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Abstract Atmospheric trace gas measurements can be used to independently assess national greenhouse
gas inventories through inverse modeling. Atmospheric nitrous oxide (N2O) measurements made in the United
Kingdom (UK) and Republic of Ireland are used to derive monthly N2O emissions for 2013–2022 using two
different inverse methods. We find mean UK emissions of 90.5 ± 23.0 (1σ) and 111.7 ± 32.1 (1σ) Gg N2O yr− 1

for 2013–2022, and corresponding trends of − 0.68 ± 0.48 (1σ) Gg N2O yr− 2 and − 2.10 ± 0.72 (1σ) Gg N2O
yr− 2, respectively, for the two inverse methods. The UK National Atmospheric Emissions Inventory (NAEI)
reported mean N2O emissions of 73.9 ± 1.7 (1σ) Gg N2O yr− 1 across this period, which is 22%–51% smaller
than the emissions derived from atmospheric data. We infer a pronounced seasonal cycle in N2O emissions, with
a peak occurring in the spring and a second smaller peak in the late summer for certain years. The springtime
peak has a long seasonal decline that contrasts with the sharp rise and fall of N2O emissions estimated from the
bottom‐up UK Emissions Model (UKEM). Bayesian inference is used to minimize the seasonal cycle mismatch
between the average top‐down (atmospheric data‐based) and bottom‐up (process model and inventory‐based)
seasonal emissions at a sub‐sector level. Increasing agricultural manure management and decreasing synthetic
fertilizer N2O emissions reduces some of the discrepancy between the average top‐down and bottom‐up
seasonal cycles. Other possibilities could also explain these discrepancies, such as missing emissions from NH3

deposition, but these require further investigation.

Plain Language Summary Atmospheric nitrous oxide (N2O) is an important greenhouse gas and
ozone depleting substance. Atmospheric N2O measurements made in the United Kingdom (UK) and Republic
of Ireland were used to derive UK N2O emissions for 2013–2022 using two inverse methods. UK emissions
derived using atmospheric N2O measurements were on average 22%–51% higher than emissions reported in the
UKNational Atmospheric Emissions Inventory. A pronounced seasonal cycle in N2O emissions is inferred from
the atmospheric N2O observations which contrasts the seasonal N2O emissions estimated in the bottom‐up
(process model and inventory‐based) UK Emissions Model (UKEM). We find increasing agricultural manure
management N2O emissions and decreasing synthetic fertilizer N2O emissions reduces some of the discrepancy
between the seasonal cycles.

1. Introduction
Atmospheric nitrous oxide (N2O) is an important, long‐lived greenhouse gas (GHG) that also contributes to the
depletion of stratospheric ozone. Whilst global emissions of N2O are well‐constrained at around 17 Tg N2O‐N
yr− 1 (27 Tg N2O yr− 1; Stell et al., 2022; Tian et al., 2020; Thompson et al., 2019; Wells et al., 2018) there are
significant regional‐scale differences between top‐down (atmospheric data‐based) and bottom‐up (process model
and inventory‐based) N2O emissions estimates (e.g., Jeong et al., 2018; Thompson et al., 2014;Wells et al., 2018).

The United Kingdom's (UK’s) bottom‐up N2O emissions are reported in the UKNational Atmospheric Emissions
Inventory (NAEI; Ricardo Energy and Environment, 2019) each year which inform the National Inventory
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Reports (NIRs) submitted annually to the United Nations Framework Convention on Climate Change
(UNFCCC). Anthropogenic N2O emissions of 72.6 Gg N2O yr− 1 are reported in the NAEI for the year 2021
(Brown et al., 2023). This is around 4% of the UK’s total carbon dioxide equivalent (CO2,eq) GHG emissions.
Agricultural N2O emissions in the NAEI account for 70% of 2021 UK N2O emissions, with ∼10% of UK N2O
emissions attributed to fossil fuel combustion and fugitive emissions, and the remaining anthropogenic emissions
coming from the waste and industrial sectors (Figure 1; Brown et al., 2023). Agricultural emissions are pre-
dominately from agricultural soils (57% of UK N2O emissions) with the remaining agricultural N2O emissions
mostly from livestock manure management as well as indirect emissions from nitrogen runoff and leaching. A
feature of the NAEI is that GHG fluxes are spatially distributed at 1 km2 resolution for each SNAP (Selected
Nomenclature for reporting of Air Pollutants) sector.

Under the 2008 Climate Change Act (UK Government, 2008) the UK has ambitious goals to achieve Net Zero
GHG emissions by 2050. Interim targets (“Carbon Budgets”) have been enacted, with the Fifth UK Carbon
Budget requiring GHG emissions to be reduced to 57% of 1990 CO2,eq levels by 2030 (UK Committee on Climate
Change, 2015). Current GHG emissions mitigation policy suggest UK N2O emissions will remain approximately
constant until 2030 (UKDepartment for Energy Security and Net Zero, 2022). Given the potential uncertainties in
inventories, which are used to guide these policy scenarios, there is a need to independently monitor progress
toward such targets.
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Figure 1. Bottom‐up UKEM (a) total; (b) agricultural; (c) other anthropogenic (including shipping); (d) marine N2O
emissions for the year 2020 at 1 km2 spatial resolution. Note that marine emissions are on a smaller scale than the other
sectors and are not part of the NAEI. White areas indicate where emissions are zero.
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Atmospheric mole fraction measurements of trace gases can be used to evaluate emissions reported in national
greenhouse gas inventories through inverse modeling. Atmospheric measurements are used in the inverse model
to adjust bottom‐up emissions through Bayesian inference. This approach has previously been used for deriving
top‐down N2O emissions for the UK (Ganesan et al., 2015; Manning et al., 2011) and elsewhere (e.g., Nevison
et al., 2018; Stell et al., 2022; Thompson et al., 2014). Previous studies found top‐down emissions were
approximately 13%–22% lower than those reported in the UK inventory at that time (2009 and 2012 UNFCCC
reported emissions respectively for Manning et al., 2011; Ganesan et al., 2015) ‐ the UK updates its entire bottom‐
up emissions inventory record each year (Figure S1 in Supporting Information S1). Top‐down emissions for
earlier than 2012 had relatively large uncertainties as atmospheric observations were only available from Mace
Head station on the west coast of the Republic of Ireland (Figure 2). The establishment of the UK Deriving
Emissions linked to Climate Change (DECC) network in 2012 for making continuous atmospheric trace gas
measurements across the UK (Stanley et al., 2018; Stavert et al., 2019) has improved top‐down emissions esti-
mates. The UK DECC network provides a higher sensitivity to emissions across the UK and Republic of Ireland,
leading to smaller top‐down uncertainties (e.g., Lunt et al., 2021).

Ganesan et al. (2015), using atmospheric N2O measurements from the UK DECC network with a hierarchical
Bayesian inverse model (Ganesan et al., 2014), inferred average UK emissions of 101 (68–150) Gg N2O yr− 1 for
2012–2014 and identified a pronounced seasonal cycle with an amplitude of∼50 Gg N2O yr− 1 peaking during the
early summer. The observed seasonality was hypothesized to be due to agricultural applications of nitrogen‐based
fertilizers.

Seasonal changes in UK N2O emissions are not captured in the UK NAEI inventory, which only produces annual
estimates. To compare top‐down and bottom‐up seasonal cycles, temporal profiles derived from direct flux
measurements and other data sources are used to downscale the annual NAEI N2O emissions at a source sub‐
sector level to a monthly time resolution. These are combined with marine emissions from Lessin et al. (2020)
for the surrounding seas in the UK Emissions Model (UKEM, previously referred to as “UKGHG”; Levy, 2020).

Here, we present results of monthly top‐down UK N2O emissions from 2013 to 2022 derived using two different
Bayesian inverse models and compare these estimates to the UK NAEI and the downscaled monthly estimates
from the UKEM. Compared to previous UK N2O publications, we use observations from five stations in the UK
DECC network (only three stations were available for Ganesan et al., 2015) and over a longer time period,
resulting in better resolved emissions trends and seasonal patterns.

Figure 2. Summary of atmospheric N2O mole fraction data used from the UK DECC network for 2013–2022. Instrument names and inlet heights (in brackets with “m”
referring to meters above ground level) used for different periods are shown on the left. Gaps (white space) denote when measurements were unavailable. Shaded blue
sections represent when gas chromatographs coupled to electron capture detectors (GC‐ECD) were used, whereas sections shaded in lighter blue are when optical
spectrometers were used. Hashed areas represent periods using GC‐ECD measurements after a change in inlet height. Station locations are shown on the right in blue
along with the May 2020 UKEM N2O emissions regridded to match the atmospheric transport footprint resolution.
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2. Data and Methods
2.1. Atmospheric Measurements

We use atmospheric N2Omole fraction measurements from five UKDECC network stations (Stanley et al., 2018;
Stavert et al., 2019) between 2013 and 2022. Tall‐tower measurement stations in the UK DECC network sample
ambient air from inlets mounted >90 m above ground level (agl) on telecommunications towers (Figure 2), and
the coastal Mace Head (MHD) station measures closer to the surface at ∼10 m agl. Atmospheric N2O mea-
surements from MHD, Tacolneston (TAC) and Ridge Hill (RGL) stations sampled across the entire 2013–2022
period, with Bilsdale (BSD) and Heathfield (HFD) becoming operational in 2014.

Both gas chromatograph coupled to electron capture detectors (GC‐ECD) and optical‐based instruments (Picarro
G5310, LGR; Text S1) are used for measuring atmospheric N2Omole fractions in the UKDECC network. Optical
instruments are calibrated to the World Meteorological Organization (WMO)‐X2006A scale (Hall et al., 2007)
with samples averaged into∼1 min intervals. The GC‐ECD instruments are calibrated to the Scripps Institution of
Oceanography (SIO‐16) scale and sample approximately every 10 min. A correction of − 0.43 ppb is applied to
N2O measurements made on the SIO‐16 scale to adjust these measurements to the WMO‐X2006A calibration
scale (Prinn et al., 2018).

At certain measurement stations (e.g., BSD) there are periods when concurrent GC‐ECD and optical‐based at-
mospheric N2O measurements are available. In such cases, we use measurements from optical‐based instruments
in preference to those from the GC‐ECD instruments, due to their greater precision and higher frequency.
Measurements are always used from the highest air inlet available. Information about the instrumentation and
inlet heights used for each of the stations are summarized in Figure 2, with the UK DECC network further
described in Stanley et al. (2018) and Stavert et al. (2019).

Measurements were averaged over 4 hr periods and filtered to remove measurements that are more likely to be
affected by local processes during times of stagnant air (e.g., Ganesan et al., 2015). Such meteorological con-
ditions are unlikely to be accurately captured at the spatiotemporal resolution of the atmospheric transport model
(Section 2.2) used in this work. Each inverse model uses a different approach for filtering atmospheric mea-
surements during stagnant air conditions. Further details about the filtering approaches are provided in Text S2 in
Supporting Information S1. A comparison of top‐down emissions derived using the same inverse method with the
different filtering approaches, and without any data filtering, is presented in Text S3 in Supporting
Information S1.

Uncertainty in the atmospheric N2O observations is quantified as the sum in quadrature of the instrument pre-
cision and observation variability in the 4 hr averaging period. Observation uncertainties were on average ∼0.28
ppb for the GC‐ECD instruments and∼0.21 ppb for the optical instruments across the respective periods shown in
Figure 2.

2.2. Atmospheric Transport Model

The UK Met Office Lagrangian dispersion model: NAME (Numerical Atmospheric dispersion Modelling
Environment; Jones et al., 2007) v7.2 was used to quantify the relationship between surface emissions and at-
mospheric mole fractions measured at each station in both inverse models (Section 2.3). “Footprints” of surface
emission sensitivities were calculated from ensembles of particle back‐trajectories in NAME. Each grid cell of the
footprint describes the influence of emissions from that grid cell on the measured mole fractions at the mea-
surement site at a certain time (Manning et al., 2011; Rigby et al., 2012).

Hourly footprints were calculated as described in Manning et al. (2021) with a ∼25 × 25 km2 (0.352° × 0.234°)
spatial resolution over a model domain spanning approximately 98°W to 40°E and 11°N to 79°N using a 30 day
integrated back‐trajectory duration and particle release rate of 2 × 104 hr− 1. Meteorological fields from the Met
Office Unified Model (UM) underlie the footprints with hourly, high‐resolution (up to ∼1.5 km
(0.0135° × 0.0135°) with 57 vertical levels up to ∼12 km) UKV meteorological fields used for over the British
Isles and three‐hourly UM (0.1406° × 0.0938° with 59 vertical levels up to ∼30 km) global meteorological fields
used for the rest of the modeling domain. The mean NAME‐modeled sensitivity of the UK DECC network to
surface emissions has been previously shown in other UK studies (e.g., Lunt et al., 2021).
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Footprints were combined with gridded a priori emissions (Section 2.4) to simulate atmospheric N2O mole
fraction enhancements at each measurement station.

2.3. Inversion Methodology

Two inverse models ‐ InTEM (Inversion Technique for Emissions Modeling) and RHIME (Regional Hierarchical
Inverse Modeling Environment) ‐ were used for deriving top‐down UK N2O emissions and are described below.
Whilst both inverse models follow a Bayesian framework the inverse methods differ in several aspects: in the
calculation of baseline mole fractions; the treatment of model‐data uncertainties; and the approach for calculating
the posterior emissions. Both inverse models infer emissions for each calendar month assuming N2O emissions
are constant in each 1 month period of inference.

2.3.1. InTEM Inverse Model

InTEM is an established Bayesian inverse model (Arnold et al., 2018; Manning et al., 2011, 2021) developed by
the UK Met Office that has been widely used for trace gas inversions of different species across different regions
(e.g., Ganesan et al., 2020; Manning et al., 2021; Rigby et al., 2019). InTEM is also used by the UK Government
for evaluating its nationally reported greenhouse gas emissions (Brown et al., 2022, 2023).

The InTEM framework minimizes the model‐data mismatch constrained by observation uncertainties, model
uncertainties, and a priori information and its associated uncertainties, which are assumed to be Gaussian. To
prevent non‐physical solutions, InTEM uses a non‐negative least squares solver. The model‐data uncertainty is
calculated as the sum in quadrature of the observational uncertainty, baseline uncertainty and estimated model
uncertainty. The observation uncertainty is defined as the sum in quadrature of the daily precision, and the
variability of atmospheric measurements over a 4 hr period centered at the time of interest. The baseline un-
certainty is defined by the goodness of fit of a fourth order polynomial fitted through the baseline mole fractions.
The model uncertainty forms the largest contribution of the model‐data uncertainty in InTEM and is calculated
(for all trace gas species) by using the larger of: the mole fraction of the median pollution event over the year, or
10% of the mole fraction of the individual pollution event. InTEM also imposes a 12 hr temporal correlation and
100 km spatial correlation in its framework.

InTEM uses bottom‐up gridded N2O emissions (Section 2.4) and a time‐varying mole fraction baseline as a priori
constraints. The mole fraction baseline is derived using atmospheric N2O measurements fromMace Head that are
representative of the well‐mixed northern hemispheric background. This baseline is derived using filters to
minimize influences from populated regions, local sources, high altitudes and southerly latitudes (Manning
et al., 2021). The mole fraction baseline is subsequently adjusted in the inversion by 11 values depending on the
geographical direction and altitude from which the air enters the model domain (Arnold et al., 2018), along with
the spatial distribution of N2O emission values (Arnold et al., 2018; Manning et al., 2021). InTEM solves for
posterior emissions in 100 scaling regions across its inversion domain. The scaling regions that cover Europe (30°
W–42°E longitude and 29.3°N–77.3°N latitude) are not spatially fixed and are recalculated for each month.
Scaling regions in the rest of the inversion domain are always spatially fixed. The geographical coverage of each
scaling region in Europe is calculated from multiplying the mean footprint field with the converging estimated
emissions field for each month. The inversion domain is split (with land and sea areas kept distinct in each scaling
region) such that summing the grid cells in each scaling region yields approximately the same footprint‐emissions
value. Scaling regions closer to the measurement stations encompass fewer grid cells (and a smaller geographical
area) than those much further from the UK which encompass larger geographical areas. There are approximately
20 scaling regions across the land component of the UK. An a priori emissions uncertainty of 80% of NAEI N2O
emissions is imposed for the UK. Both inverse models account for any small instrumental (or model‐related)
differences that might occur in the atmospheric measurements across the network by solving for a mole fraction
bias (±) at each measurement station in each month. A prior mole fraction bias with mean of 0 ppb and 1σ
uncertainty of 0.6 ppb is included for each station and subsequently solved for in the inversion. InTEM is further
described in Manning et al. (2021); Arnold et al. (2018); Redington et al. (2023).

2.3.2. RHIME Inverse Model

RHIME (also previously referred to as “Bristol‐MCMC”; Ganesan et al., 2014) has been frequently used for trace
gas inversions of various atmospheric species across the globe (e.g., Ganesan et al., 2015; Say et al., 2021;
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Western et al., 2022). Here, Bayesian inference using MCMC (Markov Chain Monte Carlo) is used to quantify a
mean scaling (with confidence intervals) of a priori emissions across 193 scaling regions in the RHIME inversion
domain that also matches the NAME model domain. Scaling regions are calculated as described for InTEM but
with approximately 40 scaling regions covering the land component of the UK. An a priori emissions uncertainty
of 17% of NAEI N2O emissions is imposed for the UK. A scaling of boundary conditions on the four cardinal
boundaries of the NAME domain is also derived in the inversion.

Boundary condition fields representing mole fractions along the edges of the NAME model domain are specified
using CAMS (Copernicus Atmosphere Monitoring Service) v20r1 global inversion‐optimized fluxes for each
month. A scaling is calculated for each boundary in each 1 month period of inference to derive posterior boundary
condition mole fractions. This ensures the CAMS data are not systematically underestimating or overestimating
the baseline mole fractions at each of the measurement stations.

RHIME uses hyperparameters that characterize probability density functions (PDFs) of: the a priori emissions,
the boundary condition mole fractions, the model‐data covariances and the mole fraction bias terms. The RHIME
framework allows uncertainties in the scaling parameters to be included in the model. The a priori scaling is
sampled from a lognormal distribution ∼LN(μ = 0.346, σ = 0.693) and the model uncertainty from a uniform
distribution bounded between 0.1 and 3.0. The model‐data uncertainty is calculated as the sum in quadrature of
the observational uncertainty and the model uncertainty ‐ derived from the model hyperparameter. The mole
fraction bias term is normally distributed with a mean of zero ppb and uncertainty of 0.6 ppb. Like Western
et al. (2022) and Say et al. (2021), we use a No‐U‐Turn (NUTS) sampler (Hoffman & Gelman, 2014) for the a
priori emissions and a slice sampler for estimating the model‐data uncertainty. The samplers used a total 250,000
iterations (discarding the first 50,000) with two chains running in parallel. A Gelman‐Rubin diagnostic is used to
check for parameter convergence in both chains.

2.4. A Priori Emissions

The UKEMmodel (Levy, 2020) takes spatial data from the UK and Republic of Ireland inventories and processes
them in a number of steps. These steps include: reprojection to a latitude–longitude grid, combining point‐ and
area‐based emissions, reconciling data from different sources into a single consistent classification scheme,
rescaling to match national totals, back‐projecting a time series of maps as inventories are updated annually, and
adding in marine biogenic fluxes. For N2O, marine biogenic fluxes from NEMO‐ERSEM (the Nucleus for Eu-
ropean Modeling of the Ocean model coupled with the European Regional Seas Ecosystem Model; Lessin
et al., 2020) were used as the best available data on fluxes for the coastal sea around the UK.

Inventory data are only produced annually. However, emissions may vary over much shorter timescales. The
annual‐scale emissions are disaggregated in time in UKEM, to give the appropriate seasonal, day‐of‐week, and
diurnal patterns. For some sectors, the variation in time is largely negligible (e.g., industry) or poorly known (e.g.,
LULUCF, waste), and these are represented as constant in time. For other sectors (agriculture, transport, energy),
strong temporal patterns exist and can be characterized with activity data at a higher temporal resolution from a
variety of sources (Levy et al., 2017).

For N2O, the key sector is agriculture. The UKEM model uses activity data from the same process as the agri-
cultural GHG inventory (Brown et al., 2023) but at a monthly resolution when available. For example, the timing
of synthetic fertilizer application is estimated from the British Survey of Fertilizer Practice (https://www.gov.uk/
government/collections/fertiliser‐usage, Date of last access: 8 July 2024). The timing of N2O emissions after
application is estimated from existing data where fluxes have been measured in the field, generally using the
closed static chamber technique. Typically, most of the emission occurs within only a few weeks of application
(Levy et al., 2017). This produces a pronounced peak in the late spring, closely following the pattern in the
application of synthetic fertilizer. The spatial distribution follows the distribution of cropland, where fertilizer
inputs are highest (Figure 1). An additional source is the mineralization of degrading peat soils in the Fenland
areas in south‐east England, though the magnitude of this is very uncertain.

Emissions from the marine sector are generally highest in the coastal zone, where inputs from rivers produce
higher nitrogen concentrations. However, even near the coast, marine emissions are around ten times smaller than
land emissions (Figure 1), and although they peak during summer, their influence on the overall pattern is
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relatively small. At times, the modeled marine fluxes show net N2O uptake, but only in a small region in the north‐
west of the domain.

As UKEM N2O monthly emissions are only available for the UK and Republic of Ireland, 0.1° × 0.1° monthly
anthropogenic emissions from EDGAR (Emissions Database for Global Atmospheric Research; Crippa
et al., 2021) v6.0 are used for the rest of the modeling domain. Version 6.0 is used because monthly N2O
emissions are not currently available in the latest version (v7.0) of EDGAR. We “regrid” emissions data to match
the NAME footprint spatial resolution and domain using a mass‐conservative approach. As gridded emissions
were only available for each month in 2013–2020, 2020 emissions were used as the a priori estimate for the 2021
and 2022 inversions.

Two sets of a priori emissions were used in the inversions. The first used the monthly resolved emissions and the
second used annual emissions, which are constant across each year. This provides an additional means of
diagnosing whether any seasonal trends in the posterior emissions are driven by atmospheric measurements or by
the a priori emissions.

2.5. Optimization of Sectoral Seasonal Profiles

We are interested in comparing the UK top‐down (derived using the inverse models; Section 2.3) and bottom‐up
(modeled in UKEM; Section 2.4) seasonal emissions profiles.

To investigate which N2O emissions sources could be driving seasonal differences we identified key agricultural
sub‐sectors that exhibit seasonal cycles in the UK. These are: synthetic fertilizer usage, and manure management
practices relating to: cattle during times they are housed (“cattle housing”), cattle during times of grazing (“cattle
grazing”), the spreading of cattle manure, the spreading of poultry manure, and the spreading of digestate.
Bottom‐up emissions from all remaining N2O sources are aggregated together. Each of these agricultural sub‐
sectors has a distinct temporal seasonal profile in the bottom‐up UKEM emissions. However, varying the
spatial distributions of the different sub‐sector fluxes independently is a more complex problem, and not currently
feasible with the inventory data available.

We optimize the 2013–2022 averaged UKEM sub‐sector emissions profiles to the averaged top‐down seasonal
emissions cycles ‐ derived using InTEM and RHIME ‐ to investigate which bottom‐up emissions sources could be
leading to differences with the top‐down seasonal cycles.

We use a Bayesian approach to calculate the scale factors for each bottom‐up sub‐sector that minimizes the
mismatch with the average top‐down seasonal cycles. The posterior scale factors, Xpost, for each of the seven
bottom‐up sub‐sector seasonal profiles are calculated using:

Xpost = Xprior + (QpriorHT) (HQpriorHT + R)
− 1
(Y − HXprior), (1)

with associated covariance:

Qpost = Qprior − (QpriorHT) (HQpriorHT + R)
− 1HQprior. (2)

Here, Xprior is a 7 × 1 matrix with elements of value one denoting the a priori scale factors for each UKEM
emissions sub‐sector. H is a 12 × 7 matrix representing the monthly sub‐sector UKEM seasonal emissions
profiles (in Gg N2O yr− 1).Y is a 12 × 1 matrix representing the average top‐down seasonal emissions (in Gg N2O
yr− 1) with associated uncertainties (in Gg N2O yr− 1) captured in R. Matrix R is a 12 × 12 diagonal matrix where
each element is the corresponding monthly 1σ value of the top‐down seasonal emissions cycle. The uncertainty of
the scale factors for each of the UKEM seasonal profiles are captured in Q which is a 7 × 7 diagonal matrix with
elements of value one denoting uncertainties of 100% on each of the bottom‐up sub‐sectors.
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3. Results
3.1. Emissions and Trends in N2O (2013–2022)

For 2013–2020, the NAEI reported average UKN2O emissions of 73.9± 1.7 (1σ) Gg N2O yr− 1. Over 2013–2022,
average top‐down UK N2O emissions of 90.5 ± 23.0 (1σ) Gg N2O yr− 1 and 111.7 ± 32.1 (1σ) Gg N2O yr− 1 were
inferred by InTEM and RHIME, respectively (Figure 3, Table 1).

Figure 3. Time series of a priori and posterior monthly N2O emissions for the UK. Mean monthly posterior emissions from
InTEM (red) and RHIME (blue) for the land component of the UK (solid line) and the land plus surrounding seas of the UK
(dashed line) with corresponding monthly a priori emissions in black. Shaded regions correspond to the 68% confidence
interval ranges.

Table 1
Summary of 2013–2022 Mean UK Posterior and a Priori N2O Emissions and Their Differences Reported With 1σ
Uncertainty. “Monthly” and “Annual” Reference Posterior Emissions Derived Using the Monthly UKEM and Annual NAEI
Emissions, Respectively

Inversion InTEM RHIME UKEM

setup Monthly Annual Monthly Annual Monthly

Land emissions 90.5 ± 23.0 90.5 ± 23.0 111.7 ± 32.1 116.1 ± 26.9 73.9 ± 31.9

(Gg N2O yr− 1)

Marine emissions 4.2 ± 2.1 4.2 ± 2.2 8.1 ± 10.5 17.9 ± 29.9 6.4 ± 6.9

(Gg N2O yr− 1)

Land plus marine emissions 94.7 ± 23.1 94.7 ± 23.0 119.8 ± 37.1 129.7 ± 36.0 80.1 ± 30.8

(Gg N2O yr− 1)

Mean Posterior ‐ A Priori Emissions

Land

Percentage difference 22.5% ± 50.1% 18.5% ± 25.5% 51.2% ± 51.9% 51.9% ± 23.3% ‐

Gg N2O yr− 1 difference 16.6 ± 8.3 14.1 ± 3.6 37.8 ± 19.6 39.7 ± 9.2 ‐

Marine

Percentage difference − 65.6% ± 18.8% 55.3% ± 271% 26.6% ± 68.6% 49.2% ± 314% ‐

Gg N2O yr− 1 difference − 2.2 ± 0.4 − 3.4 ± 5.8 1.7 ± 1.2 5.9 ± 12.6 ‐

Land plus marine

Percentage difference 18.2% ± 45.5% 12.6% ± 24.4% 49.6% ± 49.4% 54.3% ± 27.8% ‐

Gg N2O yr− 1 difference 14.6 ± 6.6 10.6 ± 2.6 39.7 ± 19.6 45.6 ± 12.7 ‐
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Top‐downUKN2O emissions were generally higher than their corresponding bottom‐up UKEM/NAEI emissions
across the 10 year period spanning January 2013 to December 2022 (Figure 3, Table 1). On average, top‐down
emissions from RHIME were 38.0 ± 32.6 (1σ) Gg N2O yr− 1 (51.2%) higher than the bottom‐up estimates, and
InTEM was 16.8 ± 37.4 (1σ) Gg N2O yr− 1 (22.4%) higher. Whilst RHIME posterior emissions are on average
21.2 ± 19.9 (1σ) Gg N2O yr− 1 higher than the InTEM posterior emissions, there are overlapping 68% confidence
intervals (CI) for most of the inversion period. The InTEM and RHIME top‐down emissions are statistically well‐
correlated (R2 = 0.86, p < 0.01). We discuss reasons for differences between InTEM and RHIME top‐down
emissions in Texts S4 and S5 in Supporting Information S1.

We find an average of 5% of UK top‐down emissions originate from the surrounding seas (Figure 3; Table 1),
whereas a priori emissions estimate 8% of UK N2O emissions arise from the marine sector. InTEM infers that
marine emissions should on average be lower than the bottom‐up estimates whereas RHIME infers the opposite
(Table 1). Previous studies have highlighted that UK DECC stations are less sensitive to offshore emissions (Lunt
et al., 2021) and as marine emissions form a small proportion of UK N2O emissions we limit our analysis to land‐
based emissions.

We determine the RHIME and InTEM emissions trend over 2013–2022 by applying a linear regression to the
annual totals. Across this period, a mean negative trend of − 2.10± 0.72 (1σ) Gg N2O yr− 2 (p|t|= 0.01, R2= 0.52)
was calculated for RHIME top‐down emissions and − 0.68 ± 0.48 (1σ) Gg N2O yr− 2 (p|t| = 0.20, R2 = 0.19) for
InTEM top‐down emissions (Figure 4). Figure 4 shows that, comparatively, the NAEI N2O emissions remain
relatively constant across this period.

The UK Government Department for Energy Security and Net Zero (DESNZ) produces GHG emissions pro-
jections based on current UK NAEI emissions and existing/near‐finalized UK emissions mitigation policies (UK
Department for Business Energy and Industrial Strategy, 2022). Projected UK N2O emissions from 2022 to 2030
are shown in Figure 4 and remain relatively constant at around 70 Gg N2O yr− 1. Extrapolating the InTEM and
RHIME 2013–2022 emissions trends finds projected emissions of 82.3 ± 10.9 (1σ) Gg N2O yr− 1 and 86.5 ± 16.7
(1σ) Gg N2O yr− 1, respectively, for the year 2030 (Figure 4).

3.2. Seasonal Cycles

Pronounced seasonal cycles are observed in the top‐down emissions with seasonal highs occurring during the late
spring and seasonal lows during the winter (Figure 5). We find top‐down seasonal cycles are insensitive to the
seasonality in the prior. Figure S3 in Supporting Information S1 shows a comparison between posterior emissions
that used a priori monthly UKEM emissions that either included or excluded a seasonal cycle. A pronounced
seasonal peak is always derived in the top‐down emissions. There is strong agreement between the two sets of
posterior emissions (Table 1), indicating that the derived seasonal cycle is primarily observation driven.

Figure 4. Annual top‐down UK N2O emissions from InTEM (red) and RHIME (blue) along with the linear trends for 2013–
2022 that are extrapolated to 2030, with 2030 values indicated by circular markers. Shaded areas and error bars denote the 1σ
range. Current UK NAEI emissions and UK DESNZ projected emissions are shown in black.
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In certain years there is a clearly identifiable springtime peak, as modeled in the bottom‐up UKEM emissions, and
a secondary, smaller peak occurring later in the year. From 2020 onwards, the second seasonal peak (occurring in
late summer) is not as distinct from the primary seasonal peak (occurring late spring/early summer) as in the
2015–2019 seasonal cycles (Figure 3).

The average seasonal emissions from 2013 to 2022 for top‐down and bottom‐up emissions are shown in Figure 5.
In UKEM, the modeled springtime seasonal peak rapidly declines. This is not seen in the top‐down emissions,
which instead fall more slowly. Additionally, the secondary peak that is sometimes seen in the top‐down
emissions seasonal cycles (Figure 3) is not seen in UKEM. We find there are differences between the average
InTEM and RHIME seasonal cycles. The occurrence of a late‐summer/autumnal peak is less distinctive in InTEM
than in RHIME, with the average InTEM seasonal cycle appearing more prolonged. The shaded regions in
Figure 5, which denote the 1σ standard deviation in emissions for each month across 2013–2022, indicate
variability in the RHIME seasonal cycle is less than in InTEM for most months. Whilst the variability in the
InTEM seasonal cycle is similar each month (Figure 5), the variability between April–July in RHIME, when the
seasonal maximum occurs, is much larger than in other months.

3.3. Uncertainty Analysis

Model‐data uncertainties are defined as the sum in quadrature of the observational uncertainty, and model un-
certainty for RHIME (Section 2.3.2), and the model uncertainty plus baseline uncertainty for InTEM (Section
2.3.1). In RHIME, the model uncertainty is solved for in the inversion whereas InTEM uses a proportion of the
magnitude of the simulated pollution events for the model uncertainty (Section 2.3.1). Median model‐data un-
certainties are less than one ppb in both models, with InTEM uncertainties being nearly four times larger than the
posterior values from RHIME. These differences are also reflected in the 68% confidence interval ranges for each
station (Figure 6a), which are generally larger in InTEM. Differences in model‐data uncertainties are attributed to
differences in how the model uncertainty is attributed in InTEM and in RHIME and the way model uncertainties
are defined in InTEM compared to RHIME.

The InTEM and RHIME inversions account for any small instrumental (or model‐related) differences that might
occur by solving for a mole fraction bias at each measurement station in each month. The median values with their
68% confidence intervals for each measurement station in InTEM and in RHIME are shown in Figure 6b. The
median bias values from each inversion are typically within ±0.2 ppb at each station; similar to the measurement
precision of the instruments (Section 2.1). However, median values differ by around 0.1 ppb between InTEM and
RHIME with the largest discrepancies occurring at Bilsdale and Ridge Hill stations. The large, overlapping 68%
confidence intervals indicate considerable variability in the biases that are solved in the monthly inversions. The
posterior biases underscore that instrument or model‐related differences exist across the UK DECC network for
N2O at a magnitude comparable to the N2O observation uncertainty. The high‐variability in the mole fraction bias
values suggests that these instrument‐related differences are not constant in time and should be accounted for in

Figure 5. Average seasonal emissions profile across 2013–2022 with shaded regions denoting the 1σ standard deviation in
emissions for each month.
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N2O inverse modeling studies using measurements from the UK DECC network. This has also been seen in other
measurement networks (e.g., Thompson et al., 2011; Thompson et al., 2014).

3.4. Posterior UKEM Sub‐Sector Emissions Seasonal Profiles

Figure 7a shows the 2013–2022 averaged UKEM seasonal cycles of six N2O agricultural emissions sub‐sectors
(Section 2.5) with the remaining land‐based N2O emissions aggregated under “Other”. The pronounced
springtime peak is driven by synthetic fertilizer emissions with some contribution from manure management sub‐
sectors.

As shown in Figure 5, there are clear differences between the average bottom‐up and top‐down seasonal cycles for
UK N2O emissions across 2013–2022. To investigate what could be driving these differences, we use Bayesian
inference (Section 2.5) to calculate mean scale factors for each UKEM sub‐sector that optimize the fit to the
observed average seasonal cycle. The seasonal profiles of the individual sub‐sectors from the UKEM are
preserved.

Figure 6. (a) Mean model‐data uncertainties for InTEM (red) and RHIME (blue) for each of the measurement stations with
error bars denoting the 68% confidence intervals. (b) Inverse model posterior mole fraction bias median and 68% confidence
intervals for each of the stations calculated in InTEM (red) and RHIME (blue).

Figure 7. 2013–2022 averaged N2O seasonal emissions profiles. (a) Sub‐sector emissions profiles as modeled in UKEM.
Averaged RHIME and InTEM top‐down seasonal emissions (solid lines) and 68% CI (dashed lines) with corresponding
mean optimized (posterior) sub‐sector emissions are shown in (b) and (c), respectively.
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Figures 7b and 7c show the optimized (posterior) sub‐sectors that produce the best match with the averaged
seasonal cycles from RHIME and InTEM, respectively. We find the optimized fits do not generally have good
agreement with the RHIME (R2= 0.86, p|t| < 0.01) and InTEM (R2= 0.11, p|t|= 0.7) seasonal cycles. Despite the
large uncertainties in RHIME and InTEM there are certain months where the optimized bottom‐up seasonal cycle
does not fall within the RHIME/InTEM uncertainty. The fit to InTEM is generally worse than for RHIME, which
could be due to the absence of two peaks in its average seasonal cycle and larger emissions uncertainties than
RHIME.

For RHIME and InTEM, a decrease in synthetic fertilizer emissions and an increase in “Other” emissions are
inferred in the posterior seasonal profiles (Figure 7, Table 2). An increase in emissions related to cattle manure
during times of grazing and the spreading of poultry manure could explain some of the seasonal differences with
RHIME‐inferred emissions in the latter half of the year. Whereas an increase in emissions related to the spreading
of digestate, cattle manure during times of grazing and housing could explain seasonal differences with InTEM‐
inferred emissions for the latter half of the year.

For January to April, there are only small differences between the RHIME/InTEM and optimized UKEM sub‐
sector emissions. After April, there is a larger mismatch between these seasonal cycles. This mismatch could
be attributed to retaining the seasonal profiles of each UKEM emissions sub‐sectors, which could have time‐
correlated uncertainties.

4. Discussion
Continuous atmospheric N2O measurements from the UK and Republic of Ireland were used in InTEM and
RHIME inverse models to derive top‐down UK N2O emissions and their trends over 2013–2022. Mean posterior
UK terrestrial emissions from InTEM and RHIME over 2013–2022 were 90.5 ± 23.0 (1σ) Gg N2O yr− 1 and
111.7 ± 32.1 (1σ) Gg N2O yr− 1, respectively. The two inverse models inferred very different negative (and not
statistically significant) trends of − 0.68 ± 0.48 Gg N2O yr− 2 and − 2.10 ± 0.72 Gg N2O yr− 2, respectively.
However, it is unclear what could be driving a negative trend in the top‐down emissions as the NAEI/UKEM sub‐
sector estimates do not have statistically significant trends over this period.Reconciling InTEM‐RHIME dis-
crepancies is important for accurately informing on the UK’s progress to meet GHG emissions mitigation targets.
However, firm conclusions on the UK’s progress should not be drawn from the extrapolated trends presented in
Figure 4. The sensitivity results presented in Text S4 in Supporting Information S1 suggest InTEM‐RHIME
discrepancies could be attributed to the different treatment of background mole fractions in each model.

We find that the top‐down emissions are close to the 2012–2014 UK emissions estimates of 101 (68–150) GgN2O
yr− 1 reported by Ganesan et al. (2015) and are approximately 22%–51% higher than the bottom‐up N2O emissions
reported in NAEI. This discrepancy is higher than the 13%–22% differences between previously reported top‐
down and bottom‐up estimates for the UK (Ganesan et al., 2015; Manning et al., 2011). However, we find the

Table 2
Mean and 1σ Range of UKEM a Priori Sub‐Sector Emissions and Respective RHIME and InTEM Optimized Sub‐Sector
Emissions in Gg N2O yr− 1

UKEM
emissions
sub‐sector

UKEM
emissions

(Gg N2O yr− 1)

RHIME‐optimized
emissions

(Gg N2O yr− 1)

InTEM‐optimized
emissions

(Gg N2O yr− 1)

RHIME‐
optimized
scale factor

InTEM‐
optimized
scale factor

Cattle manure, grazing 2.50 ± 2.34 12.7 ± 12.0 7.96 ± 7.47 5.12 ± 1.51 3.19 ± 1.61

Cattle manure, housing 8.69 ± 8.05 0.51 ± 0.47 7.62 ± 7.05 0.05 ± 0.56 0.87 ± 0.87

Cattle manure, spreading 5.28 ± 2.50 6.64 ± 3.15 9.65 ± 4.57 1.26 ± 1.28 1.83 ± 1.59

Synthetic fertilizer 32.0 ± 45.9 5.50 ± 8.30 3.61 ± 5.41 0.17 ± 0.12 0.11 ± 0.20

Spreading of digestate 1.40 ± 0.89 1.39 ± 0.89 1.55 ± 0.98 1.00 ± 1.70 1.11 ± 1.74

Poultry manure, spreading 1.48 ± 1.42 5.01 ± 4.83 2.42 ± 2.33 3.41 ± 1.53 1.64 ± 1.73

Other 22.6 ± 0.0 68.9 ± 0.0 46.5 ± 0.0 3.05 ± 0.43 2.05 ± 0.49

Note. Mean and 1σ uncertainty in the posterior scale factors for each UKEM emissions sub‐sector when optimized to the
average InTEM and RHIME seasonal cycles.
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inventory emissions are lower than the top‐down emissions whereas previous UK N2O studies found inventory
emissions at that time were higher. The UK emissions inventory updates the entire record each year. Revisions to
the UK’s N2O emissions are reflected in the UK’s NIR submitted to the UNFCCC, which, for 2022, reported
smaller N2O emissions than were used as the a priori estimates in Ganesan et al. (2015) and Manning et al. (2011)
at the time. Average differences of 22%–51% between top‐down and bottom‐up UK N2O emissions underscore
that there are still large uncertainties in UK N2O emissions.

Similar to previous regional N2O studies (e.g., Ganesan et al., 2015; Jeong et al., 2012; Nevison et al., 2018;
Wagner‐Riddle et al., 2017) we observe a pronounced seasonal cycle in the top‐down N2O emissions with a large
springtime peak. We also observe a secondary peak in the late summer and/or a prolonged decay in the spring
peak, which has not been previously observed in the UK. The observed seasonal patterns are likely to be driven by
agricultural sources since the timings of these peaks are broadly consistent each year but climatic patterns could
also have an influence. Top‐down N2O emissions in California, USA suggest the higher N2O emissions observed
during spring are linked to the application of fertilizers (Jeong et al., 2012, 2018; Xiang et al., 2013). Nevison
et al. (2018) observed a dual seasonal maxima in top‐down emissions from 2008 to 2014 in the USA with a spring
peak attributed to fertilizer applications and a late winter peak attributed to freeze‐thaw effects (e.g., Wagner‐
Riddle et al., 2017). Higher average winter temperatures in the UK and the timing of the second peak make it
unlikely for freeze‐thaw effects to be a driver of seasonal variations of N2O emissions in the UK. Recent N2O flux
measurements over different terrestrial ecosystems in the UK found inconsistent seasonal patterns of total N2O
emissions across different land use types (Sgouridis & Ullah, 2017). This further suggests that seasonal variations
with a springtime peak previously observed in the UK are driven by agricultural sources. However, environmental
drivers such as precipitation and surface temperature also influence the magnitude and timing of agricultural N2O
emissions (Levy et al., 2017; Skiba et al., 2012).

We find the agreement between the average top‐down and bottom‐up seasonal cycles could be improved by
reducing UKEM synthetic fertilizer N2O emissions by an average of 27 Gg N2O yr− 1 and increasing N2O
emissions from certain types of manure management ‐ spreading of digestate and cattle manure during times of
grazing and cattle housing ‐ by an average of 4.9 Gg N2O yr− 1. The optimizations also indicate the largest
emissions increases (∼34 Gg N2O yr− 1) are from the aggregated sub‐sectors that do not exhibit seasonal cycles.
Modeling the temporal changes of manure management N2O emissions is challenging as livestock waste man-
agement systems vary between sites and over time with little information available about their management
practices (Chang et al., 2004). Fixing the temporal profiles of sub‐sector emissions in the optimization could
contribute to the top‐down bottom‐up seasonal cycle mismatch indicating there are uncertainties in the timings of
N2O emissions which require investigating. It is also probable the top‐down and bottom‐up seasonal cycle
mismatch could be attributed to several other sources ‐ such as missing emissions from NH3 deposition ‐ but this
requires further investigation.

Whilst we find top‐down emissions from InTEM and RHIME are well‐correlated (R2= 0.86, p|t| < 0.01) there are
differences in the magnitude and seasonal variations of N2O emissions and uncertainties. Discrepancies between
InTEM and RHIME most likely arise from differences in the baseline mole fractions and the treatment of model‐
data uncertainties. We find an average difference of 0.18 ± 0.22 (1σ) ppb between the boundary condition mole
fractions (Text S4 in Supporting Information S1). Furthermore, we find that redefining the model error in RHIME
and solving for emissions using fixed InTEM posterior baseline mole fractions reduces the InTEM‐RHIME top‐
down emissions mismatch (Text S5 in Supporting Information S1). A lower mole fraction baseline would lead to
higher emissions being derived in the inversion.

The results from these long‐term UK atmospheric N2O measurements from a dense measurement network
demonstrate that they can be used for effective evaluation of regional N2O emissions by using inverse modeling.
Understanding of differences between top‐down and bottom‐up N2O emissions could be enhanced by comparing
top‐down emissions derived using a different atmospheric transport model with different underlying meteoro-
logical fields. Further long‐term flux measurements of N2O emissions sources could also provide additional
constraints on the seasonal discrepancies observed between the average top‐down and bottom‐up seasonal cycles.

5. Conclusions
This study presents 10 years of top‐down N2O emissions derived using atmospheric measurements from across
the UK and Republic of Ireland. Posterior emissions from both InTEM and RHIME inverse models find average
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UK emissions of 90.5 ± 23.0 Gg N2O yr− 1 and 111.7 ± 32.1 Gg N2O yr− 1, respectively across 2013–2020 which
are ∼22.5% ± 50.1% and ∼51.2% ± 51.9% higher than estimated in the UK National Atmospheric Emissions
Inventory, respectively. Average differences between the top‐down and UKEM bottom‐up seasonal patterns
could be explained by decreasing synthetic fertilizer emissions by an average of 27 Gg N2O yr− 1, and increasing
N2O manure management emissions (from cattle manure during grazing and housing) by an average of 4.9 Gg
N2O yr− 1. However, we find large uncertainties associated with the posterior scaling factors for the agricultural
seasonal emissions profiles.

Data Availability Statement
Atmospheric measurements of N2O used in this work are available from the CEDA Archive (O’Doherty
et al., 2020) [Dataset]: https://data.ceda.ac.uk/badc/uk‐decc‐network/data/n2o/v23.08. A doi for this data is
currently being assigned. Top‐down emissions from RHIME and InTEM are available from (Saboya et al., 2024)
[Dataset]. Python scripts used for data analysis are available for use in https://github.com/EricSaboya/uk_n2o.
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