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A B S T R A C T   

Water quantity and quality in lakes are closely linked to the compounding effects of climate change and human 
activities in their catchments, especially for lakes located in semi-arid and arid regions where water resources are 
scarce. Whilst knowledge gaps exist for these effects in semi-arid and arid region lakes due mainly to the lack of 
long-term in situ monitoring data. By using satellite remote sensing data, this study firstly investigated the 
variations of water level, chlorophyll-a concentration (Chl-a) and turbidity in Lake Qadisiyah, Iraq between 2000 
and 2019. Results showed that the average water level was 138.3 m in 2000–2019, it decreased clearly in 2001, 
2009, 2015 and 2018 with the lowest value of 120 m in July 2015. The mean Chl-a was 6.3 mg/m3 and it showed 
an overall increasing trend during 2000 and 2019. Turbidity showed extremely high values (>10 NTU) in 2009 
and 2017–2018 compared to the mean value of 3.6 NTU in 2000–2019. The boosted regression tree (BRT) was 
then used to explore the relationship between those variations and El Niño-Southern Oscillation, droughts, 
meteorological factors and land use land cover changes in the catchment. Results revealed that water level 
declines were mainly associated with droughts led by La Niña events. Chl-a increase in the lake were mainly 
explained by built-up area increase and water area decrease in the catchment, with a relative contribution of 
29.2 % and 28.6 % respectively. Water area changes in the catchment were the main factor influencing turbidity 
explaining 55.3 % of the variation. An exception water level decline in 2014–2016 was also observed when there 
was no drought, which was most likely caused by the cut off of water flow upstream and the release of water from 
the dam during periods of war. The findings in this study underscored the impacts of climate and human ac-
tivities on water quantity and quality in semi-arid region lakes. Actions such as improving water use efficiency, 
establishing water storages, and enhancing cross-border cooperation are therefore recommended to deal with 
extreme events. Pollution control measures in the catchment are also suggested to prevent water quality dete-
rioration in the lake.   

1. Introduction 

Lakes play an important role in ecosystem services such as agricul-
ture, fisheries, supply of drinking water, tourism and recreation, pro-
duction of hydroelectricity, and others (Schallenberg et al., 2013; 
Reynaud and Lanzanova, 2017; Sterner et al., 2020). However, many 
lakes in the world are experiencing pressures from climate change and/ 
or anthropogenic drivers, which threaten the ecosystem services they 
provide (Woolway et al., 2020). It is projected that the global population 

will continue growing and reach a peak of around 10.4 billion in 2080s 
(UN, 2022). Global warming will continue until at least mid-century 
resulting in more frequent and intense regional extremes such as heat-
waves, heavy precipitation and droughts (IPCC, 2021). These factors 
will threaten further water resource availability and lake ecosystem 
health. 

Several studies have shown evidence of climate variability and other 
anthropogenic impacts on lakes, which consequently led to changes in 
water quantity and quality, and altered their ecological functions and 
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status (Tao et al., 2015; Chen et al., 2022; Bai et al., 2024). For example, 
the number of lakes and lake water surface area in the Mongolia Plateau 
have decreased dramatically since the 1970s, which were mainly 
because of combined impact of decreasing precipitation and prevalence 
of coal mining activities in the region (Tao et al., 2015). Yao et al. (2023) 
reported that 53 % of the global lakes have significant decline in storage, 
which was largely because of climate change and human activities, and 
the drying of lakes was estimated to have impacts on about one-quarter 
of the world’s population. 

Variations in precipitation and evaporation are tightly linked with 
water balance in the catchment, which influences the water quantity in 
the lake, and can lead to changes in water quality in the lake (Adrian 
et al., 2009; Bai et al., 2011; Seitz et al., 2022; Zhao et al., 2022). As a 
result, lakes in arid or semi-arid climate zones are particularly sensitive 
to climate changes, and it was estimated that water losses have 
happened to 60 % of water bodies in arid regions (Yao et al., 2023). Lake 
Qadisiyah, which is located on the Euphrates River in the north of Iraq in 
a semi-arid region with low precipitation levels, provides important 
water resources for irrigation, and is the second largest hydropower dam 
in Iraq (Al-Kayiem and Mohammad, 2019; Tayyeh and Mohammed, 
2024). It is reported that the Euphrates River flow decreased to 
approximately 30 % of its normal flow when it crossed into Iraq because 
of droughts during 2007 and 2009, and led to a dramatic water area 
decline of 72 % in Lake Qadisiyah (Chulov, 2009; Hasan et al., 2019). 
The droughts caused severe health issues and water shortages for 
drinking, electricity generation and irrigation, and approximately 1000 
new groundwater wells were dug from 2007 to 2009 in response to 
water shortage (Chulov, 2009). In addition to climate, water in Lake 
Qadisiyah can be affected by dams in upstream countries because of the 
cross-boundary Euphrates River (Chulov, 2009), and waters in this lake 
and its connected rivers were sometimes weaponised during military 
conflicts (UNEP, 2017), which added further disturbance to this lake. 
Those facts emphasize the importance of studying the variations of 
water quantity, quality and their relationship in Lake Qadisiyah, and 
this lake being a good study area for exploring how climate and human 
activities impact water ecosystem, to support sustainable use of water 
resources and deal with water shortages caused by extreme events in the 
future. 

Although some studies have reported decreasing water level in Lake 
Qadisiyah (e.g., Gao et al., 2012; Voss et al., 2013; Titolo, 2021), 

knowledge gaps still exist regarding to detailed lake water level changes 
with associated water quality changes in the past twenty years, and how 
those changes were linked to climate change and human activities. As in 
many lake systems, one of the barriers for carrying out those studies is 
the scarcity of long-term monitoring data with a good consistency. Earth 
observation provides an efficient way to monitor water quantity vari-
ables, such as water level, water extent and water volume (Pekel et al., 
2016; Cretaux et al., 2018; Carrea et al., 2023; Li et al., 2023), and water 
quality variables, such as Chlorophyll-a concentration (Chl-a), turbidity 
and water transparency (Neil et al., 2019; Dogliotti et al., 2015; Jiang 
et al., 2019; Liu et al., 2021) in inland waters. Satellite data archives can 
be used to monitor long-term variations of water quantity and quality, 
providing valuable data for regions where in situ data are lacking 
(Setiawan et al., 2019; Cao et al., 2022; Carrea et al., 2023). 

This study exploits the use of Earth observation data to: (1) investi-
gate the variations of water level, water quality variables (Chl-a and 
turbidity), and the potential relationships between water level fluctua-
tions and water quality changes over the last twenty years in Lake 
Qadisiyah; (2) examine the main drivers of these changes considering 
climate and human activities. 

2. Methodology 

2.1. Study area 

Lake Qadisiyah is located on the Euphrates River in the north of Iraq 
(Fig. 1a). It was created after the construction of the Hadithah dam in 
1977 (red point in Fig. 1b), with the purpose of regulating runoff from 
the Euphrates River, providing irrigation for local fields, producing 
hydroelectricity, and partially controlling floods (Kamnev et al., 1983). 
The Hadithah dam is the second largest dam in Iraq and regulates the 
Euphrates River for the whole country (UNEP, 2017). The designed 
normal water level of the dam is 143 m with a storage of 6.4 km3 

(Kamnev et al., 1983) and the surface area of the lake is 428 km2 

(derived from the Landsat-8 image on 2020-08-28). Its catchment is 
approximately 294,025 km2, covering parts of Turkey, Syria and Iraq 
(Fig. 1a), and the majority land cover type is bare land. Because of the 
elevation of the catchment, the semi-arid climate of this region, and the 
adjacent Mediterranean to the north, there is higher precipitation in the 
northern mountain areas of the catchment compared to the southern 

Fig. 1. Study area, (a) the catchment of Lake Qadisiyah, and (b) Lake Qadisiyah in Iraq. Background colour indicates the elevation, with red and teal meaning high 
and low values respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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plains in the catchment (Daggupati et al., 2017; Kool et al., 2020). 
Inflow water is mainly from snowmelt and rainfalls in the catchment 
from November to May (Kamnev et al., 1983), and Euphrates is the main 
river bringing waters to the west of the lake after flowing through 
several dams in upstream (Fig. 1b). The average Chl-a and turbidity in 
this lake are 6.3 mg/m3 and 3.6 NTU, according to the satellite products 
used in this study. 

2.2. Data collection and processing 

Daily water level, Chl-a, turbidity and water-leaving reflectance (Rw) 
data between 2000 and 2019 for Lake Qadisiyah were obtained from the 
European Space Agency (ESA) Climate Change Initiative Lake (Lake-
s_cci) version 1.0 dataset (https://climate.esa.int/en/projects/lakes/da 
ta/). In the Lakes_cci dataset, water level was derived from radar 
altimetry data from sensors onboard TOPEX/Poseidon, ERS-2, Envisat, 
Cryosat-2 and Saral, and provided as a single lake-wide estimate. Rw 
data were acquired from the Medium Resolution Imaging Spectrometer 
(MERIS, 2002–2012) and Sentinel-3 Ocean and Land Colour Instrument 
(OLCI, 2016–2019) with a spatial resolution of 1 km after atmospheric 
correction using Polymer (Steinmetz et al., 2011). Cloud and cloud 
shadows were identified and masked using the Idepix in Sentinel 
Application Platform (SNAP). Chl-a and turbidity were estimated from 
Rw using a blended algorithm based on optical water type (OWT) clas-
sification, algorithm details are provided in Simis et al. (2020) and Liu 
et al. (2021). The downloaded Chl-a and turbidity data from Lakes_cci 
dataset include pixels with potential influence from land, so two more 
steps in addition to the Lakes_cci processing procedure were carried out 
in this study. First, the normalised difference water index (NDWI, Xu, 
2006) was calculated from Rw for each image, and a threshold of NDWI 
< 0.1 was applied to exclude pixels with influence from land or shallow 
water. Second, pixels affected by nearby land (“adjacency affect”) were 
detected and masked out using an OWT approach from Jiang et al. 
(2023). In addition, images where the number of valid pixels covers less 
than half of the lake (<50 %) were excluded to avoid any representa-
tivity issues, which was typically due to cloud cover. The remaining 
images were considered to be of good quality and representative of the 
lake system. 

Meteorological, climate and land use land cover data in the lake 
catchment were used in this study to determine the factors influencing 
water quantity and quality changes in Lake Qadisiyah. Lake catchment 
was determined using the GTOPO30 digital elevation model (DEM) data 
downloaded from USGS (https://earthexplorer.usgs.gov). Meteorolog-
ical data including monthly air temperature (at 2 m height), total pre-
cipitation and wind speed data in the lake catchment were sourced from 
the European Centre for Medium-Range Weather Forecasts (ECMWF) 
Reanalysis V5 (ERA5) dataset with a spatial resolution of 0.25 degree. 
Climate data including standardised precipitation index (SPI) in the lake 
catchment with a spatial resolution of 0.25 degree and Multivariate El 
Niño/Southern Oscillation (ENSO) index (MEI) with a single value 
globally from 2000 to 2019 were downloaded from the Copernicus 
Emergency Management Service (EMS, https://emergency.copernicus. 
eu) and the National Oceanic and Atmospheric Administration 
(NOAA, https://psl.noaa.gov/enso/mei/). An SPI smaller than − 1.0 
means drier than normal, and lower SPI indicates severe drought (EMS). 
A MEI value higher than 0.5 and lower than − 0.5 indicates warm and 
cold periods, respectively (NOAA). Land use land cover (LULC) types in 
the lake catchment were determined from the MODIS MCD12Q1 prod-
uct with a spatial resolution of 500 m, which includes types of forest, 
shrubs and grassland, cropland, built-up, bare land, and water bodies. 
The percentage of area of each LULC type in the catchment was used in 
the analysis. In addition, MODIS MOD11A2 land surface temperature 
(LST) data with a spatial resolution of 1 km in the catchment were 
downloaded to investigate its relationship with drought, and the 
MOD13A2 normalised difference vegetation index (NDVI) data with a 
spatial resolution of 1 km in the catchment were included to investigate 

the changes of vegetation with potential links to droughts. All ERA5, 
LULC, LST and NDVI data in the lake catchment from 2000 to 2019 were 
downloaded through the Google Earth Engine (GEE) platform. Links of 
the data and the GEE code used for data download are provided in 
Table S1 in supplementary. 

2.3. Data analysis 

Daily lake mean Chl-a and turbidity were calculated from the pre- 
processed Chl-a and turbidity daily satellite images in section 2.2, and 
monthly mean Chl-a and turbidity time series during the period of 
2002–2019 were then aggregated from daily values. All downloaded 
meteorological, SPI, LST and NDVI data were firstly averaged for the 
catchment and then aggregated to monthly mean values to generate 
time series data from 2000 to 2019. Anomalies of air temperature, wind 
speed, precipitation, and NDVI were calculated as the difference be-
tween monthly value and the median value between 2000 and 2019. 

To determine the relationship between SPI and water level, the cross- 
correlation analysis was applied to the SPI and water level timeseries 
using the “ccf” function in R language, which returned the correlation 
coefficients (r) with water level timeseries shifted in different months. 
MEI, air temperature, LST, wind speed and precipitation in the lake 
catchment were used to quantitatively determine which factors influ-
enced droughts based on the boosted regression tree (BRT) method. Air 
temperature, wind speed, precipitation and LULC data in the lake 
catchment were used to explain the variations of Chl-a and turbidity in 
the lake based on BRT. BRT was used because it can handle different 
data types, missing values, outliers, and the interaction effects between 
predictors, which is very useful in fitting complex nonlinear relation-
ships (Elith et al., 2008). The R package “gbm” was used to carry out 
BRT fitting in this study. BRT models with the combination of different 
learning rate (0.0001–0.015), tree complexity (2–4) and bag fraction 
(0.5–0.75) were tested, and the BRT model with the best performance in 
terms of training correlation, cross validation correlation and residual 
was finally used (Elith et al., 2008). The full data processing and ana-
lysing process are shown in Fig. 2. 

3. Results 

3.1. Variations of water level and water quality 

Water level showed substantial variations between 2000 and 2019 in 
Lake Qadisiyah. Four periods of significant declines in water level were 
identified which are indicated with a grey shaded area in Fig. 3a. In 
these periods, water level was continuously lower than the average 
value (138.3 m) for at least six months. Period one spanned from 
September 2000 to December 2001 with the lowest water level of 132.9 
m in December 2001. Period two was from August 2008 to December 
2011 with the lowest level of 120.3 m in August 2009. The overall 
lowest water level was observed in period three between November 
2014 and March 2016 with the lowest level of 120.0 m in July 2015. 
Finally, period four spanned from August 2017 to February 2019 and 
showed the lowest water level of 123.7 m in November 2018. The 
average Chl-a was 6.3 mg/m3 and it showed an overall increasing trend 
between 2000 and 2019, clearly higher values were observed in 
2008–2010 with the maximum value of 12.8 mg/m3 in October 2009, 
and 2016–2019 with the maximum value of 14.4 mg/m3 in January 
2019 (Fig. 3b). The average turbidity was 3.6 NTU in the study period, 
but extremely high values were observed in 2009 with the highest 
turbidity of 17.9 NTU in March 2009, and in 2017–2018 with the 
highest turbidity of 14.2 NTU in October 2018 (Fig. 3c). 

Both annual mean Chl-a and turbidity were higher in the western 
part of Lake Qadisiyah, where the inflow from the Euphrates River is, 
than those in the eastern part of the lake, where the dam is located 
(Fig. 4 and Fig. 5). Using 42.2 ◦E as the west-east boundary, the average 
turbidity during the study period was 3.5 NTU in the eastern lake 
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compared to 9.4 NTU in the western lake. In terms of interannual 
changes, Chl-a in 2008–2011 and 2016–2019 were higher than in other 
years (Fig. 4g–j and l–o). Turbidity was higher in 2008–2010 and 2018 
compared to other years (Fig. 5g–i and n). In addition, a smaller water 
surface area was observed in 2009 and 2018 compared to other years 
(Fig. 4h, n, 5h, n). The smallest water area was observed in 2009 at 
146.9 km2, which was 35 % of the maximum area in 2004 at 418.0 km2. 

3.2. Variations of meteorological factors in the catchment 

Monthly mean air temperature between 2000 and 2019 varied from 
a maximum of 29.0 ◦C in July to a minimum of 3.1 ◦C in January in the 
catchment. The mean air temperature in 2001, 2010, and 2014–2019 

was higher than other years (teal area in Fig. 6a). Colder winters were 
found in 2007 when the air temperature reached − 1.0 ◦C in January, 
and in 2016 when the value was 2.0 ◦C in January. These values were 
lower than the average air temperature in January of the past twenty 
years (black dashed line in Fig. 6a). Warmer winters were found in 2009 
and 2017, with air temperature of 6.0 ◦C and 5.6 ◦C in January 
respectively. 

Monthly total precipitation in the catchment showed higher values in 
winter than in summer, with the maximum of 5.6 cm in January and 
minimum of 0.5 cm in August. Extremely low precipitation values were 
found in the period of 2007–2009 (black arrow in Fig. 6b), with the 
lowest yearly mean precipitation of 2.3 cm in 2008, followed by the 
second lowest precipitation in 2017 (2.5 cm, black arrow in Fig. 6b). 

Fig. 2. Flowchart of data collection, processing and analysis.  

Fig. 3. Changes of water level, Chl-a and turbidity during the period 2000–2019 in Lake Qadisiyah, Iraq. Grey shaded areas indicate water levels lower than the 
average in the past twenty years. Black dashed lines are the mean values of water level, Chl-a and turbidity during 2000–2019. 
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Higher precipitation was found in 2003, 2006, 2012, and especially 
2018–2019. 

Wind speed showed higher values in summer than in winter, with the 
highest monthly average wind speed of 3.2 m/s in July and lowest of 0.3 
m/s in November. Mean wind speeds in 2003, 2004, 2008 and 2013 
were higher than that in other years, while in the most recent five years 
it was lower than average. Wind speeds in July of 2003, 2008, 2009, 
2013 and 2014 were each higher than the average of July wind speed 
(black dashed line in Fig. 6c). 

3.3. Variations of climate factors in the catchment 

By using a MEI threshold of ± 0.5, four warm events (WE) were 
found which lasted longer than six months in the past twenty years 

(Fig. 7a). WE1: August 2002 to March 2003 (8 months, Max MEI: 1); 
WE2: August 2006 to January 2007 (6 months, Max MEI: 0.9); WE3: 
October 2009 to April 2010 (7 months, Max MEI: 1.3); and WE4: May 
2015 to May 2016 (13 months, Max MEI: 2.2). During the study period, 
there were also five cold events (CE) that lasted longer than six months. 
CE1: January 2000 to June 2001 (16 months except for August and 
September 2000, Min MEI: − 1.4); CE2: October 2005 to April 2006 (7 
months, Min MEI: − 0.8); CE3: June 2007 to May 2009 (24 months, Min 
MEI: − 1.5); CE4: June 2010 to March 2012 (22 months, Min MEI: − 2.4); 
and CE5: July 2017 to June 2018 (12 months, Min MEI: − 1.3). Cold 
events generally lasted longer and they were more severe than warm 
events. For example, the cold event during 2007–2009 lasted 24 months 
continuously with 11 months of MEI lower than − 1.0, while the cold 
event during 2010–2012 lasted 22 months including 18 months with 

Fig. 4. Spatial distribution of annual mean Chl-a concentration in Lake Qadisiyah, Iraq.  
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MEI lower than − 1.0. 
In the catchment of Lake Qadisiyah, four drought events (DE) were 

identified with SPI values lower than − 1 (red area in Fig. 7b). DE1: 
January 2000 to September 2000 (except for May 2000, 8 months, Min 
SPI: − 1.2); DE2: March 2008 to February 2009 (12 months, Min SPI: 
− 1.6); DE3: January 2011 to March 2011 (3 months, Min SPI: − 1.4), 
and DE4: December 2017 to April 2018 (except for February and March 
2018, 3 months, Min SPI: − 1.4). An SPI higher than 1 only occurred in 
December 2018 to October 2019 (11 months, Max SPI: 1.8). In addition, 
we found that the SPI values in 2007–2018 (mean: − 0.34) were lower 
than that in 2001–2006 (mean: 0.30), with more negative and less 
positive values. 

By comparing MEI and SPI timeseries, it was found all four droughts 
co-occurred with cold events (shaded areas in Fig. 7a and b). The most 

severe and longest drought in 2008–2009 corresponded to the longest 
cold event in 2007–2009 (CE3). After each drought event, there was a 
drop in water level (shaded area in Fig. 7c). There was an additional 
period of water level decrease in 2014–2016, which was not preceded by 
a decrease in MEI below − 0.5 or in SPI below − 1.0. 

3.4. Change of vegetation in the lake catchment 

NDVI in the lake catchment were clearly lower in 2000, 2008, 2012 
and 2017, and higher in 2001, 2010, 2013–2015 and 2019, compared to 
other years (Fig. 8). When comparing the NDVI anomalies to the SPI 
timeseries in Fig. 7b, it was found that NDVI in march in those years 
when droughts happened (red circles in Fig. 8) showed very low values, 
and no obvious low NDVI was found in the year of 2014–2016. This 

Fig. 5. Spatial distribution of annual mean turbidity in Lake Qadisiyah, Iraq.  
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further indicates that water level decrease in 2014–2016 was probably 
not caused by climatic variability as other cases. 

3.5. Changes of land use land cover in the catchment 

Bare land dominated the land use land cover type in Lake Qadisiyah 
catchment with an average percentage of 45.25 % for the study period, 
followed by shrub & grassland (36.98 %), and cropland (16.52 %) 
(Fig. 9). There were only small areas of forest (<0.1 %), built-up (0.61 
%) and water bodies (0.64 %) in the catchment. Water area in the Lake 
Qadisiyah catchment showed similar changes to the water level changes 
in Lake Qadisiyah in the study period with remarkable decreases in 2001 
(0.62 %), 2009 (0.59 %), 2015 (0.62 %) and 2018 (0.60 %). The crop-
land area also showed low values in 2008 (14.35 %), 2009 (14.87 %), 

2017 (15.47 %) and 2018 (16.08 %). Built-up area in the catchment 
continuously increased in the study period. Bare land and forest area 
showed a slight increase, and shrub & grassland area showed a 
decreasing trend in the study period. 

3.6. Drivers of drought, water level and water quality changes 

MEI explained 67.5 % of SPI variations in the Lake Qadisiyah 
catchment, and showed a significant negative relationship (p < 0.01) as 
in Fig. 10a. Lower SPI values normally appeared when MEI was low, 
which means La Niña coincided with drought events in the lake catch-
ment. Precipitation was the second most important factor but only 
contributed 18.6 % to SPI variations in the catchment, with low SPI 
values (drought) occurring when precipitation was low (Fig. 10b). It 

Fig. 6. Catchment-averaged air temperature, monthly total precipitation, and wind speed for Lake Qadisiyah during 2000–2019 from ERA-5 data. Black dashed lines 
are the mean air temperature in January in 6a, and the mean wind speed in July in 6c. Red and teal areas are the anomalies of yearly median values. Black arrows 
indicate the two periods where precipitation was extremely low. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 7. ENSO index (MEI), drought index (SPI) in Lake Qadisiyah catchment, and water level of Lake Qadisiyah during 2000–2019. Red and teal areas indicate cold 
and warm events respectively in 7a. Red and teal areas indicate dry and wet periods respectively in 7b. Grey shaded areas indicate cold periods in 7a and 7b, and 
extremely low water level in 7c. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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should be noted that SPI was calculated from precipitation, this infers 
that MEI was the main factor leading to drought in the lake catchment. 

The decrease in water level happened after an SPI decrease as shown 
in Fig. 7b and 7c. The cross-correlation analysis revealed that water level 
and SPI time series have a maximum correlation with a lag of 10 months 
(Fig. 11a), and they showed a significant positive relationship with r =
0.61 (p < 0.01, Fig. 11b). This means after a long-term drought 
happened in the catchment, water level in the lake typically decreased to 
a minimum 10 months later, such as the severe droughts in 2008 and 
2017 in Fig. 7b. For all water bodies in the lake catchment, a similar 
relationship between water area with SPI was found with r = 0.60 but a 

shorter lag of 7 months (Fig. 11c). 
Water level decline in 2014–2016 did not associate with any SPI or 

NDVI decrease (Fig. 7 and Fig. 8), reports documented that water was 
weaponised during militant conflicts in Iraq, particularly along the 
Euphrates River (UNEP, 2017). The battleground extended from Tabaqa 
dam (upstream of Lake Qadisiyah) to Fallujah barrage (downstream of 
Lake Qadisiyah). A mass release of water took place to impede militants 
from attacking the Haditha dam. As a consequence, an increase of river 
area was observed downstream of Lake Qadisiyah, and an increase of 
surface area in Lake Razaza (located downstream of Lake Qadisiyah) 
was reported in 2014 (Hasan et al., 2019). In addition, the water flow to 

Fig. 8. NDVI anomalies in Lake Qadisiyah catchment. Red points represent NDVI in March, the four red circles indicate the four drought events between 2000 and 
2019. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Land use land cover type changes in the catchment of Lake Qadisiyah between 2000 and 2019.  

Fig. 10. Impacts of (a) MEI and (b) precipitation on drought events in the Lake Qadisiyah catchment. The solid line is the fitted function of MEI or precipitation on 
drought events, grey dots are the monthly SPI and teal area is the density of MEI or precipitation during 2000 and 2019. 
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Iraq in the Euphrates River was cut off from March to October 2015 
(UNEP, 2017), which means no water flowed into Lake Qadisiyah. 

Built-up area and water area changes in the catchment were the two 
main factors associating with Chl-a changes in Lake Qadisiyah, with a 
relative contribution of 29.2 % and 28.6 % respectively (Fig. 12a and b). 
In addition, cropland area change was the third factor relating to Chl-a 
variations in the lake but with a relatively small contribution of 11.2 %. 
Other factors have very weak impacts with relative contribution <10 %. 
An increase in built-up area and crop land area, a decrease in water area 
in the catchment tended to appear higher Chl-a in the lake. For turbidity 
variation, water area change in the catchment was the main factor with 
a high contribution of 55.3 %, and lower water area associated with 
higher turbidity (Fig. 12c). Shrub and grassland change was the second 
influencing factor but its contribution was only 8.9 % (Fig. 12d). Other 
factors had relatively weak impacts (<10 %) on turbidity variation. It 
should be noted that water area variation in the catchment was highly 
related to the water level in Lake Qadisiyah (r = 0.77, p < 0.01, 
Fig. 11d), because all other water bodies are located at upstream in the 
catchment providing inflow to our study lake, and water area changed 
far more in Lake Qadisiyah than other lakes in the catchment. 

4. Discussion 

We observed remarkable changes of water level, Chl-a and turbidity 
in Lake Qadisiyah between 2000 and 2019 from satellite data, with 
water level decreasing and Chl-a and turbidity increasing especially in 
the periods of 2008–2010 and 2017–2018. By analysing meteorological 
and climate data, we found that water level changes were connected to 

the occurrence of droughts (p < 0.01) within the lake catchment. 
Droughts were also followed by a drop in water level, with an overall lag 
time of 10 months (Fig. 11). Droughts were found to be mainly associ-
ated with cold events (La Niña, relative contribution: 67.5 %) with 
decreased precipitation in the catchment (Fig. 6b, Fig. 10). Less water 
inflow from the catchment during droughts, together with continued or 
greater water usage to mitigate the shortage of water for irrigation and 
hydropower generation had the combined effect of the water level 
decline reaching its minimum level after around 10 months. Previous 
research in the study area reported that La Niña events can lead to a 
north-easterly moisture flux which brings less moisture and leads to 
decrease of precipitation in this area (Mariotti, 2007). Research in other 
areas (e.g., reservoirs in US, Brazil) also reported that droughts can lead 
to water level decline and water quality deterioration in lakes (Olds 
et al., 2011; Mosley et al., 2012; Mosley, 2015; Watanabe et al., 2016; 
Brasil et al., 2016). These findings emphasize the crucial impacts of 
climate on lake environment especially for those in semi-arid and arid 
regions. 

Chl-a showed an overall increasing trend with high values in 
2008–2010 and 2016–2019 in Lake Qadisiyah (Fig. 3). Our analysis 
revealed that Chl-a increase was mainly associated with the increase of 
built-up area and decrease of water area in the catchment. Built-up area 
is highly linked to human activities and population, its increase may 
have led to more nutrient discharge in the catchment and finally flow to 
the lake supporting the growth of phytoplankton. Water area decrease in 
the catchment may have several impacts on water quality in Lake 
Qadisiyah. First, reduced inflow from the catchment can increase the 
impact of nutrients from point sources (industrial, agricultural and 

Fig. 11. Relationship between water level in Lake Qadisiyah, water area in the lake catchment and SPI in the lake catchment. (a) Cross-correlation analysis between 
water level and SPI, colours indicate the positive and negative relationships between water level and SPI. (b) Relationship between water level and SPI after shifting 
the timestamp of SPI to 10 months later. (c) Relationship between SPI and water area in the catchment after shifting the timestamp of SPI to 7 months later. (d) 
Relationship between water level in Lake Qadisiyah and water area in the catchment. 

D. Jiang et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 132 (2024) 104021

10

domestic wastewater) because of the lack of dilution water (Van Vliet 
and Zwolsman, 2008). Lower water level in the lake can lead to higher 
nutrients release from the sediments (Mosley et al., 2013; Watanabe 
et al., 2016), and a drier atmosphere can lead to more atmospheric 
deposition to the lake (García-Jurado et al., 2012). Those may have 
increased the nutrients in Lake Qadisiyah for phytoplankton growth. 
Second, shallower water and higher air temperature during drought can 
cause higher water temperature (Hrdinka et al., 2012), which favours 
phytoplankton growth such as cyanobacteria (Paerl and Huisman, 
2008). In addition, increased water retention time because of less inflow 
from rivers, stronger stratification because of higher air temperature 
during drought can also promote phytoplankton growth in the lake 
(Mosley, 2015). These results suggest that measures to deal with both 
extreme events and pollutions are needed to prevent water quality 
deterioration in the lake. 

Turbidity variations were mainly associated with water area changes 
in the catchment, which was also significantly correlated with water 
level changes in the lake (r = 0.77, p < 0.01). Smaller water areas in the 
catchment tended to have higher turbidity. This may be because lower 
water level in the lake can lead to more sediment resuspension, and 
more turbid water from rivers as river water also become shallower with 
more mixing between water and sediments (García-Jurado et al., 2012; 
Mosley et al., 2013; Mosley, 2015). Previous research also reported that 
drought-induced lake water level decrease can lead to higher turbidity 
(Olds et al., 2011; Brasil et al., 2016). 

In addition, we observed water level decrease during 2014 and 2016, 
which led to the lowest water level of 120.0 m in July 2015 in Lake 
Qadisiyah (Fig. 3). The above-mentioned analysis could explain the 
decrease of lake water level in 2000–2001, 2008–2010 and 2017–2018. 
However, there were no combined drought and cold event found in 
2014–2016 (Fig. 7a, b). Precipitation in the catchment did not show 
large anomalies in 2014–2016 (Fig. 6c). NDVI can indirectly reflect 
water availability in the catchment as vegetation is sensitive to drought 

in semi-arid area (Barlow et al., 2016; Daham et al., 2018), and it was 
reported that NDVI in March/April can best reflect precipitation in 
winter and temperature in spring in this area (Daham et al., 2018; 
Alhumaima and Abdullaevz, 2020). But NDVI did not show any decrease 
in the year of 2014–2016 (Fig. 8). The reported military conflicts with 
water flow cut off in upstream from March to October 2015, and water 
release from the Haditha dam with a result of water area increase in 
downstream of Lake Qadisiyah in 2014 (UNEP, 2017; Hasan et al., 2019) 
seem to explain the observed water level decrease in 2014–2016. The 
time line of water flow cut off in upstream matches very well with the 
time of observed lowest water level in July 2015 (120.0 m, Fig. 7c). 

It is projected that the frequency and intensity of droughts will in-
crease (IPCC, 2021), the precipitation will decrease in Iraq in the future 
(Osman et al., 2017; Al-Mukhtar and Qasim, 2019), along with other 
pressures from society such as population increase and inefficient water 
use, those will likely lead to challenges in water resource availability in 
this region. This study filled the knowledge gaps of how droughts 
impacted water quantity in the lake, which can support dam centres or 
local water sections making more efficient water use strategies, estab-
lishing more water storages and improving transboundary cooperation 
with neighbouring countries to avoid water crisis in the future. Our 
study also revealed the highly correlation between water quantity and 
quality in this lake, and the impacts of human activities in the catchment 
on water quality. That means water quality will likely become worse in 
the context of decreasing water availability and increasing population in 
the lake catchment in the future. This provides a warning to the water 
sections, and actions for improving water qualities such as introducing 
pollution control measures in the catchment are recommended. 

This study was carried out based on satellite observations without in 
situ data because of the difficulty of carrying out field surveys in Lake 
Qadisiyah. Future studies with inclusion of field-observed data, espe-
cially during drought events, can be carried out to further validate the 
findings in this study. The impacts from conflicts on water level in the 

Fig. 12. Relationship between (a) built-up area, (b) water area in the catchment and Chl-a in Lake Qadisiyah. Relationship between (c) water area, (d) shrub & 
grassland area in the catchment and turbidity in Lake Qadisiyah. Solid lines are the fitted functions of factors on Chl-a or turbidity variations. Dots are the monthly 
Chl-a or turbidity. Teal areas are the density of each factor in the graph. 
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lake were not possible to be quantified in this study, further in-
vestigations by including data such as water flow and water release 
records from the dam centre where possible will be helpful. Storm is 
another potential factor which may bring dusts to the lake leading to 
high turbidity, which need to be considered in future researches. There 
were some water quality data gaps in 2013–2015 because of the un-
available MERIS and OLCI images in those years, filling those gaps using 
other satellite images such as MODIS will be useful to further confirm 
the relationship between water quality and water level. 

5. Conclusions 

This study demonstrated the use of satellite data in investigating 
water quantity and quality variations in Lake Qadisiyah, Iraq during 
2000 and 2019, where the long-term in situ monitoring data were not 
available. The results proved the capability of Earth observation, and it 
can be a useful and reliable approach in monitoring and understanding 
long-term lake water environment changes. This study also confirmed 
the compounding effects of extreme events and human activities from 
the lake catchment on water quantity and quality in the lake, where 
water level changes in the lake were mainly associated with La Niña- 
induced droughts in the catchment, Chl-a and turbidity variations in the 
lake were associated with water area changes in the catchment because 
of droughts. Human activities including control of dam such as releasing 
and cutting off waters, and built-up area increase in the catchment also 
presented impacts on water qualities in the lake. Those findings 
emphasize that lake water environments in semi-arid regions are 
impacted by both climate and human activities in the catchment, they 
should be carefully considered when making future water management 
strategies and decision-making in Iraq or similar semi-arid regions to 
deal with potential water crisis and water quality deterioration. 
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