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A B S T R A C T

The growing anthropogenic pressure near estuarine areas is evidence of the relevance of these
systems to human well-being, especially because of their delivery of essential ecosystem services
and benefits. Estuaries are composed of a rich large selection of habitats frequently organised in
complex patterns. Mapping and further understanding of these habitats can contribute signifi-
cantly to environmental management and conservation. The main goal of this study was to inte-
grate different data sources to perform a supervised image classification, using remote-sensing
products with different spatial resolutions and features. It was focused on the Sado Estuary, lo-
cated on the Portuguese Atlantic coast. Considering the limitation of using free satellite images to
map estuary habitats (i.e. limited spectral range and spatial resolution), this study uses a semi-
automated supervised and pixel-based classification to overcome some of the derived classifica-
tion problems. Support Vector Machine classifier was used to map the estuary for future evalua-
tion of ecosystem services provided by each habitat. High-resolution remote sensing data (i.e.,
Planet Scope satellite images, aerial photographs) with different spectral and spatial features
(3 m and 20 cm resolution, respectively) were used with ground truthing data to train the classi-
fier and validate the derived maps. The first step of the classification identified broader classes of
habitats in the satellite images based on visual interpretation of ground-truth data. From this out-
put, aerial images were classified into detailed classes, the same procedure was hindered on the
satellite images due to spatial resolution constraints. The sand class had the best overall accuracy
(96%), due to its contrasts with surrounding objects. While the vegetation (i.e., pioneer salt-
marshes) and algae classes had lower accuracy values (49.6–89.0%), possibly due to being still
damp or covered in fine sediment This is a common challenge in transitional systems across land-
water interfaces, such as wetlands, where the abiotic conditions (e.g. solar exposure, tides) fluctu-
ate heterogeneously over time and space. The findings presented herein revealed the consider-
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able success of this approach. For the purpose of local decision-making, these are relevant out-
puts that can be replicated in other regions worldwide.

1. Introduction
Coastal and marine environments are highly valuable for society as a source of ecosystem services (Katsanevakis et al., 2011).

Ecosystem-based marine spatial management can provide tools for the sustainable management of natural resources affecting the dis-
tribution of these services, while reducing the conflicts among stakeholders from different sectors (Katsanevakis et al., 2011). Natural
capital assets (i.e., stock of natural resources (Constanza et al., 1997)) underpin each ecosystem service (i.e., the contribution of the
environment to human well-being (Haines-Young and Potschin, 2013)), and collection of environmental data in detailed habitat
maps allows the understanding of these assets (Hooper and Austen, 2020) while providing information to support decision-making in
managing these resources (Lyons et al., 2018).

Remote sensing (RS) can be an effective and nondestructive method to acquire information about the Earth's surface (Liu, 2015;
Randin et al., 2020). RS provides data at high temporal resolution and has the capacity to cover regions that are otherwise difficult to
reach (Rocchini et al., 2017; Sogno et al., 2022). RS data availability has grown exponentially with enhanced satellite image sensor
features, increased temporal and spatial resolution (Murray et al., 2018) and the use of airborne and UAV (Unmanned Aerial Vehicle)
devices (Madden et al., 2015). Nevertheless, spectral satellite imagery is still dependent on weather conditions, (i.e., cloud coverage),
UAVs surveys need appropriate launch-landing and georeferencing makers, which can be troubling in wetlands. Furthermore, UAV
battery capacity is still short to cover large areas (Dronova et al., 2021), while airborne imagery is still expensive since requires spe-
cialised aircraft and qualified personnel (Abdelmajeed & Juszczak, 2024).

Satellite RS has been employed in intertidal habitat mapping, for instance, in seagrass meadows (Koedsin et al., 2016), kelp forests
(Casal et al., 2011), saltmarshes (Li et al., 2010) and intertidal macroalgae (van der Wal et al., 2014). However, RS data use is still
limited when capturing time-sensitive data (Wang and Yésou, 2018), and automatic data processing techniques require further devel-
opments, thus, there are still constraints to retrieving the information needed in a short period of time (Zhou et al., 2023). The tridi-
mensionality of marine environments can also be a challenge for the use of RS data due to the biophysical properties of the water col-
umn (Kennedy et al., 2012; Roelfsema et al., 2013; Wulder et al., 2012). Products from the use of RS may not necessarily meet the de-
sired levels of accuracy based on comparisons with reference data, which is typically assumed to be correct (Stehman, 2009). How-
ever, the use of RS datasets is mostly free, provides a large spatial and temporal coverage, and their applicability is continuously
growing (Krause et al., 2023; Stratoulias et al., 2018). Together with powerful semi-automated classification algorithms, RS tech-
niques can provide meaningful results in intertidal areas, representing an important cost-effective tool to study such systems at higher
scales (Corbane et al., 2015; Hunter and Power, 2002; Piaser and Villa, 2023; Sun et al., 2021; Wang et al., 2019).

Estuarine wetlands shelter multiple ecological communities (Gray et al., 2018; Yu et al., 2023). The complex and dynamic estuar-
ine environment, transitioning from terrestrial to aquatic types, still challenges the retrieval of detailed and fine-resolution maps us-
ing automatic classification algorithms due to the interaction of several factors, such as the limited size and rapid ecological dynamic
of coastal habitats requiring detailed and frequent data collection (Valentini et al., 2015; Wang et al., 2024). In estuaries, expert
knowledge is even more important to further understand the classification and is crucial to define class boundaries, especially when
different vegetation possesses similar spectra (Valentini et al., 2015; Xie et al., 2008). Furthermore, most of the intertidal habitats are
affected by tides. The variation on the water content can drastically impact the spectral signature of sediment and vegetation, an im-
portant feature that should not be overlooked (Rainey et al., 2003). The temporal mismatches of the ground data and the image acqui-
sition should also be a factor when considering the method to capture RS data (Lugendo et al., 2024).

The application of the RS tools in the field of Ecosystem Service Assessment has great potential. These studies need reliant infor-
mation on habitat and land use maps to identify potential ecosystem services (Barbosa et al., 2015). To understand the link between
the ecosystem and human well-being is necessary to comprehend where to find these potential uses (Barbosa et al., 2015). Further-
more, changes in habitat or land use are the main drivers that influence ecosystem services provision, thus, mapping these changes
can improve decision-making (Foley et al., 2005; MEA, 2005). However, even with all the developments in RS technology and
methodologies, the contribution for Ecosystem Service Assessments has been insufficient (Andrew et al., 2014; Feld et al., 2010; Tallis
et al., 2012). Thus, the novelty of this study lies on the combination of complementary data sources, with different features (i.e., spa-
tial resolution, band information, etc.) to overcome existing challenges associated with the fact that estuaries are composed of inter-
tidal (strong influence of water) areas that are heterogenous, patchy and fragmented at different scales. Hence, the main goal of this
study was to integrate different approaches to perform habitat mapping in the scope of an Ecosystem Service Assessment, by using
semi-supervised image classification, using two RS products with different spatial resolutions: i) satellite images from Planet Scope
(3 m resolution); and ii) aerial photography (20 cm resolution). This approach was used to map the intertidal habitats of the Sado Es-
tuary to identify and quantify the units that provide ecosystem services to the local community.

2. Methodology
2.1. Study area

The Sado estuary (Fig. 1) has an area of approximately 180 km2 and belongs to one of the largest Portuguese hydrographic basins,
Sado river basin (7692 km2 – Feio and Ferreira, 2019). The water column of the Sado estuary is well-mixed due to a strong tidal influ-
ence, the main force of water circulation, associated with the short water column and exposure to winds (Biguino et al., 2021; Santos
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et al., 2022). Sado is a mesotidal estuary with semidiurnal tides which can rise to 3.9 m at high water (Brito, 2009; Ferreira et al.,
2005). Tidal mixing in the Sado occurs through the mouth of the estuary, which is ∼2 km wide (Castro, 1997; ICNF, 2008). Nowa-
days, the Sado Estuary is a Natural Reserve and is protected by several international conventions (i.e., Natura, 2000; RAMSAR - ICNF,
2008).

The estuarine intertidal area is dominated by mudflats and sandbanks, and the adjacent land is mostly used for agriculture (i.e.,
pasture, rice crops, cork plantation – Fig. 1, ICNF, 2008). The area is divided into two main regions: the central bay (Setúbal bay and
Marateca channel) and the Alcácer channel (Coutinho, 2003). The central bay has always been an essential industrial trade centre due
to the presence of the Setúbal port located at a major intercontinental navigation route (Nunes et al., 2019). Tróia Peninsula, located
in the Setúbal bay, is prominently situated in the south margin of the estuary and is dominated by tourist resorts (Fig. 1, Coutinho,
2003). The Marateca Channel is characterized by the presence of aquaculture ponds and abandoned salt pans, however, nowadays
many are converted into shellfish and fish farms, which are also important nesting sites for birds (Fig. 1, ICNF, 2008). Due to the
many different uses of the area, the estuary has been highly modified and urbanized to accommodate all the activities. For example,
over the years, the main channel has been dredged as a means to maintain the navigability of the estuary (Conceição, 2016; van
Maren et al., 2015).

2.2. Datasets
Habitat mapping was performed using two different sources of information to provide a seamless evaluation of the habitats at high

resolution. Very-high resolution satellite images and orthophotographs were used for the classification of the habitats, as described
below. This allowed assessment of habitat features at two different resolutions, i.e., comprehension of different Sado areas at different
spatial scales and improvement of the final accuracy.

2.2.1. Satellite data
Planet Scope level 3b imagery for the relevant area was acquired through Planet Labs’ Data API. It has a spatial resolution of 3 m

and 8 colour bands (Table 1; Planet Team, 2017). Two aspects were considered for the selection of satellite images: i) minimum cloud
percentage (0%) and ii) lowest tide at the time of acquisition. The product obtained was captured on May 1st of 2022 by the Super-
Doves (PSD.SD) sensor. The PSD.SD provides a framed scene within a strip, a continuous narrow band of earth scanned by the sensor,
each strip contains several overlapping scenes. The scenes collected to cover the study area had a total area of 637 km2. The data were
provided in a GeoTiff format projected into the UTM (Universal Transverse Mercator) projection using the WGS84 Datum, orthorecti-
fied to avoid terrain distortions, and radiometrically calibrated. The products were delivered corrected from atmospheric effects,
which consists of converting and correcting the top of atmosphere reflectance to bottom-of-atmosphere reflectance, this is an impor-
tant step to avoid errors and inaccuracies (PlanetLabs).

2.2.2. Orthophotograph data preparation
In the scope of the project ORTOSado-2021, the orthophotographs were collected on the 7th and October 8, 2021 with a total cov-

ered area of 355 km2 (Melo and Nogueira Mendes, 2022a). The images were converted into the projected coordinate system ETRS89-
PTTMO6 and collected with a resolution of twelve bit, then orthorectified using OrthoMaster with a spatial resolution of 20 cm and

Fig. 1. Sado estuary map (left inset) and location context of the study area in Iberian Peninsula (orange dot in right inset). (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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Table 1
Original wavelength of Sensor PDB.SD colour bands.

Band name Wavelength (fwhm)

Min Max Average

Coastal Blue 431 452 443
Blue 465 515 490
Green I 513 549 531
Green 547 583 565
Red 600 620 610
Yellow 650 680 665
Red Edge 697 713 705
Near-InfraRed (NIR) 845 885 865

four bands (RGB and NIR). The OrthoVista software was used to analyze and correct the images, the sun reflection and chromatic dif-
ferences between the different maps were removed (Melo and Nogueira Mendes, 2022a).

2.3. Selection of habitats for this study
The available datasets for this study have different levels of spatial resolution, thus, different degrees of habitat specificity depend-

ing on image resolution were defined. EUNIS (European Nature Information System; https://eunis.eea.europa.eu/) is particularly
useful in this case since it provides a comprehensive hierarchical description of habitats occurring throughout Europe. For the satel-
lite images four cluster classes were considered, while the orthophotographs were classified into six classes (Table 2). Cluster classes
are groups formed by the aggregation of the classes and are easier to detect in products with coarser image resolution.

Sometimes it was not possible to apply visual interpretation due to confusion between classes, the Normal Difference Vegetation
Index (NDVI) was used instead to efficiently distinct vegetation classes. This index is used to enhance the vegetation features, to de-
fined thresholds, thus it can be a valuable tool to better differentiate mud from microphytobenthos (MPB), and MPB from filamentous
algae (Table 2; Bertels et al., 2011; Brito et al., 2013; Haro et al., 2022)). A cluster class called intertidal water was also defined to
comprehend the differences in tidal levels between satellite image and ortophotographs (Table 2). This cluster class in the satellite im-
age was mainly represented by open water, however, in the lowest tide of the orthophotographs a mixture of classes was present. Fur-
thermore, gravel and sand could not be separated in the images due to gravel being poorly represented across the estuary (Traganos et
al., 2022). Mud covered with microphytobenthos was considered to be a class in its own right due to its ecological importance, despite
being an algae community instead of a habitat.

2.4. Image pre-processing – masking land and water
Image pre-processing and processing tasks were performed in ArcGIS Pro v3.0.1. First, all the orthophotographs were mosaicked

to obtain only one raster file. The process was replicated for the satellite image stripes to create one mosaic of the area containing
both types of data.

In the pre-processing step (Step 1 in Fig. 2), masks were created using orthophotographs that enhance each class's features
(Traganos and Reinartz, 2018). The water mask resulted from the Normalized Difference Water Index (NDWI), which allows the de-
tection of water bodies, applied to the orthophotographs since these were captured in the lowest tide possible (−1.7 m referred to
Mean Sea Level). The index is based on the Green and Near-infrared (NIR) bands following the expression (Green – NIR)/
(Green + NIR), assuming that there is a decrease in the reflectance of water in the NIR compared to the visible spectrum (Ghuffar,
2018; McFeeters, 1996). Although using the Modified Normalized Difference Water Index, which uses Shortwave-infrared (SWIR) in-
stead of NIR, might provide better results in water masking (Xu, 2006), the absence of the SWIR band in the orthoimagery product in-
hibits the use of this index. The land mask for the orthophotographs was produced by experts (with local knowledge) based on man-
ual photointerpretation. The seagrasses mask (Melo and Nogueira Mendes, 2022b) was also developed by local experts on seagrass

Table 2
Classes identified for satellite image (cluster classes) and orthophotographs (classes) classification, and the identification tools used to map each class.

Cluster Classes Classes Identification Tools

Sand Sand Ground truth; Manual photointerpretation
Mud Mud Ground truth; NDVI <0.0

Microphytobenthos Ground truth; 0.01< NDVI ≤0.3
Filamentous algae Ground truth; NDVI >0.3

Saltmarshes Pioneer saltmarshes Ground truth; Manual photointerpretation
Saltmarshes (low to high)

Intertidal Water Sand Ground truth; Manual photointerpretation
Mud Ground truth; NDVI <0.0
Microphytobenthos Ground truth; 0.01< NDVI <0.3
Filamentous Algae Ground truth; NDVI >0.31

https://eunis.eea.europa.eu/
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Fig. 2. WorkFlow describing the process of building masks throughout the classification. In the ortophotograph classification, when training the classifier, besides the
classes listed before, an “Other” class was also considered to clearly identify classes that did not belong to the target classes. FA - Filamentous Algae; MPB - Microphyto-
benthos; SVM - Support Vector Machine.

identification who identified this class through photointerpretation of the orthophotographs together with ground truth data digi-
tized in a GIS environment, and polygons from ORTOSado-2021 (Melo and Nogueira Mendes, 2022a).

2.5. Image processing
After masking the RS imagery, the satellite image was classified, subsequently, the orthophotographs were classified.

2.5.1. Adding extra bands to satellite images
In Step 2 (Fig. 2), to reduce the variance of the satellite image features, an extra band was added to the product's original 8 colour

bands (Table 1), which was combined using Principal Component analysis (PCA, Supplement Material S1), similar to other RS stud-
ies (Chen et al., 2022). PCA has been widely used in RS in different contexts, including classification procedures (Gómez-Palacios et
al., 2017; Rodarmel and Shan, 2002). It adapts the correlation among the original bands by reducing high dimensional vectors to
maximizes the covariance and reduce the redundancy, highlighting the important information (Gómez-Palacios et al., 2017;
Koonsanit et al., 2012; Rodarmel and Shan, 2002).

2.5.2. Satellite image classification
The composite of 8 bands/PCA band was classified using a supervised pixel-based analysis (i.e., categorical judgements based on

the spectral signature of each individual pixel (Gong and Howarth, 1990)), using the classifier Support Vector Machine (SVM), result-
ing in a map categorized in 4 cluster classes (Table 2; Step 2, Fig. 2). SVM is considered one of the most efficient pixel-based classifiers
for land-cover classifications (Boyd et al., 2006; Dalponte et al., 2009; Dixon and Candade, 2008; Keramitsoglou et al., 2006; Pal and
Mather, 2005). SVM is a non-parametric supervised learning classifier (Zhang, 2015), based on the statistical learning theory of
Vapnik (1995). The classifier uses support vectors to train samples located near the decision boundary between classes to classify the
input dataset into a predefined number of classes, and does not rely on the data distribution (Boyd et al., 2006; Oommen et al., 2008).
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2.5.3. Training the classifier
To train the SVM algorithm, training classes were defined based on manual photointerpretation of orthophotographs and ground

truth data. Campaigns of ground truthing for validation purposes occurred from October 2021 until August 2022, and used 572 pic-
tures taken with a digital camera to train the algorithm, comprising 75% of the total captured pictures (Lyons et al., 2018, Table 2).
All pictures taken were geo-referenced, and an effort was made to try to capture transition zones and identify differences in photosyn-
thetic material found in the sediment, such as MPB and filamentous algae. Identifying these habitats was difficult because sediments,
especially mud, contaminate the biological signal acquired from sediments. For instance, to distinguish the 2 classes of saltmarshes,
pioneer saltmarshes and low to high saltmarshes, identification of the species Spartina maritima was used as this species is usually only
present in pioneer saltmarshes (EUNIS, 2012), and is easy to identify from its morphology, sparse distribution and darkened colour.

In Step 3 (Fig. 2), each cluster class was used as a mask to clip over the orthophotographs in smaller areas.

2.5.4. Adding an extra band to the clipped orthophotographs
Step 4 (Fig. 2) consisted of the classification of orthophotographs after being masked out (i.e., sand, intertidal water, saltmarsh,

mud). Once again, as for the satellite images, extra bands were added to the VNIR bands of the orthoimagery. In this case, the extra
bands were PCA band combination and the NDVI. Different classification schemes were tested, and depending on the best accuracy
detected each class had a different extra band (Table 3 based on Supplementary material S1).

2.5.5. Orthophotographs classification
The composites from section 2.5.4. were classified using the SVM (sections 2.5.2. and 2.5.3.). After the classification process and

estimation of all classes, final maps were produced for each dataset used. The colouring of the maps was selected based on the proxim-
ity to the actual class colour, and the differentiation between all (i.e., lighter and darker colours), to make it more accessible to colour-
blind people.

2.6. Accuracy assessment
The accuracy value is a report describing the agreement between mapped values and ground data (Lyons et al., 2018). Accuracy

was assessed through ground truthing campaigns (see Section 2.5.1). A total of 177 captured pictures were used to provide reference
points, 500 points distributed equally within all the classes. The output, an error matrix, can be used to calculate the producer, users,
and overall accuracy. The producer's accuracy is a measure of the probability that the reference samples are correctly labelled and the
user's accuracy is an indicator of the probability that a classified pixel accurately represents the ground truth data (Gxokwe et al.,
2022). While both are informative, the overall accuracy is more meaningful because it measures the efficiency of the algorithm by es-
timating the mean of the producer and user's accuracy. Thus, in this study, overall accuracy was selected as the preferred method. The
accuracy is used as an estimate of error or uncertainty of the output classification, enabling choice of the most appropriate mapping
procedure or informing the interpretation of the output (Lyons et al., 2018). Thus, based on the overall accuracy of the different clas-
sification schemas (extra bands to used) it was decided which extra bands would be used to estimate the final map (Supplementary
material S1).

3. Results
3.1. Image classification maps

Based on the EUNIS classification system (EUNIS, 2012), a satellite image was classified into four cluster classes (Fig. 3), and pre-
sented a higher classified area of mud, largely found in all the study area (Table 4).

To improve accuracy and detail around the muddy habitats, a second map with higher spatial resolution was created, consisting of
six cluster classes, with microphytobenthos covered mud being the most dominant class.

3.2. Accuracy assessment
The accuracy of orthophotograph classification (Fig. 4) was based on ground truth data. The sand class (Sand cluster class) pre-

sented the higher values in all the accuracy calculated (>95%, Table 5). All the classes presented an overall accuracy higher than

Table 3
Extra bands added to each masked raster (besides VNIR bands). Grey cells indicate no use of extra bands. Saltmarshes class includes all habitats from low to high
saltmarshes.

Cluster class Class Extra band

Sand Sand PCA
Mud Mud -

Microphytobenthos -
Filamentous algae NDVI + PCA

Saltmarshes Pioneer saltmarshes NDVI
Saltmarshes NDVI + PCA

Intertidal water Sand NDVI
Mud -
Microphytobenthos -
Filamentous algae -
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Fig. 3. Habitat map including the cluster classes and the predefined classes (masks).

Table 4
Total classified areas (km2) of each cluster class and class. Saltmarshes class includes all habitats from low to high saltmarshes.

Cluster classes Classes

Sand 5.22 Sand 3.31
Mud 35.82 Mud 11.97

Microphytobenthos 19.19
Filamentous algae 1.77

Saltmarshes 13.78 Pioneer saltmarshes 1.73
Saltmarshes 6.45

Intertidal water 23.65 Sand 9.65
Mud 2.80
Microphytobenthos 6.29
Filamentous algae 1.55

50%, except for the filamentous algae (Mud cluster class, Table 5). The user's accuracy was higher for the mud and filamentous algae
class (Intertidal Water cluster class), with minimal values in the microphytobenthos class (Mud cluster class, Table 5). The producer's
accuracy was higher in the saltmarshes (Saltmarshes cluster class) while presenting a low value for filamentous algae (Mud cluster
class, Table 5).

4. Discussion
A supervised pixel-based classification algorithm on remote sensing images enabled the intertidal area of the case study Sado estu-

ary to be mapped. Two output maps were created using data with distinct spectral, temporal, and spatial resolutions. The two differ-
ent spatial scales allowed the assessment of the ecosystem from distinct approaches. In this way, it was possible to achieve high accu-
racy, which can be challenging, especially in wetlands (Ozesmi and Bauer, 2002) due to the dynamic and complex nature of existing
habitats and communities in wetlands.
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Fig. 4. Classification of Orthophotographs (right top inset) and inset zooms of 3 zones of the study area. Saltmarshes class includes all habitats from low to high salt-
marshes.

Table 5
Classification accuracy values for the user (U), producer (P) and overall (O). Saltmarshes class includes all habitats from low to high saltmarshes.

Cluster Class Class U P O

Sand Sand 95.8 96.2 96.0
Mud Mud 81.3 83.9 82.6

Microphytobenthos 59.5 70.9 65.2
Filamentous algae 80.0 19.2 49.6

Saltmarshes Pioneer saltmarshes 72.9 59.9 66.4
Saltmarshes 72.5 96.9 84.7

Intertidal Water Sand 69.7 88.3 79.0
Mud 95.3 83.5 89.4
Microphytobenthos 80.8 63.0 71.9
Filamentous algae 96.4 81.6 89.0

4.1. Challenges of habitat mapping
Coastal wetlands are known for their habitat diversity and complex organization. Thus, mapping these habitats represents an im-

portant challenge, especially when different habitats share similar spectral signatures such as mud covered with filamentous algae
and seagrass (Jiao et al., 2019). In general terms, the dominant method usually applied in these systems is the classification based on
pixel, particularly in cases where objects are smaller than the pixel (Blaschke et al., 2014; Calleja et al., 2019; Ozesmi and Bauer,
2002). However, several limitations have been identified in the literature, such as the salt and pepper pixel effects that occur when us-
ing pixel-based analysis in high-spatial resolution imagery, which are caused by the interference of neighboring pixels with different
habitats (Ouyang et al., 2011). Furthermore, the fact that most of the classes can happen in very small areas, at a sub-pixel level, may
lead to under or over-estimation of those classes (Traganos et al., 2022).

Several studies have found that the SVM algorithm can outperform other classifiers with higher accuracy (Dixon and Candade,
2008; Li et al., 2012; Qing et al., 2010; Zhong et al., 2007). It is especially suited for cases with limited amount of reference data
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(Mountrakis et al., 2011) and classification of multiple classes (Knerr et al., 1990), thus, it is appropriate for estuarine systems. The
high success rate of SVM has been justified with the fact that it does not assume normality in data distribution, thus, the classifier
based on the training data can make assumptions to categorize the areas where no data is available (Mountrakis et al., 2011). How-
ever, the algorithm is not able to deal with data collected with limited precision or atmospheric distortions (Mountrakis et al., 2011).
One of the emerging issues in the use of supervised classifiers is the lack of standardized amount of training and validation data to
match the imagery resolution and extension (Traganos et al., 2022). The oversampling can lead to a biased classification (Aplin, 2006;
Cushnie, 1987; Hsieh et al., 2001; Timm and McGarigal, 2012).

Usually, higher accuracy is reached when simple categories are identified, for instance the sand has a spectral signature com-
pletely different from the rest of the habitats. Hence, signature contamination is less common. Tides can have a significant impact on
the classification of muddier sediment, bare mud is easily confused with vegetated habitats with less density (e.g., microalgae com-
munities, seagrasses). Tidal influence can change the spectral signature of habitats due to the water content (Pe'eri et al., 2016). Con-
sidering the dynamics of an estuarine system, the long tidal delays can be a limitation when trying to map intertidal habitats, for in-
stance, Sado tidal delay can go up to 1h10 at the most upstream point (Alcácer do Sal, Andrade et al., 2006). To discriminate between
bare mud and microalgae-covered mud, a decrease in reflectance in the NIR (Near-Infrared wave) indicates residual absorption by
chlorophyll-a or phaeopigments present in the algae (Kromkamp et al., 2006). These communities, microphytobenthos (MPB), are a
major contributor to the total organic production in coastal areas (Asmus and Asmus, 2000; Frankenbach et al., 2020; Haro et al.,
2020; Underwood and Kromkamp, 1999). However, the detection of MPB goes beyond the identification of chlorophyll-a in the sedi-
ment, the signature spectrum of MPB is a complex relation between several variables (i.e., pigment composition, sediment type, water
content). For instance, Oiry and Barillé (2021) wrongly classified MPB as mud, while bare mud and sand were correctly classified as
such. One possible solution to better identify these communities is by setting empirical NDVI thresholds. The vegetation reflects
strongly in the NIR and absorbs radiation in the red band, the NDVI index uses the ratio between both wavelengths to distinguish veg-
etated and non-vegetated areas without overestimating these communities (Jensen, 2006; Mather, 1999). Moreover, this vegetation
index can be applied in a wide range of situations due to its low sensitivity to sediment background influences (Barillé et al., 2011).
However, this is not a straightforward method. It is influenced by several variables, namely water content and thin sediment covering
the algae, which increases the chance that light can interact with more than one component of the substratum (Tian et al., 2010).
Other studies have also shown that commonly used vegetation and water indices have not been very effective in discriminating vege-
tation species in wetland environments (Gupta et al., 2018; Zhang et al., 2011).

Saltmarshes occupy large areas distinctly different from neighboring intertidal habitats, these are relatively stable habitats
throughout the year since most of the vegetation is persistent, even though with poorly defined boundaries (Thomson et al., 2003;
Tiner, 2015). However, pioneer saltmarshes are more difficult to distinguish from some other habitats in the mosaic. Located in the
lowest intertidal zone and dominated by the Spartina genus, they usually present vegetation that is much shorter and darker, similar
to habitats dominated by mud or algae communities (Sousa, 2006). Pioneer saltmarshes spectral signature is easily confused with
other habitats which explains the lower accuracy values detected (66.4%). Other studies presented lower accuracy for saltmarshes
than in this study (64.7 % vs 84.7%, respectively - Alam and Hossain (2021)).

To understand and improve the outcomes the uncertainty associated with them must be known, and that knowledge must be in-
corporated in the decision process (Burgman et al., 2005; Foody, 2015).The aim of the accuracy assessment is to assess the error asso-
ciated with the classification which can be used to correctly interpret the outputs (Lyons et al., 2018). There are several metrics that
can be used, however, none of them have been fully accepted as the standard method (Lyons et al., 2018) and many studies fail to
achieve the target accuracy (OA > 85% - Foody, 2010). For example, the Kappa accuracy (predicts the difference between actual
agreement and random agreement (Congalton, 1991)) has been criticized by the comparison with randomly selected pixels (Lyons et
al., 2018). On the other hand, the Overall accuracy has been criticized because there is no assurance that classes are accurately classi-
fied due to the algorithm efficiency or whether accurate classification happens by chance (Foody, 2002). The use of more than one
metric to optimize the classification has been suggested (Morisette and Khorram, 2000), even though the use of more than one
method can cause conflict in the interpretation of the data (Stehman, 1997). Despite these issues, the comparison of some of the mea-
sures can help in the identification of problems in the classification process. For instance, if the producer's accuracy is much lower
than the user's accuracy, this means that the area classified matches the reference data, however, the classifier failed to capture a fair
amount of this class causing the under-estimation of some classes (Traganos et al., 2022). This is particularly significant in the fila-
mentous algae class (Mud cluster class) where the user's accuracy is 4 times the producers, also this is the class with the smaller exten-
sion in the final map (total area of 3.32 km2).

Additionally, some constraints may arise when collecting ground data. For instance, in estuarine systems, such as the Sado case
study, physical access to the intertidal areas is limited due to property rights of landowners at the margins (e.g. farmhouses, aquacul-
ture tanks) and also terrain constraints, this can affect the quality of the data collected (Edwards et al., 1998; Estes et al., 1999). To get
significant accuracy assessment the collection of ground data must cover all habitats evenly (Foody, 2002), even small errors in the
reference data set can cause a large bias in the accuracy measures, making it difficult to make simple generalizations of their effect
(Alonzo et al., 2002; Hawkins et al., 2001; Vacek, 1985; Valenstein, 1990).

4.2. Combining satellite and orthophotographs: difficulties and challenges
During the 2-step classification, the satellite images were mapped in cluster classes, while the orthophotographs were mapped in

classes. In theory, the cluster classes would represent the sum of all classes within them. However, when comparing both classifica-
tion outputs it is evident that there is an overestimation of the area of the cluster classes. This was expected since the broader spatial
resolution has less sensitivity to the features of each cluster class, this can cause overestimation of the areas mapped. Namely the ex-
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tent of the Sand cluster class was 5.22 km2, while the same class only occupied an area of 3.31 km2. Another factor that increases the
discrepancy between the areas obtained from the different classifications is the coverage of each image, for instance the Planet Scope
area includes all the estuary from its mouth up to Alcácer do Sal city, whereas the orthophotographs covers a much smaller area,
which does not include the Alcácer do Sal channel (Fig. 1). The Saltmarshes cluster class had a total area of 13.78 km2, however, the
total area of the corresponding classes in the orthophotographs (saltmarshes and pioneer saltmarshes) was only 8.18 km2. This dis-
crepancy cannot be explained by considering the area not included in the orthophotos as saltmarshes in the Alcácer do Sal channel
only occupy an area of 1.09 km2. Thus, a significant area is not accounted as saltmarshes (4.5 km2). The same issue was identified in
the Sand and Mud cluster class, however, the area not accounted for is much smaller (1.7 km2 and 1.29 km2, respectively). Possibly,
the sand closer to the water body can have some water content, presenting as darker than usual and with a spectral signature similar
to mud causing the occasional confusion with the 2 classes. This is a spatially specific problem since the pictures were captured during
the low tide, and the dry sand has a spectral signature completely distinct from any of the other classes considered. It has previously
been noted that specific features of the Planet imagery can limit their application (Cooley et al., 2017; Houborg and McCabe, 2016;
Poursanidis et al., 2019; Traganos et al., 2020). For instance, high levels of noise and low radiometric quality, as well as a low correla-
tion between VIR and NIR bands, decreases the image quality and limits the use of them (Cooley et al., 2017; Poursanidis et al., 2019;
Traganos et al., 2020; Wicaksono and Lazuardi, 2018). The combination of these features lowers the advantage of having higher spec-
tral resolution in the satellite images, resulting in the overestimation of certain habitat areas.

4.3. Added values of combining different data sources and overall applications
RS and semi-automatic classifiers are useful tools to map ecosystems, and to evaluate the extent and fragmentation of habitats

(Bateman et al., 2011; Mace et al., 2015). This is an important step within an ecosystem service assessment since it enables identifica-
tion of the units (i.e., habitats) providing services and benefits to the local communities (O'Higgins et al., 2010).

Furthermore, techniques for habitat mapping are required by local and national authorities responsible for ecosystem monitoring,
for whom methods that involve less financial and time investment are especially useful (Samiappan et al., 2017; Weires et al., 2004).
For research studies frequently undertaken in situations where there is both limited funding and time to undertake field surveys the
use of different and free data sources (i.e., Planet Labs Educational and Research Program), in combination with the use of software li-
censed by universities (i.e., ArcGIS Pro) can help to overcome such challenges (Iglseder et al., 2023). However, acquiring accurate
and detailed maps requires proper data which can be expensive and arduous (Najjar et al., 2017). The advances in space technology
have led to an increase in resolution and affordability of satellite images (Dash and Ogutu, 2016). Nevertheless, the exclusive use of
satellite images was not able to identify the habitats encompassed by the study area with sufficient resolution. This was only achieved
when satellite images were complemented with the use of aerial photographs. Thus, the aim of the mapping process must be consid-
ered before determining the details needed and any possible future requirement to enhance the accuracy of the outputs. For instance,
this study was developed in the context of ecosystem management. Thus, the goal was not to get the best accuracy possible, but to be
able to use simple and efficient methods supported by expert knowledge to rapidly produce outputs that would be sufficiently de-
tailed and accurate for the purpose of ecosystem service assessment.

Over the last few years, great progress has been made in the study of coastal habitat mapping, some suggestions to improve the ac-
curacy of classification include hybridization of different machine-learning classification algorithms and the use of object-based clas-
sification algorithms (Aroma and Raimond, 2016). Moreover, it has been suggested the integration of LiDAR sensors in UAVs to effec-
tively map small habitats with high-resolution and exceptional detail (Banerjee and Raval, 2022). However, such approaches still re-
quire a large amount of data that are only available for specific areas, hindering its application in low-income countries. In the future,
it would be interesting to put in practice some of these suggestions to enhance the accuracy or detail of the maps. With the develop-
ment of new cutting-edge technologies over the next years, the implementation of hyperspectral sensors in earth observation pro-
grams (e.g. Landsat Next - https://landsat.gsfc.nasa.gov/satellites/landsat-next/) and the dissemination of datasets acquired in the
framework of many projects, data can become more accessible and tailored to improve habitat mapping accuracy and detail.

5. Conclusions
Coastal ecosystems are under increasing pressure, thus it is crucial to invest in methods to better understand and increase the

knowledge about these systems (Murray, 2018). The use of remote sensing and semi-automatic classifiers is viewed as a win-win solu-
tion in the literature (Islam et al., 2008; Saul and Purkis, 2015), given their potential to enable the production of detailed habitat
maps with little (time and financial) investment compared to field observations. In this study, satellite images and orthophotographs
were used to create a habitat map for ecosystem service assessment. The overall accuracy for each habitat class ranged from 49.6 to
96%, with less accurate results for habitats with lower vegetation (i.e., pioneer saltmarshes) and higher accuracy for habitat classes
with spectral signatures that were very different from other habitats.
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