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A B S T R A C T   

Multi-decadal time-series of Lake Water-Leaving Reflectance (LWLR), part of the Lakes Essential Climate Vari-
able, have typically been interrupted for the 2012–2016 period due to lack of an ocean color sensor with ca-
pabilities equivalent to MERIS (2002− 2012) and OLCI (2016 - present). Here we assess, for the first time, the 
suitability of MODIS/Aqua to estimate LWLR and the derived concentration of chlorophyll-a (Chla) at the global 
scale across optically complex water types, in an effort to fill these information gaps for climate studies. We first 
compare the normalized water-leaving reflectance (Rw) derived from two atmospheric correction algorithms 
(POLYMER and L2gen) against in situ observations. POLYMER shows superior performance, considering the 
agreement with in situ measurements and the number of valid outputs. An extensive assessment of nine Chla 
algorithms is then performed on POLYMER-corrected Rw from MODIS observations. The algorithms are tested 
both in original parameterizations and following calibration against in situ measurements of Chla. We find that 
the performance of algorithms parameterized per Optical Water Type (OWT) allows considerable improvement 
of the global Chla retrieval capability. Using 3 years of overlapping observations between MODIS/Aqua and 
MERIS (2009–2011) and OLCI (2017–2019), respectively, MODIS-derived reflectance and Chla products showed 
a reasonable degree of long-term stability in 48 inland water bodies. These water bodies, therefore, mark the 
candidates to study long-term environmental change.   

1. Introduction 

Inland water bodies constitute a critical global resource, serving as 
sources of drinking water, promoting tourism, ensuring food security, 
facilitating shipping, and harboring diverse aquatic habitats that are 
crucial to biodiversity and climate change resilience. These water bodies 
are highly vulnerable to environmental changes, responding swiftly to 
both atmospheric and landscape alterations (Adrian et al., 2009). 
Chemical and biological contamination as well as physical disturbance 
by human activities can further accelerate rates of change, leading to 
rapid decline in their economical, recreational, aesthetic, and ecological 
functions. Deterioration of inland water quality has garnered growing 
concern as a result of eutrophication and climate change (Bhagowati and 
Ahamad, 2019). 

Lake color, or lake water-leaving reflectance (LWLR), was recog-
nized by the Global Climate Observing System (GCOS) as an Essential 
Climate Variable in 2006 (https://gcos.wmo.int/en/essential-clima 
te-variables/lakes/). LWLR can be used to relate changes in lake phys-
ics to biogeochemical properties, with the latter in water quality 

management context often being referred to as (optical) water quality. 
The requirements for observing LWLR combine extensive observation 
coverage and a high frequency of observations (at least weekly). 
Furthermore, to have relevance in climate studies, stability over multi-
ple decades is also necessary. To meet these requirements at the global 
scale, remote sensing using a range of satellite platforms is clearly 
needed. Current efforts to realize such datasets are based on MERIS and 
OLCI for medium-resolution observation, providing global coverage of 
<3 days with a spatial resolution of <300 m (Attila et al., 2018; Donlon 
et al., 2012; Kratzer et al., 2008). These sensors leave an observation gap 
between the operation of MERIS (Apr 2002 - Apr 2012) and OLCI (Feb 
2016 - now). Other sensors, such as Landsat, may extend observation 
time-series to prior decades, but do not meet requirements for temporal 
resolution, nor the diagnostic wavebands found on MERIS and OLCI to 
target specific biogeochemical substances at the required precision. 
Another operational ocean color sensor, the Moderate Resolution Im-
aging Spectroradiometer (MODIS) Aqua (2002 - present), has been 
collecting data with global coverage every 1–2 days at an equivalent 
spatial resolution (250/500/1000 m), showing promise in filling the 
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temporal observation gap. The waveband configuration of this sensor is, 
however, subtly different from MERIS and OLCI (Fig. 1), particularly 
regarding wavebands in the near-infrared which have proven important 
in observing optically complex inland and coastal waterbodies (Miller 
and McKee, 2004; Odermatt et al., 2012). To fulfill the Lakes Essential 
Climate Variable (ECV), it is a priority to consider the scope of appli-
cability of MODIS-Aqua with a view to close the four-year observation 
gap. 

Phytoplankton, forming the foundation of the aquatic food chain, 
plays a critical role in gauging alterations in the water environment that 
impact higher trophic levels. Consequently, phytoplankton abundance 
estimates offer insights into water quality and the functioning of aquatic 
ecosystems. Chlorophyll-a (Chla) is the major photosynthetic pigment 
contained in phytoplankton and is widely used as a proxy for phyto-
plankton biomass (Kasprzak et al., 2008). The selective absorption of 
Chla pigment causes a distinct spectral feature in water color that can be 
quantified from the water-leaving radiance measured in the visible 
portion of the electromagnetic radiation via optical remote sensing 
(Kirk, 2011; Mobley and Mobley, 1994). 

Advances in optical remote sensing from the availability of multiple 
satellite sensors and retrieving algorithms have stimulated the Chla 
remote sensing studies and led to development of both large-scale and 
long-term datasets for the purpose of ecosystem monitoring and climate 
research. Generating satellite Chla time-series from multiple sensors has 
some challenges, including effective removal of atmospheric effects 
from at-sensor radiance signals and validation of satellite Chla algo-
rithms. MODIS-Aqua has shown radiometric drift in recent years, having 
already exceeded its initial design life, which is addressed through 
regular calibration and re-processing (Meister and Franz, 2014; Tilstone 
et al., 2013). Validation of the recalibrated MODIS-Aqua data and Chla 
algorithms are subsequently required. Especially for inland waters, a 
high degree of optical diversity with varying complexity necessitates the 
validation and application of a range of algorithms, each applied within 
their design scope and subject to calibration against globally represen-
tative datasets (Neil et al., 2019). Although several MODIS Chla algo-
rithms have been validated in various lakes, these studies retain a 
regional scope or included relatively few candidate algorithms, and as 
such do not fully inform their suitability for global-scale application 
(Dall’Olmo et al., 2005; Gitelson et al., 2007; Ha et al., 2013; Qin et al., 
2022; Zhang et al., 2016). Recently, an evaluation by Cao et al. (2022) 
assessed the performance of the MODIS surface reflectance product in 
monitoring global inland and coastal waters, indicating its potential to 
quantify parameters related to suspended particulate matter but facing 
challenges in Chla retrieval. Previous studies evaluating MODIS and 
MERIS/OLCI water quality estimates were mostly performed regionally 
focusing on phytoplankton (e.g. cyanobacteria) bloom products (Qian 
et al., 2022; Wynne et al., 2021; Zeng and Binding, 2021). Therefore, 
there is still an obvious need to assess MODIS Chla algorithms for inland 
waters, and generate the most accurate Chla products possible to further 
enable a non-interrupted dataset for climate studies. In general, the 

accuracy of algorithms is contingent on their ability to account for 
variations in the bio-optical characteristics of water, subject to algo-
rithm bands selection and goodness in trends simulations (Moses et al., 
2009). Algorithms utilizing blue-green band ratios are expected to 
exhibit superior performance in waters with relatively low Chla con-
centrations. However, they often yield lower accuracy than algorithms 
that employ NIR-red ratios in water with a high Chla concentration, 
particularly in optically complex waters. This coincides with theoretical 
concerns that suggest the applicability of blue-green-based algorithms is 
restricted to open oceans where other optically active water constituents 
co-vary with Chla. In turn, the performance of NIR-red algorithms is 
challenging in inland waters due to factors such as atmospheric mixing 
of light reflected from adjacent land, and the lower magnitude of water 
reflectance in the NIR-red region. 

The primary objective of this study is to evaluate the performance of 
Chla algorithms for MODIS over inland waters, and to ascertain their 
applicability within an Optical Water Type (OWT) classification 
framework which may circumvent some of the shortcomings in the 
design of MODIS with respect to MERIS and OLCI. We then identify lakes 
that could be integrated into a global dataset for seamless climatological 
studies. This, in turn, facilitates the creation of a continuous Chla dataset 
for inland waters by providing a complementary approach to the 
methods delineated for OLCI and MERIS in Liu et al. (2021). In this 
study, (1) two atmospheric correction (AC) methods were compared on 
MODIS-Aqua data and validated using matchup in situ measurements; 
(2) nine Chla algorithm candidates were evaluated, both in original and 
with recalibrated algorithm coefficients, and mapped against the OWT 
framework of 13 OWTs from inland water (Spyrakos et al., 2018); (3) 
inter-sensor stability between MERIS/OLCI and MODIS products was 
evaluated using concurrent satellite products during three years of 
overlap between MERIS and MODIS (2009–2011) and OLCI and MODIS 
(2017–2019), to inform the stability of the MODIS Chla algorithm 
framework to a global set of water bodies, and identify potential lakes 
that could provide a relatively consistent data record over decades for 
climatological studies. 

2. Data and methods 

2.1. In situ and satellite data 

2.1.1. In situ data 
The validation dataset used in this study comprises 17 individual 

datasets from lakes and inland water bodies across the globe, requested 
through the LIMNADES repository (Lake Bio-optical Measurements and 
Matchup Data for Remote Sensing: http://www.limnades.stir.ac.uk). 
This combined data set consisted of 1982 individual observations of 
remote-sensing reflectance (Rrs, sr− 1) and 28,726 Chla (mg/m3) 
observations. 

Fig. 1. Band configurations for MERIS, OLCI and MODIS.  
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2.1.2. Satellite data 
Two AC approaches for MODIS were evaluated against in situ mea-

surements: the L2gen and POLYMER algorithms. L2gen is the standard 
atmospheric correction algorithm used by the National Aeronautics and 
Space Administration Ocean Biology Processing Group, and this algo-
rithm boasts extensive application on MODIS data, among other satellite 
sensors. It is designed to compensate for atmospheric effects that could 
adulterate satellite imagery. This encompasses adjustments for gaseous 
absorption, molecular scattering, and aerosol extinction in the Top of 
Atmosphere radiance measurements, alongside efficient cloud detection 
and evasion. The POLYMER algorithm is particularly known for its 
ability to handle sun glint, which could significantly enhance spatial 
coverage in comparison to other algorithms that falter under such 
challenging conditions. Its application extends across multiple sensors 
including MODIS, offering a robust multi-sensor atmospheric correction 
capability. This feature can be important for projects that aim to 
combine or compare data from different satellite sensors. 

The current version of L2gen uses radiative transfer simulations and 
precomputed ancillary information to resolve the AC in an iterative 
process (Bailey et al., 2010). POLYMER v4.13 (Steinmetz et al., 2011) is 
the AC processor for lake water-leaving reflectance used in the ESA 
Lakes_cci (the ESA Climate Change Initiative for lakes) and the Coper-
nicus Land Monitoring Service, resulting from previous round-robin 
comparisons of six AC algorithms for MERIS, including MEGS8.1 
(MERIS standard), FUB, CoastColour, Case2Regional, SCAPE-M, and 
POLYMER, as detailed in Simis et al. (2020). This algorithm is based on 
spectral optimization using the whole spectral range from blue to NIR 
bands and has the ability to work in sun glint affected areas. MODIS L1A 
data were obtained from NASA for the period of 2002–2019 and pro-
cessed to L1C using SeaDAS (v7.5.3). The Idepix classification tool 
(SNAP toolbox) was used to identify water pixels, to which both the 
POLYMER and L2gen were applied. For both AC algorithms, Rw data 
excluded from the analysis were those classified by L1B and Idepix flags 
as cosmetic, duplicated, glint risk, suspect, land, bright, coastline, and 
L1_invalid from the L1B product flag set, and cloud, cloud ambiguous, 
cloud sure, cloud buffer, cloud shadow, snow/ice, white and (mixed) 
land from Idepix. The resulting normalized water-leaving reflectance 
(Rw) was then compared to in situ remote-sensing reflectance, Rrs, 
assuming Rw = Rrs × π. 

MODIS satellite extractions were obtained as the median value of all 
valid pixels within 3 × 3 pixels around the location of the in situ 

measurements in satellite images collected within a ± 1-day window of 
the measurement time. This resulted in 937 and 243 matchups between 
in situ and MODIS observations for Chla and Rrs, respectively. Fig. 2a 
shows the global distribution of the matchups. The matchup values of 
Chla, Rrs at 488 and 667 nm were approximately normally distributed in 
log space (Fig. 2b), with respective median ± standard deviations of 
22.0 ± 25.3 mg/m3, 0.015 ± 0.013 sr− 1, and 0.015 ± 0.01 sr− 1, 
respectively. 

To quantify the stability between observations from MODIS, MERIS, 
and OLCI, daily L3 products for 2009 to 2011 (MERIS) and 2017 to 2019 
(OLCI) were obtained from the Lakes_cci v2.0.2 dataset, providing a 3- 
year overlap with MODIS. The L3 data are the result of nearest- 
neighbour reprojection to a global 1/120 degree grid (approximately 
1 km) with a daily aggregation interval obtained by averaging the 
available input products. 

For each lake and each sensor combination, the daily median values 
of valid observations for Rw and Chla were extracted for the stability 
quantification. A total of 48 lakes were shown in this study which were 
previously selected from 1100 evaluated lakes. Specifically, two vari-
ables were selected for the evaluation including one water quality 
parameter (Chla) and one water-leaving reflectance band (POLYMER 
corrected Rw at 488/490 nm). It is noted that 488 nm is a MODIS band, 
and 490 nm is the corresponding MERIS/OLCI band. For brevity, 
Rw(488) was used to refer to this band for the three sensors thereafter. 
For all of the 1100 evaluated lakes, three statistical analyses were con-
ducted on extracted daily median values of the two variables (Chla and 
Rw(488)): two-sided t-test, linear regression analysis and Kendall’s Tau 
(τ) value. Lakes with p > 0.001 (from t-test), correlation coefficient (R) 
> 0.5 and τ > 0.5 were selected which finally resulted in 48 lakes, 
covering a range of sizes from 121 to 83,961 km2 and optical- 
biogeochemical properties (ultra-oligotrophic to eutrophic) across 
Europe, Africa, Asia, Oceania, and North and South America (Fig. 2 and 
Table 1). 

Time-series and spatial variations of Rw and Chla for the three sen-
sors are further detailed for Lake Sevan (Armenia), which is the largest 
high-mountain lake in the Caucasus region and a major strategic 
resource for drinking water. The lake is known to have undergone 
eutrophication status shifts in the last few decades, mainly influenced by 
manually regulated lake water level fluctuations and environmental 
changes (Gevorgyan et al., 2020). The detailed observations of Lake 
Sevan serve to further evaluate and demonstrate the capability of Chla 

Fig. 2. (a) In situ matchup locations, and frequency distribution of (b) chlorophyll-a concentration, (c) Rrs at 488 nm, and (d) Rrs at 667 nm. Red triangles indicate 
the location of the 48 lakes in the stability quantification between MERIS, OLCI and MODIS. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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products from multiple satellite sensors to describe long-term hydro-
logical and environmental changes. 

2.2. Algorithms 

At present, the majority of published inland water quality algorithms 
are tailored to MERIS and OLCI sensors (Neil et al., 2019). In our 

research, we selected nine Chla algorithms, encompassing a compre-
hensive range of empirical or semi-analytical algorithms previously 
published for the MODIS waveband set (Fig. 1). A round-robin com-
parison was performed to assess the MODIS algorithms for Chla. The 
algorithms under comparison included three blue-green band ratio al-
gorithms, three NIR-red band ratio algorithms, one peak height algo-
rithm, and two semi-analytical algorithms (Table 2). 

Table 1 
Description of lakes included in the stability evaluations between MERIS, OLCI, and MODIS.   

Lake name Continents Area 
(km2) 

Trophic Status and optical characteristics* Latitude Longitude 

1 Superior North 
America 

83,961 Ultra-oligotrophic, clear lake with low Chla and total suspended matter (TSM) concentration 47.71 − 87.75 

2 Victoria Africa 67,006 Mesotrophic lake with varying water clarity across its expanse, moderate high Chla and TSM 
concentration 

− 1.27 32.87 

3 Michigan North 
America 

58,257 Historically ultra-oligotrophic and had clear waters, which has experienced a decline in water 
clarity in recent decades 

43.85 − 87.08 

4 Erie North 
America 

25,938 Mesotrophic. The western basin is eutrophic, often experiences reduced clarity due to sediment 
resuspension and algal blooms, while the eastern basin generally has clearer waters 

42.14 − 81.24 

5 Ontario North 
America 

19,842 Oligotrophic, generally has clear water 43.83 − 77.63 

6 Titicaca South 
America 

7753 Mesotrophic, generally clear, some regions can be influenced by sediment resuspension or algal 
growth 

− 15.92 − 69.30 

7 Athabasca North 
America 

7691 Mesotrophic, whose clarity can fluctuate, especially with sediment inputs from rivers, 
particularly during spring runoff 

59.11 − 109.88 

8 Great Salt North 
America 

5048 Eutrophic, one of the saltiest bodies of water in the world, often turbid due to sediment re- 
suspension 

41.18 − 112.59 

9 Manitoba North 
America 

4792 Eutrophic, high Chla, seasonal phytoplankton blooms could present 51.00 − 98.79 

10 Zaysan Asia 4334 Eutrophic, high Chla, seasonal phytoplankton blooms could present 48.72 83.43 
11 Qinghai Asia 4250 Oligotrophic, clear salt water 36.89 100.05 
12 Sarykamyshskoye Asia 3853 Oligotrophic, drainless saltwater lake, clear water 41.96 57.36 
13 Uvs Asia;Europe 3630 Oligotrophic, saline lake, clear water 50.34 92.76 
14 Van Asia 3594 Oligotrophic, saline lake, clear water 38.66 42.81 
15 Alakol Asia 2970 Oligotrophic, saline water, sediments flowing in from rivers and streams. 46.12 81.68 
16 Kivu Africa 2731 Mesotrophic, mostly clear − 2.04 29.16 
17 Cedar North 

America 
2653 Eutrophic, seasonal phytoplankton blooms could present 53.33 − 100.33 

18 Cabora Bassa Africa 2504 Mesotrophic, moderate-high Chla − 15.72 32.04 
19 Tsimlyanskoye Europe 2445 Eutrophic, artificial lake, high Chla 48.32 43.18 
20 Tai Asia 2416 Eutrophic, highly productive turbid shallow lake 31.24 120.14 
21 Kakhovskoye Europe 2149 Eutrophic, water reservoir 47.26 33.95 
22 Buhayrat ath 

Tharthar 
Asia 1629 Ultra-oligotrophic, very low Chla, shoreline occasionally subjected to dust storms. 34.04 43.20 

23 Curonian Europe 1565 Hypertrophic, high Chla, with cyanobacteria blooms 55.31 21.15 
24 Khyargas Asia 1400 Oligotrophic, salt lake 49.15 93.45 
25 Qapshaghay Bogeni Asia 1279 Mesotrophic, moderate-high Chla 43.83 77.64 
26 Sevan Asia 1246 Mesotrophic, experiencing cyanobacteria blooms in recent years 40.39 45.35 
27 Saint Clair North 

America 
1235 Mesotrophic, moderate-high Chla 42.49 − 82.70 

28 Tengiz Asia 1226 Eutrophic, shallow lake, high Chla, subject to seasonal variations in water level 50.45 68.91 
29 Bosten Asia 1162 Mesotrophic, moderate high Chla and TSM 41.98 87.06 
30 Lesser Slave North 

America 
1146 Eutrophic, high Chla, cyanobacteria blooms observed in west basin 55.41 − 115.06 

31 Ijsselmeer Europe 1139 Eutrophic, high Chla 52.81 5.37 
32 Novosibirskoye Europe 1136 Eutrophic, an artifical lake 54.30 81.78 
33 Zhari Namco Asia 985 Oligotrophic, salt lake, clear water 30.91 85.61 
34 Salton North 

America 
961 Hypertrophic, salt lake, very high Chla 33.31 − 115.78 

35 Argyle Oceania 900 Mesotrophic, moderate-high Chla − 16.36 128.67 
36 Laguna de Bay Asia 889 Eutrophic, productive water, turbid in dry season 14.36 121.14 
37 Ulungar Asia 865 Mesotrophic, moderate-high Chla 47.22 87.21 
38 Markermeer Europe 717 Eutrophic, shallow lake, turbid and productive 52.51 5.25 
39 Markakol Asia 456 Mesotrophic, low total suspended matter 48.74 85.74 
40 Mingechaurskoye Asia 439 Mesotrophic, moderate-high Chla 40.92 46.75 
41 Iznik Asia 303 Mesotrophic, moderate-high Chla 40.44 29.53 
42 Great Bitter Africa 218 Mesotrophic, shallow salt lake, high Chla 30.30 32.39 
43 Airag Asia 181 Eutrophic, high Chla 48.89 93.44 
44 Tudakul Asia 162 Mesotrophic, moderate-high Chla 39.85 64.84 
45 Clear North 

America 
159 Eutrophic, high Chla 39.03 − 122.78 

46 Burdur Asia 158 Eutrophic, high Chla 37.73 30.17 
47 Toson Asia 137 Oligotrophic, low Chla 37.15 96.94 
48 Trasimeno Europe 121 Eutrophic, high Chla and TSM, subject to the occurrence of seasonal algal blooms 43.14 12.10  

* The trophic state was estimated from the lake average MODIS Chla products according to Carlson and Simpson (1996). 
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2.3. Optical water type framework 

Spyrakos et al. (2018) used a gap statistic (Tibshirani et al., 2001) 
technique to select 13 distinct OWTs corresponding to specific combi-
nations of bio-optical characteristics and the spectral shape of hyper-
spectral in situ reflectance. This analysis was against the same database 
(LIMNADES) as used in this study. Whilst from the same source, the in 
situ Chla observations used in this study form a different subset from the 

earlier work because the coincidence of Chla and MODIS observations is 
used to make the present selection. 

To define the similarity between observed and reference OWT 
spectra, the spectral angle (Kruse et al., 1993) is used. This method 
emphasizes differences in spectral shape between the OWTs and reduces 
the influence of reflectance amplitude, making it a good choice for 
optically diverse inland waters (Liu et al., 2021). The spectral angle 
between an observed and reference spectrum is calculated as: 

α = cos− 1
∑n

i=1piri
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1p2
i

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1r2

i

√ (1)  

SOWT = 1 − α/π (2) 

Where pi is the per-pixel reflectance in band i for the observed 
spectrum and ri is the reference spectrum reflectance in band i, and α is 
the spectral angle between the observed and reference spectrum, 
measured in radians. The result of the similarity test is a membership 
score for each of the 13 reference OWTs. The score (SOWT) ranges from 
0 to 1, where 1 implies identically shaped spectra. Fig. 3 summarizes the 
distribution of in situ Chla grouped by the dominant OWT (the OWT 
with the highest SOWT). More samples (>70 per OWT) were primarily 
associated with OWTs 2, 3, 6, 8, and 9, while fewer samples (<10 per 
OWT) were most similar to OWTs 1, 5, and 13. OWT 3 was associated 
with the widest Chla range and the largest number of samples. OWTs 4, 
6, 8, and 11 show the highest Chla concentrations, with mean values 
>30 mg/m3. 

The assessed Chla algorithms are finely tuned for each OWT by uti-
lizing the matchups with the top 40% of membership scores for each 
OWT, and the best-performing mapping of algorithm and OWT is 
adopted in the OWT framework. Weighted-averaging of the Chla algo-
rithms using normalized SOWT weights provides the blended Chla 
product. Because some algorithm-OWT combinations are assumed to be 
non-physical, have low sensitivity, or may even deteriorate the blended 
result, only the top three SOWT weights are considered. The remaining 
SOWT weights are normalized by scaling them between one for the 
highest SOWT and zero for the 4th ranking SOWT. 

2.4. Time-series trend detection 

By combining MERIS, MODIS, and OLCI retrieved Chla products, 

Table 2 
Summary of validated chlorophyll-a models tested for MODIS.  

Model Architectural 
approach 

Bands Original 
training 
range (mg. 
m− 3) 

Reference 

OC3 Blue-green 
ratio 

min 
[443, 
488], 
547 

0.012–77 https://oceancolor.gs 
fc.nasa.gov/atbd/chlo 
r_a/ 

OC2 Blue-green 
ratio 

488, 
547 

0.012–77 https://oceancolor.gs 
fc.nasa.gov/atbd/chlo 
r_a/ 

OC2_HI Blue-green 
ratio 

469, 
555 

0.012–77 https://oceancolor.gs 
fc.nasa.gov/atbd/chlo 
r_a/ 

R748_667 NIR-red ratio 748, 
(667 or 
678) 

4–240 Dall’Olmo et al. 
(2005); Gitelson 
(1992); Gitelson et al. 
(2008); Gitelson et al. 
(2007); Gurlin et al. 
(2011) 

Shi NIR-red ratio 645, 
859 

6.6–113.7 Shi et al. (2015) 

Appel NIR-red ratio 645, 
859, 
469 

2.9–91 El-Alem et al. (2012) 

FLH Peak height 665, 
677, 
746 

1–10 Letelier and Abbott 
(1996) 

QAA_v6 Semi- 
analytical 

\ 0–70 https://www.ioccg. 
org/groups/Softw 
are_OCA/QAA_v6_20 
14209.pdf 

GSM Semi- 
analytical 

\ 0.02–10 Maritorena et al. 
(2002)  

Fig. 3. Boxplots of in situ chlorophyll-a concentration for each OWT. The main body of the boxplot shows the 25th and 75th percentiles; the median and mean values 
are shown as vertical lines and diamonds, respectively. 
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uninterrupted satellite observation of phytoplankton can be achieved. 
As a demonstration of the application of the continuous Chla product, 
daily median of lake water level (LWL) and lake water surface temper-
ature (LWST) in Lake Sevan were extracted from the Lakes_cci v2.0.2 
dataset from 2002 to 2020, which incorporates the Chla product gen-
eration method outlined in the present work. The MERIS and OLCI Chla 
products in this dataset are also the result of OWT-based blending, 
although the algorithm assignment and optimization were performed as 
described in previous work (Liu et al., 2021; Neil et al., 2019). To cap-
ture the inter-annual variability of Chla and relative environmental 
variables (i.e., LWL and LWST), the time-series of monthly averaged 
data was calculated from daily products and subsequently de- 
seasonalized by applying the ‘seasonal_decompose’ filter in the stats-
models.tsa package using Python v3.7. 

2.5. Performance evaluation 

Chla algorithms were evaluated in three forms: a) original form 
(ORG), which adopts the proposed original parameterization of the 
model coefficients from literature, b) calibrated form (CAL), where 
model coefficients were tuned using the entire in situ dataset, c) clus-
tered form (CLUS), where coefficients were fitted using subsets of the 
dataset corresponding to the highest similarity scores for each OWT. For 
the latter selections, coincident satellite and in situ observations where 
SOWT was in the highest 40% were included. 

A scoring system was applied to select the most appropriate algo-
rithm for each OWT, following the scheme described in Neil et al. 
(2019). Eight statistical metrics were included in the evaluation: root 
mean square error (RMSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), bias, fraction of valid outputs, as well as the 
correlation coefficient, slope, and intercept from linear regression 
analysis. A further scoring system was applied whereby the median 
value for each error metric was compared between algorithms. One 
point was assigned for error statistics around the median of the statistic 
for all algorithms, while zero or two points were awarded when the 
metric was statistically better or worse than the median statistic, 
respectively. The scores of the eight metrics were then summed for each 
algorithm to provide a performance ranking with high scores corre-
sponding to better-performing algorithms. The error metrics were pro-
duced on log10-transformed Chla to give an approximately normal 
distribution, and to reduce the influence of high observation values on 
the statical metric results. 

The RMSE, Normalized Root Mean Square Error (NRMSE), MAE, 
MAPE, and Bias were calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(xre − xis)

2

√

(3)  

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(xre − xis)

2
√

1
n

∑n

i=1
xis

• 100% (4)  

MAE =
1
N

∑N

i=1
|xre − xis| (5)  

MAPE =
1
N

∑N

i=1

|xre − xis|

xis
• 100% (6)  

Bias = xre − xis (7) 

Where xre is the retrieved value from algorithms, and xis is the value 
of in situ observations. In addition, the Unbiased Mean Absolute Per-
centage difference (UMAP) is introduced specifically for Rw validation: 

UMAP =
1
n
∑n

i=1

|UDi|

xis
(8) 

Where the Unbiased Difference (UD) is defined as the difference 
between the satellite Rw and the linear regression fit between all in situ 
and satellite Rw matchups. This is introduced to remove systematic ef-
fects from the atmospheric-corrected Rw, which can be eliminated by 
individual calibration on the downstream Chla algorithms (Liu et al., 
2021). 

3. Results 

3.1. Match-up validation of water-leaving reflectance 

The performance of POLYMER and L2gen on MODIS Rw matchups 
was assessed at nine wavebands from 443 nm to 748 nm (Fig. 4), with 
linear regression statistics shown in Table 3. Significant linear correla-
tions were found for all bands between in situ and satellite Rw 
atmospherically-corrected from both algorithms, with the highest R =
0.83 returned at 547 nm for POLYMER and R = 0.85 returned at 555 nm 
for L2gen (Fig. 4 and Table 3). Systematic underestimation was observed 
for both POLYMER and L2gen AC compared to the in situ observations. 
The POLYMER-corrected Rw showed UMAPE ranging from 28.1% at 
547 nm to 61.7% at 678 nm, and bias ranging from − 0.073 at 555 nm to 
− 0.018 at 443 nm (Fig. 4 and Table 3). The L2gen correction showed 
UMAPE ranging from 33.9% at 555 nm to 139.6% at 443 nm, and bias 
ranging from − 0.0157 at 748 nm to − 0.0839 at 555 nm. Taking all 
evaluated bands and statistics into account, POLYMER-corrections 
showed better performance than L2gen with a significantly higher 
number of valid matchups resulting (243 vs 139). Therefore, POLYMER 
was adopted for further analyses. 

3.2. Round-robin comparison of Chla algorithms 

Fig. 5 shows round-robin comparison results of Chla generated from 
each of the examined algorithms against the in situ measurements. 
Corresponding error metrics are shown in. 

Fig. 6. OCX, R748_667, and QAA algorithms demonstrate a combined 
capability to estimate Chla across the concentration range. Notably, 
algorithms OC2 and OC3 produced R values of 0.66 and NRMS of ~40% 
compared to in situ measurements. Algorithms Shi, Appel, and FLH 
performed poorly over the observed concentration range. The apparent 
failures that occur with algorithms Shi and Appel may be related to their 
usage of Rw(859), which is not used in other algorithms, and leads to 
negative estimates of the calculated index. The FLH algorithm exhibits 
limited sensitivity across the full spectrum of Chla concentrations, even 
after tuning. This finding is consistent with a study which suggests that 
this algorithm is effective exclusively in waters with low Chla concen-
trations (i.e., <1 mg/m3) when used with MODIS (Zhao et al., 2022). 
Among the three model forms, the per-cluster optimized algorithms 
(‘Clus’) provide the most accurate estimation of Chla. It is noted that the 
GSM model is a semi-analytical inversion model with the application of 
a nonlinear least square optimization routine, for which no re- 
calibration was performed. 

3.3. OWT-specific algorithm performance and assignment 

Algorithm performance within subsets of the dataset corresponding 
to individual OWTs (data points within the highest 40% SOWT) identified 
the OC2, OC3, OC2_HI algorithms (O’Reilly et al., 1998), and R748_667 
algorithm (Dall’Olmo et al., 2005) as best performers across four sets of 
OWTs (Table 4 and Fig. 7). There were no valid performance scores for 
OWT 5, considering that only 1 sample was identified as dominant by it 
(Fig. 3). Within each OWT group, the selected algorithm was specifically 
tuned for each OWT. The resulting algorithm coefficients are provided in 
Appendix A (Table A1). 
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3.4. Weighted-blending algorithms in an optical water type framework 

The final Chla product is the result of the weighted-blending pro-
cedure described in Section 2.3, with weights determined by the per- 
pixel OWT membership scores. The comparison between in situ and 
final Chla product is shown in Fig. 8, giving an R value of 0.67 and NRMS 
of 43%. 

3.5. Inter-sensor comparison with MERIS and OLCI observations 

3.5.1. Cross-sensor validation of water-leaving reflectance and Chla 
Cross-sensor validation between MERIS, OLCI, and MODIS for Rw 

and Chla in 48 lakes shows generally good agreement (Fig. 9 and 
Table 5). The best stability between MODIS and MERIS is found at band 

555 nm with R = 0.92, slope = 0.98, RMSE = 0.0119, MAPE = 13.2%, 
and bias = 0.0019, respectively. The correlation coefficient between 
MODIS and MERIS ranged from 0.80 at 748 nm to 0.92 at 555 nm, with 
relatively high MAPE >30% found in near-infrared bands. Similar 
evaluation results can be found between MODIS and OLCI, with band 
555 nm showing the best stability. The regression line has a slope of 1, 
with an R = 0.92 and MAPE = 9.3% (Fig. 9d and Table 5). The corre-
lation between Chla derived with MODIS and MERIS or OLCI shows 
good linear relationships (Fig. 9h). On average, MODIS and OLCI show 
slightly better stability than MODIS and MERIS. 

To enhance understanding of inter-sensor stability in relation to 
OWTs, satellite matchups from all studied lakes were grouped according 
to the OWT with the highest similarity. Table 6 shows the statistical 
correlation between satellites at 555–560 nm, grouped by OWT. The 

Fig. 4. POLYMER and L2gen matchups of MODIS with in situ reflectance data from LIMNADES: utilizing a ± 1-day matchup window and 3 × 3 pixel extraction 
window, presented in logarithmic coordinates. 

Table 3 
Descriptive statistics of the validation for matchups between in situ measurements and MODIS reflectance atmospheric-corrected by POLYMER and L2gen, 
respectively.  

Processor POLYMER (N = 243) L2gen (N = 139) 

Wavebands R RMSE UMAPE (%) Bias R RMSE UMAPE (%) Bias 

443 0.72 0.0285 46.6 − 0.0179 0.54 0.0407 139.6 − 0.0281 
469 0.76 0.0407 50.5 − 0.0286 0.65 0.0496 131.9 − 0.0347 
488 0.76 0.0452 39.4 − 0.0315 0.71 0.0552 105.1 − 0.0397 
547 0.83 0.0914 28.1 − 0.0703 0.84 0.1020 34.0 − 0.0790 
555 0.82 0.0948 30.5 − 0.0733 0.85 0.1080 33.9 − 0.0839 
645 0.77 0.0614 59.3 − 0.0502 0.78 0.0607 42.8 − 0.0488 
667 0.76 0.0477 50.1 − 0.0387 0.77 0.0461 43.7 − 0.0370 
678 0.73 0.0453 61.7 − 0.0370 0.77 0.0430 45.2 − 0.0348 
748 0.40 0.0297 34.8 − 0.0207 0.33 0.0207 37.6 − 0.0157 
Average 0.73 0.0538 44.6 − 0.0409 0.69 0.0584 68.2 − 0.0446  
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Fig. 5. Comparison of in situ measured and algorithm retrieved chlorophyll-a concentration for MODIS with the original algorithm definition in the first column, 
calibration against the whole dataset in the second column, and per-cluster optimized algorithms in the third column. Black line marks unity. 
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majority of matchups corresponded most strongly to OWTs 3, 9, and 2. 
OWT 3 marks relatively clear water, while OWTs 9 and 2 exhibit a 
balanced influence of Chla, CDOM, and inorganic suspended solids. 

MODIS and OLCI demonstrated better agreement than MODIS and 
MERIS, indicated by genrerally higher correlation coefficients and slope 
values closer to 1. OWTs with a higher matchup frequency, such as 
OWTs 3, 9, 2, 4, 6, and 11, exhibited more consistent inter-sensor sta-
bility. To demonstrate the potential impact of MODIS band saturation, 
the ‘return rate’ of MODIS (N_return) was calculated, which quantifies 
the percentage of successful MODIS observations in comparison with 
corresponding MERIS or OLCI data collected on the same day. It is found 
that the N_return are above ~55% for most OWTs. However, a slightly 
lower incidence of N_return was observed for OWTs 5, 7 and 10 for both 

Fig. 6. Statistical metrics calculated between MODIS-derived and in situ chlorophyll-a concentration.  

Table 4 
Chlorophyll-a algorithms per optical water type for MODIS.  

Product Algorithm Optical Water Type 
number 

Chla OC2 oceancolor.gsfc.nasa.gov/cms/atbd/ 
chlor_a 

1, 5, 7, 9, 12,13 

OC3 oceancolor.gsfc.nasa.gov/cms/atbd/ 
chlor_a 

2, 3, 8 

R748/667 empirical band ratio based on  
Dall’Olmo et al. (2005) 

4, 6, 11 

OC2_HI oceancolor.gsfc.nasa.gov/cms/atbd/ 
chlor_a 

10  
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MODIS and MERIS/OLCI. 

3.5.2. Example applications 

3.5.2.1. Time-series stability. To further illustrate the cross-sensor sta-
bility in time-series, the Rw(555) and Chla products derived from all 
sensors over Lake Sevan, Chardarinskoye and the Razelm Lagoon are 
shown (Fig. 10 and Fig. 11). Chardarinskoye and Razelm Lagoon did not 
meet our subjective criteria for stability and were consequently not 
included among the 48 lakes selected for further analyses. 

The time-series include 3-year overlapping periods between MODIS 
and MERIS, as well as MODIS and OLCI, respectively. The data represent 
the daily median observed values in these lakes as well as the 20th and 
80th percentiles. The three lakes represent varying degrees of cross- 
sensor stability evaluated using correlation statistics. Lake Sevan 
showed acceptable inter-sensor stability, and it is clear from the time- 
series plots that MODIS Rw(555) captures the same seasonal patterns 
as observed with MERIS and OLCI, exhibiting strong correlation co-
efficients (p < 0.001, R > 0.82 and Tau > 0.71) between either MERIS or 
OLCI and MODIS (Fig. 10 a and a’). Similar patterns of variability and 
trends between the sensors are also seen for Chla measurements (Fig. 11 
a and a’). 

In Chardarinskoye moderate stability was observed across sensors. 

Fig. 7. OWT-specific performance of each evaluated chlorophyll-a algorithm.  

Fig. 8. Comparison between in situ and top-3 blended chlorophyll-a concen-
tration for MODIS. Color coding refers to the most similar OWT. 
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MODIS Rw(555) successfully captured the same seasonal patterns 
observed with MERIS and OLCI, with moderate R values of ~0.60, and 
Tau value of ~0.5 found with MERIS and OLCI (Fig. 10 b and b’). MODIS- 
derived Chla data also demonstrated broadly similar seasonal trends to 
those observed with MERIS and OLCI, despite larger discrepancies on 

specific dates (Fig. 11 b and b’). In contrast, Razelm Lagoon exhibited 
poor stability between sensors in both Rw(555) and Chla products, with 
weak correlations (p < 0.001, R < 0.25 and Tau < 0.1). 

3.5.2.2. Spatial stability. Overlapping scenes of MODIS with MERIS or 

Fig. 9. Comparison of coincident observations between MODIS and MERIS or OLCI for (a-g) Rw wavebands and (h) chlorophyll-a concentration in 48 lakes for 3-year 
overlapping periods of 2009–2011 (MERIS) and 2017–2019 (OLCI), respectively. Only the Rw of the seven wavebands with <6 nm differences between MODIS and 
MERIS or OLCI are shown, with the MERIS or OLCI band indicated in parenthesis where it differs from the MODIS band. 

Table 5 
Descriptive statistics of satellite matchups between MERIS, OLCI, and MODIS in 48 lakes.  

Sensors MODIS vs MERIS (N = 11,571) MODIS vs OLCI (N = 16,470)  

R Slope RMSE MAPE (%) Bias R Slope RMSE MAPE (%) Bias 

412 nm 0.87 0.80 0.0097 20.2 − 0.0024 0.80 0.87 0.0043 18.9 − 0.0025 
443 nm 0.89 0.86 0.0103 15.7 − 0.0013 0.89 0.83 0.0027 11.6 − 0.0010 
488 (490) nm 0.91 0.89 0.0113 13.5 0.0009 0.90 0.93 0.0027 8.7 − 0.0002 
555 (560) nm 0.92 0.98 0.0119 13.2 0.0019 0.92 1.0 0.0040 9.3 0.0009 
667 (665) nm 0.89 0.89 0.0133 44.1 0.0026 0.89 0.94 0.0043 29.4 0.0016 
678 (681) nm 0.89 0.91 0.0131 39.7 0.0021 0.88 0.89 0.0044 32.3 0.0019 
748 (754) nm 0.80 0.88 0.0077 52.0 0.0002 0.78 0.73 0.0027 40.8 0.0001 
Chla 0.80 0.86 7.1005 31.4 − 2.201 0.87 1.00 9.3797 24.4 − 0.7798 
Average 0.87 0.90 / 28.7 / 0.87 0.90 / 21.9 /  

Table 6 
Comparative correlation statistics of MERIS, OLCI, and MODIS satellite matchups across 13 OWTs in all studied lakes for Rw555(560).  

Sensors MODIS vs MERIS (N = 66,282) MODIS vs OLCI (N = 122,336) 

OWT N (%) N_return (%) R Slope RMSE MAPE (%) Bias N (%) N_return (%) R Slope RMSE MAPE (%) Bias 

1 0.5 57.2 0.44 0.40 0.0146 21.38 − 0.0053 1.4 58.7 0.45 0.41 0.0180 26.51 − 0.0076 
2 14.2 63.5 0.79 0.80 0.0192 8.12 0.0046 13.5 61.8 0.79 0.93 0.0219 9.45 0.0043 
3 32.3 68.6 0.71 0.78 0.0187 9.69 0.0028 31.0 66.9 0.77 0.90 0.0158 9.47 − 0.0010 
4 7.7 58.8 0.76 0.76 0.0256 10.03 0.0058 7.9 59.1 0.80 0.89 0.0242 10.35 0.0069 
5 0.9 44.7 0.40 0.50 0.2155 42.29 0.1429 2.5 46.0 0.36 0.40 0.1749 37.88 0.1047 
6 3.0 61.4 0.76 0.74 0.0165 7.18 0.0046 1.9 56.3 0.77 0.74 0.0166 7.21 0.0013 
7 0.2 52.3 0.36 0.40 0.0550 23.44 0.0090 0.1 48.9 0.52 0.50 0.0224 14.18 − 0.0001 
8 1.1 55.5 0.51 0.42 0.0347 13.89 0.0068 0.7 51.9 0.68 0.57 0.0194 10.01 − 0.0017 
9 17.6 64.3 0.78 0.84 0.0207 8.59 0.0037 18.1 62.4 0.77 0.92 0.0186 9.28 0.0008 
10 2.3 52.0 0.48 0.40 0.0363 20.39 − 0.0001 6.1 50.0 0.49 0.32 0.0308 20.43 0.0038 
11 6.9 55.2 0.68 0.67 0.0267 12.33 0.0033 6.0 53.1 0.75 0.74 0.0259 11.80 0.0049 
12 0.5 62.2 0.54 0.65 0.0687 18.35 0.0096 1.4 63.4 0.65 0.74 0.0412 17.87 − 0.0020 
13 12.9 62.9 0.36 0.45 0.0256 15.91 0.0065 9.4 63.0 0.57 0.63 0.0216 12.10 − 0.0013  
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Fig. 10. Comparative analysis of inter-sensor stability for Rw555(560): (a-c) MERIS vs. MODIS (2009–2011) and (a’-c’) OLCI vs. MODIS (2017–2019) in Lake Sevan, 
Chardarinskoye, and Razelm Lagoon. 

Fig. 11. Comparative analysis of inter-sensor stability for chlorophyll-a concentration: (a-c) MERIS vs. MODIS (2009–2011) and (a’-c’) OLCI vs. MODIS (2017–2019) 
in Lake Sevan, Chardarinskoye, and Razelm Lagoon. 

Fig. 12. Inter-sensor comparison of chlorophyll-a maps in Lake Sevan. The Absolute Difference and Percentage Bias maps are shown comparing either MERIS or 
OLCI to MODIS. 
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OLCI under clear sky were selected to evaluate stability in spatial pat-
terns of Chla in lake Sevan on dates of 5th Oct 2009 and 24th Sep 2019, 
respectively. MODIS-derived Chla showed similar spatial patterns as 
observed with MERIS and OLCI, with lower Chla observed in the 
northwest part of the lake and higher Chla retrievals in the southeast 
(Fig. 12). The lake average value of Absolute Difference (AD) and Per-
centage Bias (PB) for MERIS vs MODIS were − 0.9 and − 24.9%, 
compared to − 0.9 and − 16.7% for OLCI vs MODIS. Negative PB was 
found in the regions with low Chla concentrations (<2 mg/m3), which 
indicates a protentional overestimation of MODIS compared to MERIS 
and OLCI in low Chla ranges (Fig. 12). 

3.5.2.3. Lake regime shifts in a changing climate. As a demonstration of 
the gap-free long-term satellite observation, Fig. 13 shows the inter- 
annual trend of LWL, LWST, and Chla in lake Sevan, after removing 
the seasonal component from the time-series satellite observations. In 
lake Sevan, measures were taken by the local government since 2002 to 
increase the LWL in order to restore the natural regime of the lake water 
(Hovsepyan et al., 2019), which is captured by the LWL retrievals pro-
vided in the lakes_cci dataset (Fig. 13a). With the increase of the LWL, 
the tendency of a decrease in Chla was registered and maintained at a 
low value from 2010 to 2016 (Fig. 13a and c). While in recent years, the 
Chla trend has been gradually increasing and maintained at a high-level 
from 2017 to 2020. A reported massive blooming event that occurred in 
2018 (Gevorgyan et al., 2020) was also confirmed by our Chla product, 
which could be related to the sudden increase in water temperature in 
2018 (Fig. 13 a and c). 

4. Discussion 

Reliable, continuous, and long-term satellite observation records 
complement the management of lakes and are essential to identify and 
address the challenges of mitigating and adapting to climate change 
acting on water bodies and their catchments. Multi-decadal observation 

of optical proxies for lake biogeochemistry has been hampered by a 
crucial observation gap between the MERIS and OLCI satellite sensors. 
These sensors have otherwise prompted considerable advances towards 
fulfilling the Lakes Essential Climate Variable, particularly by com-
plementing the waveband set of previous generations of sensors in the 
near-infrared and by providing a nominal pixel resolution of 300 m to 
further the study of medium-sized lakes. As a result of the observation 
gap, studies of inland optical water quality have predominantly focused 
on the period of either MERIS or OLCI observations (Kauer et al., 2015; 
Liu et al., 2019; Qian et al., 2022). The present work provides the first 
indirect evaluation of MERIS and OLCI long-term stability using the 
overlapping temporal coverage by MODIS-Aqua. 

As one of the most limiting factors for accurate retrieval of water- 
leaving reflectance from satellite remote sensing data, atmospheric 
correction over inland waters is often found unreliable compared to 
ocean color remote sensing, due to the optical complexity and variability 
of water constituents even under optimal observing conditions (cloud- 
free, thin aerosols, negligible sun glint) (Moses et al., 2009; Warren 
et al., 2019). For the two AC algorithms considered in this study, we find 
that atmospherically corrected Rw was systematically lower than in situ 
observations (Fig. 4), which is consistent with results reported in other 
studies (Jiang et al., 2020; Soppa et al., 2021). This behavior is not 
unique to the correction of MODIS-Aqua imagery, and inter-sensor 
comparison results of water-leaving radiance reflectance suggest that 
similar agreement is found between MODIS-Aqua and MERIS in the 
period up until 2012, and between MODIS-Aqua and OLCI A/B for the 
period starting from 2016. These findings, while acknowledging the 
presence of observation uncertainties, suggest a possible continuity be-
tween the MERIS and OLCI sensor products when integrated with 
MODIS-Aqua, and potentially to include legacy sensors such as SeaWIFS 
to further extend the observation time series. 

A major factor in determining the most suitable satellite data pro-
cessing chain is the degree to which observations of sufficient quality are 
preserved whilst masking out observations of poor quality. POLYMER 

Fig. 13. De-seasonalized trend of (a) Lake Water Level, (b) Lake Surface Water Temperature, and (c) chlorophyll-a concentration in lake Sevan from 2002 to 2020.  
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yields are almost two-fold the number of valid pixels compared to L2gen 
whilst providing similar performance. Similar findings are reported in a 
comparison of POLYMER and the NASA standard atmospheric correc-
tion (NSAC) applied to MODIS measurements over North American 
waters (Zhang et al., 2018), where POLYMER retrieved 2–3 fold more 
valid observations than NSAC. This property of POLYMER is also re-
ported for other sensors such as OLCI, when evaluated among five AC 
algorithms over French optically complex waters (Mograne et al., 2019). 
The availability of valid ocean observations from MODIS (e.g., Rw and 
Chla) can be as low as ~5% (Feng and Hu, 2015), suggesting approxi-
mately 1 valid pixel from every 20 days over the same location, given the 
daily revisit frequency of MODIS-Aqua. For inland waters, this value 
should be adjusted downward due to the complexity of variable aerosol 
and water properties. POLYMER works relatively effectively in the 
presence of thin clouds and sun glint, increasing the valid coverage of 
satellite measurements in challenging conditions, making it a good 
choice to observe the dynamic nature of inland waters due to precipi-
tation events, river dynamics, wind-driven resuspension, and anthro-
pogenic pollution. 

The 48 lakes presently encompassed in the Lakes_cci have yielded a 
reasonable degree of stability between MERIS, OLCI and MODIS, 
thereby providing a level of confidence to achieve longer time series by 
combining observations from these sensors (Fig. 9 and Table 5), espe-
cially considering blue and green bands from 443 to 555 nm. Generally 
better agreement between MODIS and OLCI was found for Rw between 
blue and green bands (from 443 to 555 nm) than between MODIS and 
MERIS (Table 5). A study on inter-calibration of the cyanobacteria index 
(CI) from MERIS, MODIS, and OLCI in the Laurentian Great lakes also 
showed slightly better agreement between OLCI and MODIS-derived CI 
than that between MERIS and MODIS (Wynne et al., 2021). 

Nevertheless, the dynamic range of the MODIS instrument aboard 
the Terra and Aqua satellites is limited at both ends of the dynamic scale 
due to quantization noise at the low end and limited amplifier capacity 
at the high end. Specific detectors in the MODIS instruments exhibit a 
tendency to reach saturation early due to the detector material proper-
ties: bands 15 (748 nm), 17 (905 nm), and 19 (940 nm) can experience 
pre-saturation at approximately 92%, 81%, and 90% of the dynamic 
range (Madhavan et al., 2012). Evidence of saturation in the wider green 
to near -infrared wavelength region has also been shown over highly 
turbid waters (Li et al., 2017; Madhavan et al., 2012). In our study, the 
N_return of MODIS observations was above 55% for the majority of 
OWTs when compared to MERIS and OLCI data (Table 6). The generally 
lower pixel returned by MODIS is likely due to its coarser spatial reso-
lution (1 km) compared to the finer 300 m resolution provided by MERIS 
and OLCI. Notably, OWTs 5 (characterized by high sediment content), 7 
(high Chla and phycocyanin concentration) and 10 (rich in CDOM) 
exhibited slightly lower N_return, ranging from 44.7% to 52.3%, when 
compared to other OWTs. This reduced rate of N_return for these OWTs 
could be associated with MODIS band saturation issues specific to these 
water types, which suggests a need for further detailed investigation to 
draw definitive conclusions. 

Among the example lakes shown in our study, the observed poor 
stability in Razelm Lagoon (Fig. 11) may be attributed to its shallow 
depth (1.9 m) and generally turbid conditions, which arise from sedi-
ment resuspension and algae blooms (Godeanu and Galatchi, 2007; 
Navodaru et al., 2002). Razelm Lagoon has an average Chla concen-
tration of 208.2 mg/m3 (ranging from 3.5 to 1046 mg/m3) and an 
average water transparency of 0.26 m (ranging from 0.19 to 0.42 m), 
based on monthly surveys conducted over 12 years from 1993 to 2005 
(Godeanu and Galatchi, 2007). Consequently, MODIS bands tend to 
saturate in this lake, resulting in fewer valid pixels and a resulting bias 
towards occurrences of lower values in time series for both Rw and Chla, 
compared to MERIS and OLCI. 

The saturation of several MODIS wavebands in highly turbid waters 
presents a specific challenge to present consistent long-term time-series 
without significant bias to more favourable conditions. Research 

suggests that the ‘land’ bands on MODIS are less affected by saturation in 
these conditions, and could be used as alternatives for Chla estimates in 
areas with extreme turbidity and high biomass (Li et al., 2019; Qi et al., 
2014). Despite the potential of land bands for Chla estimation in turbid 
waters, their broader spectral resolution and lower sensitivity pose 
significant challenges for globally applicable algorithm development. 
Recent studies have nevertheless indicated potential for MODIS land 
bands to assess water clarity and extinction coefficients across a wider 
range of water bodies, while quantifying Chla in estuarine and inland 
waters using MODIS land bands remains challenging (Cao et al., 2022). 

Relatively consistent Rw observations between MERIS, OLCI, and 
MODIS-Aqua across their shared bandset do not imply that Chla con-
centration estimates will be of similar quality, because MERIS and OLCI 
benefit from additional wavebands which can be exploited in Chla 
retrieval. Moreover, additional bands corresponding to atmospheric 
features are expected to improve atmospheric correction of visible and 
near-infrared signals. Some of the most successful and widely applicable 
Chla algorithms for MERIS make use of near-infrared bands (Neil et al., 
2019). Other algorithm candidates such as the OCX family of algorithms 
operate on the blue and green wavebands, and are considered most 
appropriate for relatively clear (oligotrophic and mesotrophic) water 
types. 

Interestingly, the OCX algorithms showed generally better perfor-
mance than the other evaluated algorithms for most of the OWTs in this 
study (Fig. 4 and Fig. 5). The R748/667 algorithm showed superior 
performance for the three OWTs (4, 6 and 11) with the highest Chla 
concentrations, which is conform expectations (Fig. 3 and Table 4). The 
relative performance of the OCX algorithm contrasts the common 
finding that algorithms using Red/NIR wavebands tend to perform 
better across a wide range of optically complex inland waters, and may 
be related to superior retrieval of the near-infrared Rw signal from 
MERIS and OLCI, compared to MODIS, after atmospheric correction. 
Another possible reason for the lesser performance of algorithms 
employing Red/NIR bands could be tied to the fact that MODIS Red/NIR 
bands (e.g., 667, 678, and 748 nm) are more intend to encounter band 
saturation issues, particularly in extremely turbid waters including 
dense algal blooms. This, in turn, impedes the successful application of 
algorithms utilizing these bands (e.g., algorithms R748/667, FLH). 
Classic atmospheric correction methods often fail in turbid waters since 
the backscattering in the NIR overcomes the high light absorption effi-
ciency by water molecules, invalidating the black-pixel assumption in 
the NIR (Shi and Wang, 2007). Despite the successful application of the 
MODIS SWIR atmospheric correction method for some turbid waters 
(Ibrahim et al., 2019; Shi and Wang, 2007; Wang et al., 2009), this 
approach no longer holds for extremely turbid waters (Shi and Wang, 
2007; Wang et al., 2019). Given that MODIS sensors are primarily 
designed for the observation of oceanic waters, and the lack of MODIS 
wavebands in the NIR/SWIR compared to MERIS and OLCI, it is 
reasonable to observe a lack of adequate accuracy for Chla algorithms 
using red or NIR wavebands, which are also widely used in the retrieval 
of TSM. This observation was further corroborated by some additional 
unsuccessful attempts conducted on TSM retrieval (Simis et al., 2022), 
which confirmed the aforementioned limitation of MODIS in this regard. 

Other studies have shown that OCX algorithms are likely to give 
erroneous estimates in extremely turbid waters by an overestimation in 
Chla concentrations, or an underestimation of Chla in hyper-eutrophic 
waters (Camiolo et al., 2016; Tilstone et al., 2017). The tuning process 
actively reduced the underestimation in the high Chla section by 
improving the linear-regression slope for OC3 (from 0.5 to 0.6) and OC2 
(from 0.52 to 0.6) (Fig. 5). Our study has confirmed the finding of other 
studies that find that MODIS could provide a consistent measurement of 
algal bloom products with that of MERIS and OLCI (Wynne et al., 2021; 
Zeng and Binding, 2021). 

In our study, we discovered that MODIS can be used for gap-filling in 
climate studies across certain lakes, although it does not present a uni-
versal solution for all lakes. The primary limitation of MODIS is the size 
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of the lakes for which it achieves consistent results. A significant portion 
of the lakes examined in our study—603 out of a total of 1167—are 
<200 km2 in size (Fig. 14c), which complicates the achievement of 
consistent observations between MERIS/OLCI and MODIS due to the 
discrepancy in spatial resolutions between these sensors. This challenge 
is further exacerbated in cases where lakes exhibit irregular shapes, 
presenting additional obstacles for MODIS satellite observation, which 
has a spatial resolution of 1 km for ocean color bands. By broadening the 
selection criterion to R > 0.4 across the three sensors, the number of 
lakes passing the stability check increases to approximately 80 (Fig. 14). 

Climate change significantly impacts on inland water ecosystems, 
but it will be difficult to distinguish climate-induced and natural vari-
ability among other pressures without substantially longer data records 
than have been available to date. In the application example presented 
here, the responses of Chla to physical changes (in LWL and LSWT) in 
Lake Sevan confirm the effectiveness of the gap-filled time-series satel-
lite data (Fig. 13). It is worth noting that both LWL and LSWT products 
are freely accessible in the same format as the LWLR data from the 
Lakes_cci project (https://climate.esa.int/en/projects/lakes/data/). 
Therefore, similar analyses can be carried out in lakes where MODIS 
Chla products are available to study the long-term variation of Chla, and 
investigate how it responds to variations in lake hydrologic and climatic 
conditions. 

MODIS, with its long operational period, offers a unique opportunity 
to bridge the temporal gap between the MERIS and OLCI missions, 
ensuring data continuity for long-term environmental monitoring. 
Despite spectral and spatial resolution differences among the three 
sensors, their overlapping bands can be harmonized for consistent 
datasets in relatively large lakes. However, challenges arise due to al-
gorithm variations, waveband discrepancies, and differing spatial reso-
lutions. In our study, substantial efforts were directed towards 
identifying a well-performing atmospheric correction algorithm, cali-
brating Chla algorithms within an OWT-based framework, and identi-
fying lakes that could yield acceptably consistent data across the three 
sensors. Looking ahead, to effectively amalgamate data from MERIS, 
MODIS, and OLCI, and to extend this work to encompass more lakes, 
rigorous inter-calibration, algorithm harmonization, and validation 
utilizing in-situ measurements are indispensable. Furthermore, due to 
the large uncertainty associated with atmospheric correction, analysis 
and potential reduction of the correction error should include analysis of 
atmospheric composition as far as this is possible through observation 
and simulation studies, to arrive at a full propagation of uncertainties 
instead of strict masking of suspect observations. 

5. Conclusions 

In this study, MODIS Chla algorithms were individually tuned 
against in situ observations, grouped by their similarity to an established 
set of optical water types. The calibration of algorithms within the scope 
of individual optical water types is considered particularly beneficial 
when the satellite sensor is not optimally equipped to address the 
compound challenges of atmospheric correction over optically complex 
water in the vicinity of land. Although systemic underestimation of 
MODIS Rw was observed for both AC algorithms, the re-calibrated Chla 
algorithms can cancel out some of the Rw bias, particularly when algo-
rithms determine the Chla from band ratios. Following the process of 
calibration per optical water type, the agreement between MODIS and 
OLCI derived Chla was slightly better than between MODIS and MERIS, 
indicating that a further refinement of algorithms, and ultimately inter- 
sensor bias correction might prove useful to obtain seamless gap-filled 
time-series. This continued fine-tuning is facilitated by continued ef-
forts to uncover and share in situ radiometric and biogeochemical 
observation data, serving to determine the product uncertainties asso-
ciated with estimates derived from the individual sensors. 
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Appendix A. Appendix  

(a) OC2 algorithm. 

The OC2 algorithm relies on a ratio of blue (488) and green (547) wavebands. The algorithm is formulated as: 

Chla = 10

(

p0+
∑4

i=1
pi

(

log10

(
Rw (488)
Rw (547)

))i )

(A1)  

where p0 to p5 are tuned constants. The OC2 algorithm is assigned to OWTs 1, 5, 7, 9, 12, and 13, and the calibrated coefficients are shown in Table A1.  

(b) OC3 algorithm. 

The OC2 algorithm relies on a maximum ratio of blue (443, 488) to green (547) wavebands. The algorithm is formulated as: 

Chla = 10

(

p0+
∑4

i=1
pi(X)i

)

(A2)  

X = log10((Rw(443) > Rw(488) )/Rw(547) ) (A3)  

where p0 to p5 are tuned constants. The OC2 algorithm is assigned to OWTs 2, 3, and 8, the calibrated coefficients are shown in Table A1.  

(c) R748_667 algorithm. 

The Dall’Olmo et al. (2005) algorithm is an empirically tuned ratio of bands 748 and 667 nm: 

Chla = 10p0+p1×log10(ratio) + p2 (A4) 

Where p0 to p3 are tuning coefficients empirically calibrated against LIMNADES. The R748_667 algorithm is assigned to OWTs 4, 6 and 11, the 
calibrated coefficients are shown in Table A1.  

(d) OC2_HI algorithm. 

The OC2_HI algorithm relies on a ratio of blue (469) and green (555) wavebands. The algorithm is formulated as: 

Chla = 10

(

p0+
∑4

i=1
pi

(

log10

(
Rw (469)
Rw (555)

))i )

(A5)  

where p0 to p5 are tuned constants. The OC2_HI algorithm is assigned to OWTs 10, the calibrated coefficients are shown in Table A1.  
Table A1 
Per-OWT tuned parameters for each assigned Chla algorithms.  

Algorithm Assigned OWT p0 p1 p2 p3 p4 

OC2 1 0.2750 − 2.7227 1.5467 − 3.1056 0.5945 
OC2 5 0.2875 − 2.8465 1.6170 − 3.2468 0.6216 
OC2 7 0.2750 − 2.7227 1.5467 − 3.1056 0.5946 
OC2 9 0.2875 − 2.7419 1.3401 − 2.5856 0.5996 
OC2 12 0.2750 − 2.7227 1.5467 − 3.0026 0.4918 
OC2 13 0.2731 − 2.7227 1.5467 − 2.7567 0.4865 
OC3 2 0.2252 − 3.2904 1.5478 0.0018 − 1.4736 
OC3 3 0.1939 − 3.0978 1.8570 0.0012 − 1.2255 
OC3 8 0.2901 − 3.2908 2.1620 0.0012 − 0.9824 
R748_667 4 2.0075 1.6560 − 2.0352 \ \ 
R748_667 6 1.9995 1.5870 − 2.9537 \ \ 

(continued on next page) 
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Table A1 (continued ) 

Algorithm Assigned OWT p0 p1 p2 p3 p4 

R748_667 11 2.1495 1.5194 − 6.4474 \ \ 
OC2_HI 10 0.1171 − 1.9706 1.1662 − 0.9983 − 0.6458  
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