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Abstract. In the last decade, various satellite missions have
been monitoring the status of the cryosphere and its evo-
lution. Besides sea-ice concentration data, available since
the 1980s, sea-ice thickness retrievals are now ready to be
used in global operational prediction and global reanalysis
systems. Nevertheless, while univariate algorithms are com-
monly used to constrain sea-ice area or volume, multivariate
approaches have not yet been employed due to the highly
non-Gaussian distribution of sea-ice variables together with
the low accuracy of thickness observations. This study ex-
tends a 3DVar system, called OceanVar, which is routinely
employed in the production of global/regional operational/re-
analysis products, to process sea-ice variables. The tangen-
t/adjoint versions of an anamorphosis operator are used to
locally transform the sea-ice anomalies into Gaussian con-
trol variables and back, minimizing in the latter space. The
benefit achieved by such a transformation is described. Sev-
eral sensitivity experiments are carried out using a suite of
diverse datasets. The sole assimilation of the CryoSat-2 pro-
vides a good spatial representation of thickness distribution
but still overestimates the total volume that requires the in-
clusion of Soil Moisture and Ocean Salinity (SMOS) mission
data to converge towards the observation estimates. The in-
termittent availability of thickness data can lead to potential
jumps in the evolution of the volume and requires a dedicated
tuning. The use of the merged L4 product CS2SMOS shows
the best skill score when validated against independent mea-
surements during the melting season when satellite data are
not available. This new sea-ice module is meant to simplify
the future coupling with ocean variables.

1 Introduction

The recent availability of sea-ice thickness retrievals has of-
fered a unique opportunity to significantly improve the re-
construction of the past state at high latitudes as well as its
prediction. Thickness estimates were first derived from the
ERS-1/ERS-2 radar altimetry echoes between 1993 and 2001
in a pioneering reconstruction of Arctic sea-ice thickness dis-
tribution up to 81.5° N (Laxon et al., 2003). In 2003 the ded-
icated satellite mission ICESat was launched to monitor the
thinning of Arctic ice (Forsberg and Skourup, 2005). More
recent missions include the Soil Moisture and Ocean Salin-
ity (SMOS) mission in 2009 (Kaleschke et al., 2010; Tian-
Kunze et al., 2014), the polar-orbiting CryoSat-2 in 2010
(Wingham et al., 2006) and the ICESat-2 mission in 2018
(Kwok et al., 2019; Petty et al., 2023). Most of these datasets
have yet to be harnessed by present reanalysis systems, as
pointed out by recent reanalysis inter-comparison studies that
show large discrepancies in several sea-ice features despite
a rather general agreement in the sea-ice extent (Chevallier
et al., 2017; Uotila et al., 2019; Iovino et al., 2022). Thick-
ness data could be also employed to ameliorate short- and
long-term prediction: the memory of a realistic thickness
distribution within the initial conditions has been shown to
persist well beyond seasonal timescales (Day et al., 2014;
Blanchard-Wrigglesworth et al., 2017). Despite that, the in-
termittent occurrence of such data during the year, the large
errors associated with them (Zygmuntowska et al., 2014) and
the highly non-Gaussian distributions of sea-ice related un-
certainties have made the multivariate assimilation of sea-
ice data still an active research field. Nowadays, the sole as-
similation of the sea-ice concentration in a univariate fashion
is a well-established approach (Posey et al., 2015; Lemieux
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et al., 2016; Zuo et al., 2019). Preliminary studies on the ad-
dition of a second univariate assimilation scheme for thick-
ness have come out only recently at global level. Blockley
and Peterson (2018) and Mignac et al. (2022) showed the
benefit of using of CryoSat-2 and later CryoSat-2/SMOS
data to correct the Arctic thickness distribution, exploiting
a variational approach within the FOAM system. They also
point out the need for a better estimation of sea-ice thickness
(SIT) observation errors. At a regional scale, multivariate ap-
proaches were developed; Xie et al. (2016, 2018) confirm
the benefits of the assimilation of CryoSat-2 and SMOS in
the TOPAZ regional forecast system based on the ensemble
Kalman filter. The main correction comes from the use of
CryoSat-2 data; the assimilation of SMOS reduced the er-
ror in the thin ice about 11 % and 22 % in March and in
November respectively, without degradation in the other vari-
ables. Yang et al. (2014) and Mu et al. (2018b) tested the
localized singular evolutive interpolated Kalman filter to in-
tegrate thickness data and showed an overall error that is sim-
ilar to the Pan-Arctic Ice Ocean Modeling and Assimilation
System (PIOMAS) (Zhang and Rothrock, 2003) when com-
pared to independent in situ measurements.Finally, Cheng
et al. (2023) recently showed, in the standalone Lagrangian
sea-ice model neXtSIM interfaced to a deterministic ensem-
ble Kalman filter (EnKF) scheme in a multivariate manner,
that improvements in SIT estimates indicate the importance
of assimilating weekly CS2SMOS SIT, while the improve-
ments of sea-ice concentration (SIC) and ice extent are mod-
erate but benefit from daily correction from OSI-SAF SIC.
In this study, we extend an operational 3DVar data assimi-
lation (DA) scheme, OceanVar, employed in the production
of global and regional ocean reanalysis and forecasts (Storto
et al., 2019a; Escudier et al., 2021; Lima et al., 2021; Cilib-
erti et al., 2022), to treat sea-ice concentration (SIC) and
thickness (SIT) data. The novelty in this approach relies on
the inclusion of a tangent/adjoint version of an anamorpho-
sis operator in the control vector transformation to deal with
the breaking of the Gaussian assumption of sea-ice variables
(Brankart et al., 2012; Simon and Bertino, 2009; Béal et al.,
2010). The operator transforms the probability density func-
tions of SIC/SIT anomalies towards Gaussian-like ones per-
forming the minimization in this space. It is originally based
on the tool made available by the SANGOMA project (http:
/Iwww.data-assimilation.net/, last access: May 2022) further
adapted for the bivariate assimilation of SIC/SIT within the
OceanVar framework. While able to maintain the correct
cross-correlation between the two parameters, such an op-
erator is also able to preserve the strong spatial anisotropy of
sea-ice variables close to the edge. Several sensitivity experi-
ments were carried out with the new scheme assimilating dif-
ferent thickness products: SMOS, CryoSat-2 and optimally
interpolated product CS2SMOS (Ricker et al., 2017), jointly
with SIC data. Strategies to avoid discontinuities at the onset
of the accretion period when the SIT data start to be available
are discussed. The paper is organized as follows: Sect. 2 pro-
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vides a description of the observation-based datasets used in
this study and the ocean/sea-ice models employed. In Sect. 3
we detail the new module of OceanVar that deals with sea-
ice variables. The comparison among different DA set-ups
and observations is discussed in Sect. 4 by means of a suite
of ad hoc metrics together with the independent validation of
thickness field against mooring and airborne data. The rela-
tive influence of the observation networks is also assessed.
Conclusions and remarks are drawn in Sect. 5.

2 Data and models

In the past few decades, several satellite-derived datasets
of Arctic sea-ice thickness have been disseminated mainly
limited to the freezing season (October—April in the Arc-
tic) due to the difficulty in discerning signals from open
water and melt ponds during the melting season. Radar al-
timeters installed on the polar-orbiting CryoSat-2 (Laxon
et al.,, 2013; Hendricks and Ricker, 2020) provide thick
sea-ice data, typically thicker than 0.5m (Zygmuntowska
et al., 2014), by relying on the knowledge of the snow
depth (Warren et al., 1999) and on the assumption of hy-
drostatic equilibrium (Ricker et al., 2014; Tilling et al.,
2016). Measurements of thin sea ice, roughly up to 0.5 m,
are instead extracted from a passive microwave radiometer
(Huntemann et al., 2014), within the European Space Agency
(ESA) Soil Moisture and Ocean Salinity (SMOS) mission,
analysing the satellite brightness temperature in the L-band
microwave frequency (Kaleschke et al., 2010). The com-
plementarity characteristics of these two products fostered
the generation of a weekly optimally interpolated merged
product called CS2SMOS (http://data.meereisportal.de, last
access: May 2021) (Grosfeld et al., 2016; Ricker et al.,
2017), which was released together with a mapping error
that accounts for merging and interpolation processes. As
shown by Xie et al. (2018) such an error can be used as
a first guess to construct a better observation error follow-
ing Desroziers’ method (Desroziers et al., 2005). In the con-
text of observation-derived datasets, it is worth mention-
ing the recent availability of a year-round product that es-
timates summertime thickness using deep learning methods
(Landy et al., 2022); however, it will be not considered in
the present analysis. Jointly with SIT data, daily concentra-
tion measurements, computed from SSMIS (2006-2015) in-
struments with atmospheric corrections from ERA-Interim
(Lavergne et al., 2019) and reprocessed by Ocean and Sea Ice
Satellite Application Facility (OSISAF, 2021), are assimi-
lated. The ocean/sea-ice configuration follows the global set-
up employed in the CMCC Global Ocean Reanalysis System
(C-GLORS) product (Storto and Masina, 2016). The ocean
model is NEMO v3.6 (Madec and NEMO system team,
2016) coupled with the Louvain-la-Neuve sea-ice model
(LIM) version 2 (Fichefet and Maqueda, 1997), a three-layer
(two layers of sea ice and one of snow) thermodynamic—
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dynamic model that employs here the elasto-visco-plastic
rheology (Bouillon et al., 2009) and one thickness category.
The use of a multi-category sea-ice model is foreseen in the
near future, providing a more complex representation of the
sea-ice interaction with the other components of the Earth
system. The ice thickness distribution, ITD (Thorndike et al.,
1975), accounts for the sub-grid (unresolved) physics in a
statistical sense: internal/external thermodynamic/mechanic
processes can change the total thickness as well as its distri-
bution, the latter being only partially parameterized by sim-
pler mono-category sea-ice model. On the other hand, the
practical discretization of such categories as well as their
number should be properly tuned to contain the computa-
tional cost and still provide benefits with respect the mono-
category models. In Uotila et al. (2017) the authors com-
pare a set of simulations performed with multi- and mono-
category sea-ice models: LIM3 and LIM2 respectively. They
showed that the decline of Arctic sea-ice extent in the last
decade and Antarctic seasonal variability are better repro-
duced with LIM3. However, the impact on the ocean sector is
usually very small. Moreover, the discretization has a signif-
icant impact on the mean state (Massonnet et al., 2019), and
it can be inferred that the optimal configuration is different
for Arctic and Antarctic sea ice. In this context the coupling
with a sea-ice DA system could help in reducing the differ-
ences between multi-/mono-category models. A tuned multi-
category model can ease the effort of DA and provide a con-
sistent realistic representation of such variables not directly
corrected by the DA. The present configuration uses a tripo-
lar grid with nominal horizontal resolution of 1/4°,1i.e. 25 km
at the Equator increasing toward the poles with 75 vertical
levels and partial steps at the bottom (Barnier et al., 2006).
The sea-ice model and ocean model are forced by hourly
ERAS5 atmospheric reanalysis (Hersbach et al., 2020) with
horizontal resolution of 0.25° using 10 m wind, 2 m temper-
ature and humidity, short and long radiative fluxes, precipita-
tion, and snow. The coupling frequency between the sea-ice
model and ocean model is 1 h.

3 Data assimilation scheme

Variational schemes can be described in a purely statistical
sense, following a Bayesian formulation, where the model
variability is interpreted as a stochastic error that follows a
spatial- and time-varying probability density function (pdf)
as in Carrassi et al. (2018). The best ocean state is defined as
the mode of the a posteriori pdf of the ocean state conditioned
to the presence of observations. Under the hypothesis of nor-
mal distribution, this translates to seeking the minimum of
the following cost function:

1 1
J(8x) = ESxTB_léx + E(H(Sx — TR Hsx —d), (1)

where the first addend comes from the pdf of the anomalies
with respect to the initial background state, while the sec-
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ond refers to the pdf of the observations conditioned to the
model background. Equation (1) is the standard incremen-
tal formulation of the cost function found in the OceanVar
scheme (Dobricic and Pinardi, 2008), where §x labels the in-
crements that correspond to the difference between the final
analysis state x, and the initial ocean state xy, in the mini-
mum of the cost function. B and R are the background-error
and observation-error covariance matrices respectively, d the
vector of misfits calculated using the non-linear observation
operator and H the tangent-linear version of the observation
operator. The inclusion of sea-ice variables implies the aug-
mentation of the ocean state vector, initially composed of
x ~ (T,S,SLA) with the addition of sea-ice concentration
and thickness x ~ (T, S, SLA, SIC, SIT). As the minimiza-
tion problem is unconstrained, a pre-conditioning is applied
by a control vector transformation, CVT (V), that moves the
minimization in a control space v defined as dx = Vv and
B = VVT. Such a B matrix is the basis of any filtering pro-
cess; it spreads information in areas where no or sparse data
are present and smooths information in observation-dense re-
gions. In the literature, different methodologies are used to
shape sea-ice background error covariances B, from multi-
variate ensemble-based methods (Xie et al., 2016) to univari-
ate approaches based on historical simulations (Zuo et al.,
2019) or to short hindcast runs (Fiedler et al., 2022; Mignac
et al., 2022). Following the construction of B for ocean vari-
ables in OceanVar (Dobricic and Pinardi, 2008; Storto et al.,
2010), such a control vector transformation V is composed
of a sequence of linear operators coming from both physi-
cal balances and statistical methods to add complexity in the
covariance matrix B:

V =Vaoces1ceVaVaVv(r:s:gSIC: gSIT) » 2

where V,, is the dynamic height balance converting incre-
ments of temperature and salinity into increments of sea level
through local hydrostatic balance (Storto et al., 2010), Vy
models the horizontal correlations through the application of
arecursive filter, Vy is the vertical covariance operator made
by empirical orthogonal functions (EOFs), V gicE—1cE is the
linearized anamorphosis operator that transforms the Gaus-
sian sea-ice variables into physical ones, and gICE refers to
both the operators applied independently to gSIC and gSIT.
Sea-ice variables are not directly covaried with the other
variables; the break of Gaussianity in fact can generate un-
realistic corrections in a multivariate framework due to the
poor linear relationship driven by a simple covariance ma-
trix (Bertino et al., 2003; Brankart et al., 2012). A similar
approach was previously employed in the literature to deal
with strongly non-Gaussian variables (Simon and Bertino,
2009; Béal et al., 2010) and is presented here to deal with SIC
and SIT fields. The V gicE—s1CE, VITCE% oICE operators are the
tangent and adjoint version of an anamorphosis operator de-
veloped and made freely available through the SANGOMA
project that constructs such a transformation empirically by

Ocean Sci., 19, 1375-1392, 2023



1378 A. Cipollone et al.: Bivariate sea-ice assimilation for global-ocean analysis-reanalysis

mapping the different quantiles of the initial and final distri-
butions (Brankart et al., 2012).

Neglecting the ocean variables, the CVT transformation
reduces to

dx = (8SIC, 8SIT) = V g1cE—1cEVh V (¢SIC: gSIT) V- (3

Firstly the gSIC and gSIT are cross-correlated through
V (gsiC: gs1T), and then increments are spread horizontally
through the recursive filter operator Vy,. The final fields are
transformed into physical variables through V gice—1cE.

3.1 Background error covariance matrix

The benefits achieved by the anamorphosis transformation
have been already discussed in the literature: linear cor-
relations in the transformed space can be seen as a non-
parametric correlation in the original space, being more
adequate to treat nonlinear dependencies and more robust
to the presence of outliers in the observations (Chileés and
Delfiner, 1999; Corder and Foreman, 2009; Brankart et al.,
2012). The operator Vgice—1cE in Eq. (3) is spatially and
monthly varying, computed at each model grid point by em-
ploying monthly fields of a historical 31-year-long NEMO-
LIM2 simulation. Such an operator requires the anamorpho-
sis transformation to be locally continuous. In the case that
the numerical derivative does not exist, the corresponding in-
crement is zero and no correction is generated. To avoid the
presence of discontinuous probability densities, which re-
flect an underestimation of the model error, we enrich the
sample size for each point (x,y) with values from neigh-
bouring points (x —1:x+ 1,y —1:y+ 1). Therefore, each
initial distribution is shaped by 31 x 9 = 279 samplings and
then mapped to a normal distribution using a quantile map-
ping with 21 quantiles (Brankart et al., 2012). An example of
the application of Gaussian anamorphosis on the SIT field is
shown in Fig. 1a—d, which display the initial and final map
for the 2 years 1999 and 2014. Similar procedures apply to
the SIC field (not shown). Gaussian variables can be inter-
preted as a “measure” of the anomalous content of the orig-
inal variable given its pdf. Such an anomaly is then normal-
ized to a common scale, amplifying/reducing the variability
in each point according to the imposed normal distribution.
Fig. 1a and c show the SIT and gSIT spatial distributions for
March 1999, respectively. The strong positive gSIT anomaly
in the Siberian sector for March 1999 reflects the excess of
sea ice compared to the climatological March distribution.
An opposite behaviour is seen in March 2014 (Fig. 1b, d)
where gSIT values are more homogeneous and slightly neg-
ative, meaning that original spatial distribution is close to the
climatological one, despite being uniformly lower in magni-
tude.

The cross-correlation (between SIC and SIT) is only
slightly modified by this transformation as it can be inferred
from Fig. le-h, which compare the two fields prior and af-
ter the transformation for March and September. The spa-
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tial structure is similar in the two cases, while the magnitude
slightly differs, especially in perimetrical areas where ice is
seldom present and the statistics less reliable. Two dynam-
ically different regions emerge from these maps: (i) a first
zone with a high positive cross-correlation where an increase
in concentration automatically generates a corresponding in-
crease in thickness and vice versa and (ii) a second zone
where these two variables tend to disentangle and correla-
tion drastically drops to zero. This last behaviour is typical
of areas where the concentration is already close to 1, and
the variation in thickness does not affect the concentration
directly.

The use of local Gaussian space in each point of the grid
turns out to be crucial for a correct application of the hori-
zontal correlation operator, especially close to sea-ice edge.
Figure 2 shows the sea-ice increments in a test case (the third
week of February 2015, generated with and without the ap-
plication of Vgcg-1cE with a large fixed correlation length
of 150km and three iterations of a first-order recursive fil-
ter). The solid green line corresponds to the mean sea-ice
edge in that week; SIC and SIT are jointly assimilated close
to the sea-ice edge. In the physical space an isotropic spread
of information towards the ice-free areas is seen (Fig. 2c, d).
The use of Veice—1ce “re-centres” the increments (in the
Gaussian space) within the range of physical values, reduc-
ing the wrong isotropic diffusion (Fig. 2a, b) and following
the variability of the specific region. This operator seems to
be crucial in the assimilation of sparse data and long hori-
zontal correlation lengths. On the other hand, the diffusion in
physical space can provide good results in data-dense regions
where the correlation length can be safely reduced to a small
value. In the following we set a fixed value of 50 km, which
has been shown to provide satisfactory results in a variational
scheme (Mignac et al., 2022). The benefits achieved by spa-
tially and seasonally varying correlation lengths may be in-
vestigated in future. It is worth noting that the use of tan-
gent/adjoint approximations of the anamorphosis leads the
assimilation of extreme events to be suboptimal (i.e. observa-
tions that are far from the background value). Tangent/adjoint
approximations of any operator are valid in the proximity
of the background value and become less and less accurate
in the case of large corrections and highly non-linear opera-
tor. This is anyway a limitation that is implicit in any three-
dimensional variational scheme. Moreover, the anamorpho-
sis should span all the possible physical values in each grid
point. If the background is out of the range of values used
for the anamorphosis, then it is not possible to calculate the
derivative and the corresponding increments are zero. This
means that extreme events in the background (not present in
the 31 years of simulation) do not receive corrections. In Si-
mon and Bertino (2012) they include an exponential tail to
the anamorphosis in order to treat values out of bounds. A
further approach could be the use of a hybrid B where the
ensemble part goes to update the anamorphosis with the in-
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Figure 1. Panels (a) and (b) show the SIT spatial distribution for March 1999 and 2014 respectively, taken from the historical 31-year-long
simulation used to construct the anamorphosis transformation. Panels (¢) and (d) correspond to the SIT in Gaussian space for the same dates.
Panels (e) and (f) are the cross-correlation between SIC and SIT in physical and Gaussian space respectively for March in each grid point.

Panels (g) and (h) show the same as (e), (f) for September.

clusion of new model values as well as adding the “error of
the day”.

3.2 Observation error

The observation error (OE) includes different sets of uncer-
tainties: instrumental errors, inaccuracies of the observation
operators, unresolved dynamics, etc. (Oke and Sakov, 2008).
Under the assumption of error independency the structure of
R simplifies into a diagonal matrix that seems however sub-
optimal in the case of dense datasets. A way to determine the
presence of non-zero off-diagonal terms follows the imple-
mentation of Desroziers’ relations (Desroziers et al., 2005)
that combine model departures and assimilation residuals
to diagnose the “correctness” of OE in observation space.
Specifically the relation

E[dg(dg)T] =R )

links each element of the R matrix to a posteriori statisti-
cal diagnostics, where d denotes the residuals (analysis mi-
nus observations) while dg refers to the initial misfits (back-
ground minus observations). Desroziers’ relations are gener-
ally used to optimize the first-guess OE (Xie et al., 2018) but
can also be employed to add time-dependent effects both in
B and R matrices (Storto and Masina, 2016; Escudier et al.,
2021). It is worth noting that they must be used with caution
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because of the presence of sampling errors and biases that
can spoil the diagnostics (Ménard, 2016).

Figure 3 shows these off-diagonal terms as a function
of the distance between observations and evaluated through
Eq. (4). The green line refers to the L3 CryoSat-2 data (ex-
periment L3CR2 in Table 1; see next section), while the red
line labels L4 CS2SMOS data (experiment L4DE). Statistics
are averaged over a 4-year-long reanalysis time series, after
the application of the thinning procedure, and restricted to
5000 observations per week (the assimilation being weekly).
A minimum threshold of 0.1 m in thickness is imposed to
avoid ice-free areas. The red line (CS2SMOS data) shows an
error correlation that reduces slowly with the distance, while
a sudden drop is present for L3 CryoSat-2 data, demonstrat-
ing much less interdependency among close errors. Several
studies have recently focused on different methods of includ-
ing the error correlation in DA schemes (Storto et al., 2019b;
Ruggiero et al., 2016). At present, many operational systems
are further increasing the Desroziers OE to partially alleviate
the absence of such off-diagonal terms in R (Benkiran et al.,
2021). However such a solution requires some extra care for
satellite data that are not continuous over time, as shown in
the next section.

Ocean Sci., 19, 1375-1392, 2023
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Figure 2. Examples of increments obtained from the joint assimilation of SIC and SIT data in different a set-up and close to the sea-ice edge.
The first and second panels correspond to SIT and SIC increments achieved by applying the anamorphosis transformation in a test case. The
third and fourth panels refer to the same increments but without the transformation for the same date.
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Figure 3. Correlation between different OEs as a function of the ob-
servation distance with a bin of 20 km. The green line corresponds
to the L3CR2 experiment that assimilates only L3 CryoSat-2 data,
while the red line shows the same for L4DE1 experiment (assimila-
tion of L4 CS2SMOS data).

4 Results

Different data assimilation strategies are hereby discussed
and compared. Table 1 summarizes the main characteristics
of each experiment. While the DA set-up differs, the model
configuration remains identical. Ocean and sea-ice initial
conditions refer to 1 January 2011 from the C-GLORS re-
analysis (Storto and Masina, 2016).

4.1 Concentration data and sea-ice extent

The seamless presence of SIC data over the years, covering
the full meteorological era, does not strictly require any ad
hoc optimization to avoid discontinuities in the total sea-
ice area. Figure 4 shows the evolution of the sea-ice area
along the 4-year run for different set-ups and compared to
OSISAF data. The free run, namely the CTRL, has an over-
all root mean square error (RMSE) of about 1.1 x 10° and
2.0 x 10°km? for the Arctic and Antarctic regions respec-
tively. The use of SIC data decreases such an error down to
about 0.40 x 10° and 1.3 x 10% km?, also improving the repre-
sentation of trends during the growing and melting seasons.
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The two experiments SICDE1 and SICDEO2 (OE is reduced
to 1/5th) show similar skill scores.

To compare the position of the sea-ice edge in the differ-
ent experiments, the integrated ice edge error (IIEE) metric
is generally used (Goessling et al., 2016). The IIEE sums
up all grid cell areas where models and observations are in
disagreement on the presence or absence of sea ice, with
a concentration threshold of 15 % (Blockley and Peterson,
2018). The assimilation of SIC data considerably decreases
the sea-ice edge error compared to free run, with an IIEE
of about 1 x 10° and 1.7 x 10°km? for Arctic and Antarc-
tic regions respectively, while the CTRL is around 1.6 and
2.6 x 10%km? (Fig. 5). More than the 65% of the CTRL
IIEE comes from an excess of sea-ice in ice-free areas (not
shown). A noticeable improvement is seen in August 2012
with the CTRL peaking at 3.5 x 10% km? (with an overestima-
tion of 2.5 x 10% km?) that is reduced to 1.4 x 10° km? (over-
estimation of 0.8 x 10° km?) in the DA experiments. No sig-
nificant differences are seen between SICDE1 and SICDE(02
for concentration-related quantities. The frequency of the as-
similation (weekly) does not seem able to remove concentra-
tion in regions where the model advects ice or where freez-
ing conditions are met. A joint correction of ice and ocean
variables in a multivariate approach can probably improve
the skill by changing the sea surface temperature and salinity
field as well.

Considering the impact of SIC assimilation on the SIT
field, the smaller OE in the SICDEO2 experiment leads to
a larger correction in the thickness field, thus spoiling the
spatial distribution (see Sect. 4.2).

4.2 Thickness observations and total sea-ice volume

The spatial SIT RMSE is calculated against the L4
CS2SMOS data, aggregating statistics from February for all
years (Fig. 6). The bias maps are shown in Fig. 7 with the
convention of observation minus model. The CTRL exper-
iment (Fig. 6a) shows a RMSE of 0.8 m in the Beaufort
Gyre and in the proximity of the Greenland coastline. Look-
ing at the corresponding bias, it tends to overestimate the
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Table 1. List of the 4-year-long experiments performed with different data assimilation set-ups and observations employed.

Experiment name  SIC data  SIT data subsampling . ]?esr‘ozwrs OF
range (multiplication factor )
CTRL None None None None
L4DE1 OSISAF L4 CS2SMOS None 1
L4DE30 OSISAF L4 CS2SMOS None 30
L4SUB OSISAF L4 CS2SMOS SIT ~ 100 km 1
L3CR2 OSISAF L3 CryoSat-2 None 2
L3CR2&SM OSISAF L3 CryoSat-2 & SMOS  None 2;2
SICDEI1 OSISAF  None None 1
SICDEO2 OSISAF  None None 0.2
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Figure 4. The first and second rows show the time series of sea-ice area for different experiments (Table 1) compared to data from OSISAF
in Arctic and Antarctic regions respectively. The corresponding seasonal variability is shown in the panels on the right.

thickness distribution in the whole Arctic basin except for
the Atlantic sector (Fig. 7a). The assimilation of SIC data
(SICDE1) improves the skill score over the Atlantic sec-
tor although no systematic impact is seen in pack-ice re-
gions (Fig. 6b). Reducing the SIC OE (SICDEO02 experiment)
leads to a degradation of the thickness RMSE and bias, es-
pecially in the Siberian sector (Figs. 6-7c). The integration
of SIT data largely improves the overall error. CryoSat-2
data (L3CR2, Fig. 6d) ameliorates the distribution in the cen-
tral Arctic area (only observations higher than 0.5 m are as-
similated from CryoSat-2), while no significant corrections
are seen approaching the sea-ice edge that remains simi-
lar to the SICDE1 experiment. The inclusion of L3 SMOS
data (L3CR2&SM, Fig. 6e) shows a widespread reduction of
RMSE everywhere except for the eastern Greenland coast-
line where a large positive bias of roughly 1 m is still present.
L4DEL, L4ADE30 and L4DESUB experiments (Figs. 6-7f, g,
h) assimilate the same L4 CS2SMOS product but with differ-
ent a set-up: (1) implementing the standard Desroziers OE,
(2) increasing the Desroziers OE by 30 times, and (3) sub-
sampling CS2SMOS data to remove most of the off-diagonal
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correlations. L4DE1 shows a rather small and spatially uni-
form RMSE and bias across the basin except for the Green-
land coastline where the RMSE peaks up to 0.9 m at the in-
terface between the open sea and the sea-ice edge. The other
two experiments (LADESUB and L4DE30) have similar skill
between themselves, with larger RMSE and bias compared
to LADEI close to the Canadian—Greenland coastlines and
in the Beaufort Gyre. A similar comparison of the Novem-
ber RMSE among experiments extends the validity of the
present discussion to the beginning of the freezing period
(not shown; see Supplement).

The time series of the total Arctic sea-ice volume for
the different experiments are shown in Fig. 8. Figure 8a
gathers mainly experiments assimilating the same dataset
L4 CS2SMOS. The green crosses label values from L4
CS2SMOS weekly maps. The CTRL (blue solid line) tends
to overestimate the volume of sea ice during the whole pe-
riod, reaching a maximum difference of ~ 0.5 x 103 m? in
March 2012, although it reproduces the seasonal variabil-
ity fairly well. At the onset of the freezing period, when
SIT data become available in October, the sudden availabil-

Ocean Sci., 19, 1375-1392, 2023
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Figure 5. The first and second row show the time series of IIEE for differ

ent experiments (Table 1) calculated against OSISAF data in Arctic

and Antarctic regions respectively. The corresponding seasonal variability is shown in the panels on the right.
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Figure 6. Spatial thickness RMSE for different experiments (Table 1) calculated aggregating the February statistics for all the years.

ity of the large, dense dataset generates a jump in the vol-
ume that spoils the seasonality by changing the volume min-
imum, which usually occurs in September (L4DE1 experi-
ment). LADESUB produces a minor shock without changing
the OE but subsampling roughly every 100 km to reduce the
impact of off-diagonal correlation in R. The March peak is

Ocean Sci., 19, 1375-1392, 2023

also better represented in LADESUB rather than in L4DE30,
where instead a multiplicative factor of 30 is applied to OE.
Such a multiplicative factor could be reduced to have a worse
but acceptable jump in October and a better peak in March,
in order to match the skill score of LADESUB. Experiment
L4DE provides the best initial conditions for forecasting pur-
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poses; however, this is at the cost of losing the consistency
with past time series. The use of a subsampling scheme is
able to preserve the seasonality and can be instead consid-
ered for reanalysis purposes.

Figure 8b highlights the effect of assimilating different
datasets. The SICDE1 experiment positioned the minimum
of volume in September but has little impact on the rest of
the time series, correcting the thickness field only close to the
sea-ice edge. The assimilation of CryoSat-2 data (L3CR2 ex-
periment) reduces the volume overestimation that is however
still present, especially in March. Adding the assimilation of
thin ice (L3CR2&SM experiment), the total volume is much
better represented together with its seasonality.

4.3 Observation influence

A measure of the relative influence of different observation
types into the model dynamic and thermodynamics follows
the evaluation of the degrees of freedom for signal (DFS)
established in Cardinali et al. (2004). DFS is defined as the
trace of the derivative of the analysis with respect to the ob-
servations in the observation space. DFS measures the sen-
sitivity of the model to the observation variation and is able
to leverage different types of observations, quantifying the
relative impact of each single dataset:

5(H
DFS = Tr= (5 *a)

} =Tr{HK} = (5 — y)) R H(F, — xa), Q)

where K is the Kalman gain, H is the observation opera-
tor that projects the analysis in the observation space, and
y, X, denotes the perturbed observations and the correspond-
ing analysis. In practice, DFS can be computed with a ran-
domization technique (Chapnik et al., 2006), and it is com-
monly applied to a 3DVAR framework by averaging over the
number of observations DFS (Montmerle et al., 2007; Storto
and Thomas Tveter, 2009; Storto et al., 2010). In Xie et al.
(2016, 2018), DFS is used to compare the influence of differ-
ent observation datasets by defining a relative DFS (RDFS)
or impact factor (IF):

DES;

IF = 6
' ¥, DFS, ©

where o runs over different instruments or datasets. In prac-
tice, IF; quantifies the importance of jth dataset compared
to the others. Perturbations were generated from a Gaussian
distribution with zero mean and imposing the observation
error as a standard deviation. Figure 9 shows the spatial IF
in LADE1 and L3CR2&SM experiments, calculated over the
period November 2012—February 2013. SIC data generally
show little influence on the central Arctic area where sea ice
is fully packed with concentration close to 1. As we move
towards the sea-ice edge, the impact reverses and SIC influ-
ence rapidly saturates at 1 (L4ADE1 experiment). This sharp
discontinuity is likely to come from an overestimation of the
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SIT error compared to the SIC one. In the L3CR2&SM ex-
periment (Fig. 9b), we can discriminate the influence of the
two independent SIT datasets. CryoSat-2 data largely impact
the Eurasian basin where the thickness is usually higher than
0.5 m. Most the Siberian coast is instead driven by the SMOS
data as well as western Greenland rift basin. Moving toward
the sea-ice edge a competitive behaviour is shown between
SMOS and SIC data: the two datasets almost equally con-
tribute to modify the model thermodynamics.

4.4 Validation against Beaufort Gyre Exploration
Project mooring data

An independent validation can be carried out thanks to
the Beaufort Gyre Exploration Project (BGEP, https://
www.whoi.edu/beaufortgyre) from the Woods Hole Oceano-
graphic Institution. BGEP provides high-frequency data of
sea-ice drafts from moored sonars (Krishfield et al., 2014)
in three different positions of the Beaufort Gyre that slightly
change year by year: mooring A located approximately at
~75°N, 154° E, mooring B at ~ 78° N, 150° E and mooring
D at ~74°N, 139° E. Sea-ice draft measurements are trans-
formed into thickness estimates using a simple multiplicative
factor of 1.1 as in Mu et al. (2018a), representative of the ra-
tio between the mean seawater and sea-ice density (Nguyen
etal., 2011). A more sophisticated approach considers a bal-
anced equation that implies the knowledge of the snow depth
that is usually extracted from an ensemble of simulations
(Xie et al., 2018; Alexandrov et al., 2010), thus being in-
fluenced by the specific set-up of the ice model itself. In the
following, we prefer to use the first approach, as it is totally
model independent. Figures 10-11 show the time series of
sea-ice thickness for different experiments compared to the
mooring measurements and estimates from L4 CS2SMOS.
CS2SMOS maps generally represent the trends during the
freezing season well, although some discrepancies can be
found at the end of 2012 where it overestimates the thick-
ness at position A and B by 0.7 m.

During the melting season, the CTRL experiment predicts
on average 1.5m of ice at the three positions, always over-
estimating the observations. The assimilation of SIC (exper-
iment SICDE1) is able to reduce such an overestimation at
position A during the summer months, while less impact is
seen at mooring B and D. The assimilation of CS2SMOS
maps (L4ADE1,L4DESUB) yields the model thickness to be
much closer to mooring measurements: in winter the bias al-
most disappears, while during summer the RMSE is reduced
below 0.5m in all three positions. The L4DE1 experiment
closely follows the evolution of CS2SMOS data, thus gener-
ating a strong discontinuity at the beginning of the autumn
season of 2011 that is instead not present in the experiment
LADESUB. The assimilation of SIT data in winter (experi-
ments L4DE1 and LADESUB) provides much better initial
conditions for SIT prediction in spring compared to experi-
ments without SIT assimilation. SIT estimates at the onset of

Ocean Sci., 19, 1375-1392, 2023
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Figure 7. Spatial thickness bias (observation minus model) for different experiments (Table 1) calculated aggregating the February statistics

for all the years.
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the next autumn season are also better predicted in the Beau-
fort Gyre. Figure 11 groups experiments that uses different
thickness datasets. CryoSat-2 data (L3CR2 experiment) re-
duce the bias over the whole time series compared to the
CTRL run. The addition of SMOS data (L3CR2&SM ex-
periment) brings SIT values closer to the observations and
makes them similar to the L4DET1 skill score (assimilation of
CS2SMOS maps). L3CR2&SM seems to correct the overes-
timation of 0.7 m present in LADE1 during winter 2012-2013

https://doi.org/10.5194/0s-19-1375-2023

at position D, although discontinuities can be spotted in some
cases when thin SIT data (SMOS) become available.

4.5 Validation against Operation IceBridge data

A second independent dataset is available for the same pe-
riod, gathering data from several campaigns of airborne sur-
veys on polar ice thanks to the NASA Operation IceBridge
project. Different instruments were installed on board the air-
craft from Snow Radars to Airborne Topographic Mappers,

Ocean Sci., 19, 1375-1392, 2023
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Figure 11. Time series of thickness values from several experiments

(Table 1) with different sets of observations assimilated at three positions

in the Beaufort Gyre (mooring A, B and D; see text). The solid lines label different experiments. Pink dots refer to daily data measured by
the Beaufort Gyre Exploration Project, while green crosses are estimates from L4 CS2SMOS maps.

providing sea-ice freeboard, snow depth and sea-ice thick-
ness measurements (Kurtz et al., 2013). Specifically, in the
present exercise, we used IceBridge L4 Sea Ice Freeboard,
Snow Depth, and Thickness (IDCSI4), Version 1, (http://
nsidc.org/data/idcsi4, last access: 25 May 2023) (Kurtz et al.,
2015) between 2011-2013 since no data are available for
2014. Such a dataset covers several days in March and April
when satellite SIT retrievals are no longer available, and no
SIT assimilation is performed. Results are summarized in
Figs. 12-13, containing the SIT spatial RMSE and bias for
different experiments and binned in 2° x 2° boxes. The con-
clusions discussed in the BGEP section are confirmed and
extended to a broader region. The differences in the skill
scores among the experiments largely depend on the diverse
initial conditions in mid-March. Winter assimilation of SIT
data (panels d—h) produces a smaller RMSE in March—April
statistics compared to SIC-only (panel b—c) and the CTRL
experiment (panel a). A spatial dipole structure for bias (ob-
servation minus model) is generally seen in all experiments
with an overestimation of thickness in the Beaufort Gyre
and an underestimation in the Atlantic sector. The L4DE1
experiment (assimilation of CS2SMOS with Desroziers’ er-
ror) shows the lowest RMSE and reduces the regional bias
almost everywhere. SICDEO2 (assimilation of SIC with re-

Ocean Sci., 19, 1375-1392, 2023

duced observation error) shows the worst skill in terms of
regional RMSE and bias. However negative/positive biases
seem to compensate each other, producing the lowest global
bias (spatially averaged). This demonstrates that such an in-
dicator is not always representative of the actual skill of the
model. Subsampling the data (LASUB, panel h) or increas-
ing the observation errors (L4DE30, panel g) still provides
positive feedback in April.

5 Conclusions

Despite the availability of different types of sea-ice obser-
vations in the last decade, their joint assimilation in a mul-
tivariate framework is still an active research field. Sea-
ice variables generally follow a bounded distribution that
can peak over one of the two boundary values. Thickness
measurements show limited accuracy (Zygmuntowska et al.,
2014) with CryoSat-2 data providing high signal-to-noise ra-
tio only for thick sea ice and SMOS data for thin sea ice.
Recently, Ricker et al. (2017) showed that such datasets
are complementary and can be merged yielding to an opti-
mally interpolated spatially reconstructed thickness distribu-
tion CS2SMOS. However, the straightforward assimilation

https://doi.org/10.5194/0s-19-1375-2023
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Figure 12. Spatial thickness RMSE for different experiments (Table 1) calculated against Operation IceBridge SIT measurements, aggregat-
ing the March—April statistics for all the years and binned with 2° x 2° boxes.

of such maps can produce discontinuities in the sea-ice vol-
ume at the onset of the accretion period, thus spoiling the
seasonal variability.

In this study we extend a 3DVar scheme, called Ocean-
Var, employed in the routine production of CMCC global/re-
gional analysis—reanalysis, to benefit from sea-ice concen-
tration and thickness. Those variables are treated through an
anamorphosis operator that is included in the control vec-
tor transformation composing the B matrix. Such an oper-
ator transforms the probability density functions of sea-ice
anomalies into Gaussian ones theoretically without loss of
information (Bertino et al., 2003; Brankart et al., 2012), be-
ing more adequate to treat non-linear dependencies (Corder
and Foreman, 2009). We showed that such transformation is
also able to preserve the strong anisotropy of sea-ice fields
close to the sea-ice edge, thus helping future coupling with
ocean variables.

A set of global-ocean/sea-ice experiments are performed
for a period of 4 years with different DA set-ups and assim-
ilating different observation datasets. The sole assimilation
of SIC data provides a positive but small improvement in the
representation of thickness fields that can be potentially de-
graded in the case that the error assigned to SIC data is too
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small. The model thickness field starts matching the observed
one only when CryoSat-2 data are employed, while the ad-
dition of SMOS data further reduces the volume overestima-
tion by constraining the thin sea ice especially close to the
edge. The intermittent availability of SIT data along the year,
together with the lack of off-diagonal elements in the R ma-
trix, can generate jumps in the total volume that can spoil the
seasonal variability and requires extra tuning. Through the
analysis of degrees of freedom for signal (Cardinali et al.,
2004), the relative influence of different types of observa-
tions is also studied showing the competitive behaviour of
SMOS and OSISAF data for thin ice.

Two independent validations are carried out against moor-
ing data in the Beaufort Gyre (Beaufort Gyre Exploration
Project) and sea-ice thickness measurements from the NASA
Operation IceBridge project. The assimilation of merged
product CS2SMOS and the joint assimilation of L3 CryoSat-
2 and SMOS data provide similar skill scores. These two
configurations outperform the other set-up during the melt-
ing period, where no satellite thickness data are available,
demonstrating that the benefits of realistic initial conditions
in the Beaufort Gyre can last up to 6 months at least.

Ocean Sci., 19, 1375-1392, 2023
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Figure 13. Spatial thickness bias (observation minus model) for different experiments (Table 1) calculated against Operation IceBridge SIT
measurements, aggregating the March—April statistics for all the years and binned with 2° x 2° boxes.

Data availability. All the sea-ice reanalysis experiments are avail-
able on request. Sea-ice concentration data were downloaded
from EUMETSAT Ocean and Sea Ice Satellite Application Facil-
ity, Global sea-ice concentration climate data record 1979-2015
(v2.0, 2017), OSI-450. Data were extracted from the OSI SAF
FTP server/EUMETSAT Data Center (2011-2015) (global), ac-
cessed June 2019 (OSISAF, 2021). SMOS and CryoSat-2 prod-
ucts were downloaded from https://www.meereisportal.de/ (last ac-
cess: 14 May 2021) (Grosfeld et al., 2016). The production of the
merged CryoSat-SMOS sea-ice thickness data was funded by the
ESA project SMOS & CryoSat-2 Sea Ice Data Product Process-
ing and Dissemination Service, and data from 2011-2015 were ob-
tained from the Alfred Wegener Institute (AWI). Independent vali-
dation was performed against the following: (i) data collected and
made available by the Beaufort Gyre Exploration Project based
at the Woods Hole Oceanographic Institution (https://www2.whoi.
edu/site/beaufortgyre/, last access: 24 August 2022) in collaboration
with researchers from Fisheries and Oceans Canada at the Institute
of Ocean Sciences and (ii) data from NASA Operation IceBridge,
specifically the IceBridge L4 Sea Ice Freeboard, Snow Depth, and
Thickness (IDCSI4) dataset, Version 1 (http://nsidc.org/data/idcsi4,
last access: 25 May 2023) (Kurtz et al., 2015).
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