 1). In the
case of the latter, there is greater deviation from the 1:1 line,
suggesting that diatom abundance could be overclassified when
nanoflagellates are excluded from the random forest training.
Furthermore, when it comes to the proportion of diatoms
classified within the nanoplankton community, correlations
between both sensor interpretations and the taxonomy were
also significant (see Figure 5d,g, Table 1).
Classification of Dinoflagellates. Dinoflagellates had the

lowest abundance compared to the other classified groups,
where the peak abundance was captured across all techniques
on 22nd May, at 79 and 58 cells mL−1 for sensor
measurements v1 and v2 respectively, and considerably lower
at 13 cells mL−1 for the taxonomy (see Figure 6a, Table 1).
The peak values derived from the sensor measurements are not
too dissimilar to the long-term average dinoflagellate

Table 1. Summary of the Regression Statistics for Each of the Cell Count Comparisons Presented in Figures 4−7a

Group comparison (x ∼ y) R2 R p
Min. sensor

(x)
Min. method

(y)
Max. sensor

(x)
Max. method

(y) Figure

calcifying Isochrysidales sensor v1 taxonomy 0.93 0.97 <0.001 1.68 0.02 275.57 177.25 4b
sensor v1 cytometry 0.97 0.98 <0.001 1.68 5.85 275.57 251.46 4c
sensor v1% taxonomy % 0.89 0.95 <0.001 1.41% 0.03% 63.04% 87.01% 4d
sensor v2 taxonomy 0.90 0.95 <0.001 0 0.02 152.04 177.25 4e
sensor v2 cytometry 0.96 0.98 <0.001 0 5.85 152.04 251.46 4f
sensor v2% taxonomy % 0.59 0.77 0.005 0% 0% 34.78% 40.64% 4g

diatoms sensor v1* taxonomy* 0.91 0.95 <0.001 52.84 6.98 602.58 362.99 5c
sensor v1% taxonomy % 0.89 0.94 <0.001 31.16% 8.88% 95.83% 99.81% 5d
sensor v2* taxonomy* 0.67 0.82 0.002 22.65 6.98 321.69 362.99 5f
sensor v2% taxonomy % 0.49 0.70 0.016 11.59% 4.15% 68.68% 99.60% 5g

dinoflagellates sensor v1 taxonomy 0.46 0.68 0.015 2.75 0.94 78.92 13 6b
sensor v1% taxonomy % 0.37 0.61 0.048 1.04% 0.16% 20% 23.71% 6c
sensor v2 taxonomy 0.43 0.66 0.02 0 0.94 58.33 13 6d
sensor v2% taxonomy % 0.14 0.38 0.248 0% 0.12% 14.29% 15.77% 6e

nanoflagellates sensor v2 taxonomy 0.00 0.00 0.989 37.75 1.04 359.93 717.71 7b
sensor v2% taxonomy % 0.20 0.44 0.173 22.50% 0.20% 60.56% 90.04% 7c

aMinimum and maximum abundance values in counts mL−1 for both the sensor and other methods (either microscope-based taxonomy or flow
cytometry enumerations) are provided to give an indication of performance at high and low abundances. Values presented as percentages are
reflective of the maximum and minimum proportions of the community classified into each group. R is the Pearson correlation coefficient; bold text
is used where the correlations considered significant (i.e., p value <0.05). * reflects the correlation following the removal of the data for 2nd May, as
discussed in the text.
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abundance of 81.9 cells mL−1 previously reported for L4.5

Furthermore, the values throughout the rest of the time series
(0−20 cells mL−1) are roughly consistent with the seasonality
of L4, where dinoflagellate numbers typically remain this low
until late summer−early autumn, when concentrations can
drastically increase and at times exceed 1000 cells mL−1.5

While the magnitude of the peak abundance over our study
period differs substantially between both sensor measurements
and the taxonomy, there is not much deviation between the
values for the rest of the study period, resulting in marginally
significant positive correlations between the taxonomy and
sensor measurements (see Figure 6b,d, Table 1). There was
also a marginally significant correlation between the proportion
of dinoflagellates classified by taxonomy and the sensor
interpretation without nanoflagellates, with minimal deviation
from the 1:1 line, but not when nanoflagellates were included
(Figure 6c,e, Table 1).
It might be expected that as most dinoflagellates are motile,

a method that relies on cell deposition would struggle to detect
them. It is therefore somewhat counterintuitive that the sensor

measurements would suggest a greater peak abundance than
taxonomy, which does not have the problem of motility due to
the fixing of cells. It is highly plausible that the sensor
misclassifies other cell types as dinoflagellates. Given that
typical dinoflagellate abundance values are considerably lower
during the testing months than the other functional groups,5

any misclassification of other cell types as dinoflagellates would
subsequently result in a much larger deviation from the
taxonomy numbers. As opposed to if measurements were made
during a dinoflagellate bloom, where the ratio of dinoflagellates
to other cell types in the community would be much greater.
Indeed, our random forest testing found dinoflagellates to be
the hardest key functional group to classify, with the “without
nanoflagellates” (v1) interpretation scoring 21% misclassifica-
tion as diatoms, and the “with nanoflagellates” (v2)
interpretation scoring 15% misclassification as nanoflagellates
(Green algae and Prymnesiales) and 11% as diatoms (see
Figures S2 and S3). It is also worth noting that a large
proportion of dinoflagellates are heterotrophic, containing no
plastid(s) or photosynthetic pigments.46,47 A number of
heterotrophic dinoflagellate species were identified at L4 by
the microscope taxonomy, ranging between 21 and 65% of the
total dinoflagellate abundance across the time series.
Subsequently, these heterotrophs will not have been picked
up by the sensor which relies on the Chl a fluorescence signal.

Figure 5. (a) Plot showing the abundance of diatoms over the time
series, as obtained through various methods. (b, e) Correlation
between taxonomy enumerations and both sensor-based enumera-
tions of diatoms, without nanoflagellates v1 (b) and with nano-
flagellates v2 (e) included in the random forest training. (c, f)
Correlation between taxonomy enumerations and both sensor-based
enumerations, v1 (c) and v2 (f), following the removal of the data for
2nd May, associated with high abundance of C. socialis. (d, g)
Proportions of diatoms measured by taxonomy in the nanoplankton
community plotted against proportions obtained by the sensor, v1 (d)
and v2 (g). The bold red and black lines (in (c, d, f), and (g))
represent signification correlation, as demonstrated by R and p values.
The fine dashed-black lines represent the 1:1 line of the two
measurements in each instance.

Figure 6. (a) Plot showing the abundance of dinoflagellates over the
time series, as obtained through various methods. (b, d) Correlation
between taxonomy enumerations and both sensor-based enumera-
tions of dinoflagellates, without nanoflagellates v1 (b) and with
nanoflagellates v2 (d) included in the random forest training. (c, e)
Scatterplots showing proportions of dinoflagellates measured by
taxonomy in the nanoplankton community plotted against propor-
tions obtained by the sensor, v1 (c) and v2 (e). The bold red and
black lines (in b−d) represent signification correlation, as
demonstrated by R and p values. The dashed-black lines represent
the 1:1 line of the two measurements, in each instance.
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However, if anything, this might result in a higher taxonomy
count relative to the sensor, but that was not the case here.
Moving forward, it must be stressed that only autotrophic and
mixotrophic dinoflagellates can be classified with the sensor in
its current form.
Classification of Nanoflagellates. From a methodolog-

ical point of view, any sensor classification of nanoflagellates
was based on assumptions of what genera, or species, might
belong to this group of unknown cells that make up a
significant proportion of phytoplankton communities in both
the coastal and open ocean. As with our previous work,4 we
suggest that nanoflagellates could belong to any of the
following: Green algae, noncalcifying Isochrysidales, Pavlo-
vales, Phaeocystales, and Prymnesiales. These phytoplankton
were selected in the classification training as there is often a
great deal of similarity in cell morphology and a distinct lack of
identifiable features to classify into any kind of taxonomic or
functional grouping, particularly when in the lower end of the
nanoplankton size range (<10 μm). Given such underlying
assumptions, however, the sensor-based classifications into the
nanoflagellate grouping could be considered highly speculative.
The abundance values of nanoflagellates classified across the

study period fall into a similar range to the taxonomy (see
Figure 7a), and the proportion of nanoflagellates within the

nanoplankton community is also of a similar magnitude,
though the overall correlation between values is poor relative
to the other groups (see Figure 7b,c, Table 1). The only phase
in the time series where there appears to be some clear
correlation in values across the methods is between 15th and
31st May. Of the suspected nanoflagellate groups included in
the training of the sensor, it appears that the initial peaks in
nanoflagellate numbers (from mid-April to mid-May) are
driven by the classification of both Prymnesiales and
noncalcifying Isochrysidales, however, the later peak on 31st
May appears to be largely driven by an increase in cells
classified as Pavlovales (see Figure S8). We cannot read too
much into this additional insight due to a lack of validation
against taxonomy which would bulk label such cells as

nanoflagellates. Only molecular analyses would be able to
provide answers as to whether these speculated groups were
present, and if there were any changes in their relative
abundance over the time series.14,29

Of particular curiosity is the fact that microscope taxonomy
enumerations demonstrate the most abundant nanoflagellates
across the time series to be those in the <5 μm size range, with
this group driving the peaks observed across the time series. It
is interesting that during the second peak of the nanoflagellates
in the taxonomy record, between 15th May and 12th June, the
abundance of small nanoflagellates (<5 μm) mirrors the cell
counts of calcifying Isochrysidales from both the sensor and
cytometry measurements samples (see Figure S9). It is highly
plausible that in Lugol’s iodine-preserved samples (with 10%
acetic acid), the dissolution of coccospheres resulted in an
apparent increase in abundance of small nanoflagellates, which
could have in fact been G. huxleyi with their coccospheres
removed (falling well within the <5 μm size range); it is well
established that the underlying organic cell is still intact and
measurable following such dissolution.35,48,49 If this is the case
with the Lugol’s preserved samples, it has the potential to
erroneously skew the concentrations of nanoflagellates found
in the community by microscope taxonomy, particularly during
a coccolithophore bloom.
Furthermore, if the second peak of nanoflagellates in the

taxonomy records was due to the misclassification of
decalcified G. huxleyi cells, then it raises the question as to
why the sensor measured a similar second peak of nano-
flagellates, largely driven by Pavlovales (see Figure S8). As
mentioned previously, it is possible that a proportion of
calcifying Isochrysidales are incorrectly identified as nano-
flagellates, and this would explain the lower peak of calcifying
Isochrysidales when nanoflagellates are included in the sensor
classification (Figure 4a). Indeed, from testing the random
forest with nanoflagellates included, the confusion matrix
demonstrates a 5% misclassification of calcifying Isochrysidales
as both Pavlovales and noncalcifying Isochrysidales, resulting
in a reduction of the F1 score from 0.98 to 0.90 (see Figure S3
and Tables S3, S4). This is perhaps unsurprising, given that
there is considerable overlap for a number of predictor
variables across these classification groups (see Figure S10 and
Table S2).
Outlook for In Situ Deployment. With rapidly changing

marine environments, there is a growing need to improve the
resolution of spatiotemporal monitoring of marine phyto-
plankton communities, particularly for those groups that drive
the biological pump. This can only be achieved through the
development and widespread deployment of in situ devices and
sensors. The findings presented here demonstrate highly
successful validation for the application of a fluoro-electro-
chemical sensor to distinguish and enumerate nanoplankton
into groups of ecological relevance in natural seawater samples.
For all groups classified in this study, the key shifts in
community structure during the time series are consistent
across the methods, as well as being in keeping with the
expected trends for the L4 station.5 Our sensor-based
measurements have shown remarkable consistency when
validated against both conventional microscope-based taxon-
omy and flow cytometry, whereby the latter is arguably the
most comparable technique, allowing for differentiation and
quantification of calcified cells from live nanoplankton samples.
Unlike calcified cells, it is not possible to distinguish diatoms
from other nanoeukaryotes using flow cytometry.6,7 Therefore,

Figure 7. (a) Plot showing the abundance of nanoflagellates over the
time series, as obtained through microscope-based taxonomy
measurements and sensor measurements, whereby for the latter the
nanoflagellate counts are the sum of all the cells classified as suspected
nanoflagellate groups on each sampling date (see Figure S8). (b)
Correlation between taxonomy enumerations and the sensor-based
enumerations with nanoflagellates (v2) included in the random forest
(c) scatterplot showing proportions of nanoflagellates measured by
taxonomy in the nanoplankton community plotted against propor-
tions obtained by the sensor (v2). The dashed-black lines represent
the 1:1 line of the two measurements, in each instance.
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a significant advancement of our technique over flow
cytometry is that the fluoro-electrochemical sensor can provide
realistic estimates of diatom abundance in the nanoplankton
size range. The validation of the sensor for classifying
dinoflagellates was less conclusive; however, the peak
abundance was captured by both the sensor and the taxonomic
enumerations. We can associate this with the timing of our
field testing, where dinoflagellate abundance is typically at a
low annual level at the L4 station. As a consequence,
potentially erroneous misclassification of other cell types as
dinoflagellates could have resulted in inflated numbers relative
to the taxonomic enumerations. Lastly, when it comes to
nanoflagellates, it is difficult to truly validate our method given
the unknown identity of these cell types in the taxonomy
record. While the abundance values were of a similar
magnitude across the methods, the fluctuations across the
time series were not as well synchronized (relative to the
performance for other groups). Nonetheless, one of the most
pertinent outcomes from the field testing is that by adding the
potential confusion of nanoflagellates to the sensor-based
enumerations, it does not drastically affect the ability of the
sensor to successfully classify and capture the changes in
community structure associated with the key functional groups.
Aside from the accurate classification of cells across different

functional groups, there are numerous advantages of our
technique that make it highly suitable for in situ deployment.
The technique is reagent-free, relying solely on the oxidation of
naturally occurring components in seawater to drive the
fluorescence switch-off. In turn, the oxidative destruction of the
phytoplankton cells means that the technique is intrinsically
antifouling (at least in the vicinity of the working electrode,
where the samples are measured); not dissimilar to the
approach used to kill off invasive microbial species in ship’s
ballast water.50−53 Furthermore, the majority of the compo-
nents used to build the prototype are scalable and relatively
inexpensive; highly favorable criteria from both a production
and deployment perspective. With this in mind, a number of
areas for improvement have been identified and should be
considered for future development of the sensor, especially for
compatibility with an autonomous platform. In its current
form, the prototype requires samples to be concentrated in
order to obtain a reasonable throughput of cells per
measurement. Frequently in pelagic ecosystems nanophyto-
plankton abundance is in the order of 10s to 100s of cells
mL−1. Moving forward, to avoid the necessity to concentrate, it
would be advantageous for the technique to obtain the fluoro-
electrochemical measurements in a flow-type fashion (akin to
flow cytometry); potentially using a series of in-flow ring
electrodes, separated at regular intervals and applying different
currents to track the fluoro-electrochemical Chl a switch-off of
individual cells. Not only would this improve the throughput of
measurements when cells are in low abundance but it would
also remove any bias associated with settling times or lack of
cell motility, as with the current design. To aid classification
accuracy, additional variables could be measured at minimal
adjustment to the setup to improve the random forest machine
learning or expand neural network models. For example, the
measurement of cell radius before and after the fluoro-
electrochemical measurement would help to differentiate
calcified cell types from others as well as potentially providing
an estimate of calcite per cell, which would be highly useful for
marine biogeochemists. This would be possible due to the
intrinsic production of H+ at the working electrode during the

electrochemical measurements, which results in dissolution of
coccospheres, as shown in our previous work.35,48 In addition,
if a broader suite of excitation and emission wavelengths were
measurable then this could be used to further discriminate
relevant groups of phytoplankton.54 Notably, if there were a
means to distinguish cells containing different pigments, such
as chlorophyll c (common to those of a red algal lineage) from
those containing chlorophyll b (common to those of a green
algal lineage),55,56 this could greatly assist in minimizing the
large misclassifications observed between diatoms and green
algae (see Figure S3). Lastly, only a relatively small number of
species used for training the sensor were found at the L4
station. While this did not appear to impact the success of
classifying key functional groups, expansion of nanoplankton
diversity in the training data will likely improve the accuracy
even further, increasing the likelihood of successful perform-
ance in different scenarios where community structure could
be vastly different from that at L4. With this, future versions of
the sensor should be tested over longer time scales in the field,
ideally capturing a wider range of seasonal shifts in the
nanophytoplankton community, and for multiple study
locations where different environmental conditions and
community compositions can be expected.
Ultimately, we envisage that our sensing method could be

used to provide details of nanoplankton cell abundance and
community structure that are currently lacking from most
current in situ measurements, greatly adding to broader
research efforts in understanding marine ecological responses
to environmental change. Furthermore, as the technology has
potential for deployment on autonomous platforms, if used in
conjunction with a range of other “off-the-shelf” sensors to
monitor key environmental variables (e.g., pH, temperature,
salinity), it could be invaluable for improving the spatiotem-
poral resolution of phytoplankton community monitoring at a
global scale.
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