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Validation of satellite-derived aquatic reflectance involves relating meter-scale in
situ observations to satellite pixels with typical spatial resolution ~ 10–100 m
within a temporal “match-up window” of an overpass. Due to sub-pixel variation
these discrepancies in measurement scale are a source of uncertainty in the
validation result. Additionally, validation protocols and statistics do not normally
account for spatial autocorrelation when pairing in situ data from moving
platforms with satellite pixels. Here, using high-frequency autonomous mobile
radiometers deployed on ships, we characterize the spatial structure of in situ Rrs

in inland and coastal waters (Lake Balaton, Western English Channel, Tagus
Estuary). Using variogram analysis, we partition Rrs variability into spatial and
intrinsic (non-spatial) components. We then demonstrate the capacity of
mobile radiometers to spatially sample in situ Rrs within a temporal window
broadly representative of satellite validation and provide spatial statistics to aid
satellite validation practice. At a length scale typical of a medium resolution sensor
(300 m) between 5% and 35% (median values across spectral bands and
deployments) of the variation in in situ Rrs was due to spatial separation. This
result illustrates the extent to which mobile radiometers can reduce validation
uncertainty due to spatial discrepancy via sub-pixel sampling. The length scale at
which in situ Rrs became spatially decorrelated ranged from ~ 100–1,000m. This
information serves as a guideline for selection of spatially independent in situ Rrs

when matching with a satellite image, emphasizing the need for either
downsampling or using modified statistics when selecting data to validate high
resolution sensors (sub 100m pixel size).
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1 Introduction

Satellite observations of aquatic reflectance are used to derive water quality
parameters such as photosynthetic pigment concentration, light availability, and
infer the transport of suspended solids. These are used to delineate aquatic habitats
and to investigate biogeochemical processes in aquatic ecosystems. Satellite radiance
recorded at the top of the atmosphere requires correction for atmospheric scattering and
absorption to provide consistent observation of water colour. Accurate derivation of the
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water-leaving radiance is challenging as the aquatic signal
component is often < 10% of the top-of-atmospheric radiance
budget (Wang et al., 2009). To calibrate and validate the
atmospheric correction, networks of stations measuring above-
water in situ remote-sensing reflectance (Rrs) have been
increasingly used to complement observations in the water
column which are relatively demanding on ship time and
maintenance. Validation of satellite-derived reflectance
accuracy is achieved by quantifying the statistical differences
with coincident in situ observations, where the latter are assumed
to represent truth values within specified uncertainty bounds
(Loew et al., 2017).

The atmospheric correction of satellite radiometry is
particularly challenging in coastal and inland waters, due to
their optical complexity relative to ocean waters where optical
properties are closely coupled to the phytoplankton component.
Inland and coastal waters also have pronounced diversity in their
particulate constituents, and therefore the shape of reflectance
spectra (Spyrakos et al., 2018; Lehmann et al., 2023). A wide
turbidity range, particularly at rivers and in relatively shallow
areas with soft substrate, can cause near-infrared (NIR)
reflectance to depart significantly from zero, making the
atmospheric correction harder to constrain than in the open
ocean (Siegel et al., 2000). Near land, the top-of atmosphere
radiance is further perturbed by light reflected from
neighbouring land pixels and scattered into the field of view
of the sensor, also known as the adjacency effect (Otterman and
Fraser, 1979; Bulgarelli et al., 2014). Additionally, near the coast,
there are complex aerosol mixtures that make selection of an
appropriate aerosol model very challenging (e.g., Montes et al.,
2022). Current satellite radiometer systems used for inland and
coastal waters include those designed for ocean colour
observation with a spatial resolution up to 300 m and daily
revisit time, as well as land imagers with fewer and broader
spectral bands but higher spatial resolution (up to 10 m) and
longer revisit times up to 5 days at the equator. There are several
atmospheric correction processors developed for these systems
that are undergoing validation with in situ Rrs (e.g., Barnes et al.,
2019; Warren et al., 2019; Pahlevan et al., 2021). Due to
dependencies between water type and satellite Rrs accuracy
(Pahlevan et al., 2021), it is desirable to perform satellite
validation across a range of sites representing optical
variability in water and atmospheric composition.

In addition to the atmospheric correction, the differing spatial
scales of satellite and in situ reflectance are sources of uncertainty
within a validation analysis (Salama and Su, 2011; Lee et al., 2012;
Salama et al., 2022). Historically, pixel sizes for satellite aquatic
remote sensing sensors were ~ 100–1,000 m2 (Groom et al., 2019),
which is far greater than the meter-scale footprint of in situ Rrs.
For example, ESA Sentinel-3 OLCI (Ocean Land Color
Instrument) has a pixel size 300 m. More recently, higher
resolution sensors such as ESA Sentinel-2 Multi Spectral
Imager (MSI), which has pixel size 10–60 m, have been used
for remote sensing of coastal and inland waters (Warren et al.,
2019). Mobile (typically shipborne) and fixed radiometric
platforms are both used to collect in situ Rrs, and the different
sampling strategies impact on how spatial discrepancy with the
satellite pixel can be accounted for. Validation from fixed

platforms, for example, the Aeronet-OC network (Zibordi
et al., 2009; 2022), is reliant on selecting spatially
homogeneous sites and applying filters for spatial homogeneity
(Concha et al., 2021). Mobile radiometers deployed for along-
track sampling on research vessels and ships-of-opportunity have
the benefit that sub-pixel averaging can quantify sub-pixel
variability in the presence of horizontal heterogeneity (Brewin
et al., 2016), depending on vessel speed and instrument frequency.
Deploying mobile radiometers on ships-of-opportunity is a
particularly attractive solution to obtaining extensive spatial
sampling of inland and coastal water bodies at a low
operational cost.

In addition to repeat spatial sampling within an individual
pixel, mobile radiometers are also more likely to sample data
within multiple satellite pixels within a match-up time window.
In principle, this capacity allows for many different match-up
pairs to be identified from a single satellite scene. However,
validation metrics are typically based on an assumption of
statistically independent observation pairs (Loew et al., 2017).
Consequently, it is desirable to test for spatial autocorrelation -
the statistical dependence of in situ Rrs within neighbouring
pixels - prior to performing the match-up analysis. Spatial
autocorrelation (in the context of match-up analysis) has
received surprisingly little attention within the ocean colour
research community, in part due to the relative scarcity of Rrs

transects. Research into the scale-dependence of variability and
spatial autocorrelation through variography is, however,
relatively common in other areas of satellite validation; for
example, forest (Román et al., 2009) and glacier (Ryan et al.,
2017) albedo. Variography has also successfully been applied to
optical water properties in different scientific contexts; for
example, spatially resolving sediment plumes (Aurin et al.,
2013) and investigation of the spatial structure of planktonic
marine ecosystems at the mesoscale (~10–100 km) (Glover et al.,
2018).

In this study we quantify the spatial structure of in situ Rrs from
mobile radiometric deployments in coastal and inland waters (Lake
Balaton, Western English Channel, Tagus Estuary) over repeat
transects which range from ~ 1 km - ~ 35 km in length. The
overall goal is to provide insight on how spatial structure of in
situ Rrs impacts on satellite validation and provide recommendations
on how data from mobile radiometers can best be used in the
future. We do not perform an explicit match-up analysis with
satellite data, but instead apply variogram analysis to in situ data
selected within a time interval broadly representative of a match-
up window. We partition variation of in situ Rrs into spatial and
intrinsic (non-spatial) components, and provide statistics across
different spectral bands and deployments. We assess the variation
in in situ Rrs at a length scale representative of a medium-
resolution satellite sensor such as OLCI (300 m), which enables
us to assess how the mobile radiometer is able to reduce in situ Rrs

variability via sub-pixel sampling. We then assess the
autocorrelation length of in situ Rrs; a quantity which serves as
a criterion for selecting independent pixel match-ups for validation
from a single scene. This study informs the process of working
towards fully automated satellite validation services, specifically
highlighting the role of spatial statistics when using data from
mobile autonomous radiometric systems.
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2 Satellite validation of remote-sensing
reflectance

To motivate the study, we first present a brief review of Rrs

satellite validation practice, focusing on spatial and temporal
collocation. Satellite validation is defined as the process of
evaluating, by independent means, the accuracy of satellite-
derived data products and quantifying their uncertainties by
comparison with in situ reference data (Justice et al., 2000; Loew
et al., 2017). In aquatic remote sensing in situ measurements of Rrs

(defined as the ratio of water-leaving radiance to downwelling planar
irradiance just above the water surface), or the related variable of
normalized-water leaving radiance, provide reference data for
validation of satellite products (Bailey and Werdell, 2006; Zibordi
et al., 2009; Qin et al., 2017; Warren et al., 2019; Pahlevan et al.,
2021). Rrs from satellite sensors is normally multi-spectral,
consisting of measurements in discrete spectral bands. Rrs from
in situ sensors is typically hyperspectral and convolved with the
spectral response function of the satellite sensor when performing
validation. For convenience, we generally do not explicitly notate the
wavelength-dependence of Rrs and other radiometric quantities.

2.1 Match-up criteria and validation metrics

The ocean colour community has applied a range of criteria
to match-up analysis which differ primarily in quality control
thresholds and spatiotemporal collocation criteria (Bailey and
Werdell, 2006; Zibordi et al., 2009; Concha et al., 2021). Prior to
matching with in situ data, satellite Rrs are often locally
averaged (e.g., using a moving 3 × 3 average of neighbouring
pixels). This spatial window, the ‘satellite extract’, is also used to
test for spatial homogeneity in Rrs via the local coefficient of
variation and to filter out noisy or heterogeneous regions
(Bailey and Werdell, 2006). The time window is kept
sufficiently short to limit spatiotemporal discrepancies
between the in situ and remote sample population, or long to
produce sufficient data to allow statistical analysis. The length
of the temporal window about a satellite overpass that is used to
select in situ Rrs has varied from ±0.5 h (Ilori et al., 2019) (highly
dynamic environments) to ±1 day or greater (Kutser, 2012;
Warren et al., 2019) (inland waters). Match-up windows for
coastal environments typically range from ±1 h to ±3 h (refer to
Table 3 in Concha et al. (2021)). Recent IOCCG
recommendations for dynamic regions are ±1 h (IOCCG,
2019). If there are repeated in situ Rrs measurements within
a pixel within the match-up window, these are typically
averaged before being defined as a match-up pair. In
addition, a sequence of quality control filters are applied to
both in situ Rrs (e.g., restrictions on viewing angles, wind speed,
and levels of sunglint), and the satellite-derived reflectance
(e.g., restrictions on the pixel classification).

Following data selection and filtering, a range of statistical metrics
are then used to assess the uncertainties of the system of remote sensor
and atmospheric correction against in situ Rrs (Bailey and Werdell,
2006; Zibordi et al., 2009; Concha et al., 2021). Common validation
metrics are, for each sensor waveband, the root-mean-square error
(RMSE), mean bias (δ), percentage bias (ψ), defined by:

RMSE �

�������������
1
N

∑N
i�1

xi − yi( )2√√
, (1)

δ � 1
N

∑N
i�1

yi − xi( ), (2)

ψ � 100
N

∑N
i�1

yi − xi( )
xi

, (3)

where yi notates the remote observation (a pixel or local average of
pixels), xi notates an in situ match-up (one or many observations
averaged over a pixel), and N the number of match-up pairs. The
bias metrics can also be defined for absolute differences and/or
median averages. Regression methods including ordinary least-
squares, Type 2 (Qin et al., 2017) and Deming regression
(Warren et al., 2019)) are also used in match-up statistics, in
each case, generating correlation, slope and intercept parameters.

In applying validation metrics, Eqs 1–3, underlying statistical
assumptions (e.g., requirements on stationary, Gaussianity, linearity,
independence of residuals) should be considered (Loew et al., 2017).
The assumption of independence of residuals (which applies to all of the
metrics above) is particularly relevant to this study, which considers
spatial autocorrelation of Rrs. Specifically, the presence of spatial
autocorrelation leads to correlation in the residuals, which results in
negative/positive residuals tending to occur together. In turn, this leads
to an overestimation of the number of independent match-up pairs
(i.e., the value ofN), therefore impacting on the validity of the statistics.

2.2 Decomposition of sources of uncertainty

To isolate either spatial or temporal sources of uncertainty,
previous studies (Salama and Stein, 2009; Salama et al., 2022) have
used the following error decomposition

Δtot ≈
�����������
Δ2
d + Δ2

s + Δ2
t

√
, (4)

where Δtot is the total retrieval uncertainty, Δd is the ‘derivation
uncertainty’, Δs is the spatial discrepancy uncertainty, and Δt is the
temporal discrepancy uncertainty. Δtot could be expressed, for example,
by δ or ψ in Eqs 2 and 3.Δd represents all non spatiotemporal sources of
uncertainty, including sensor calibration, algorithmic uncertainty in
atmospheric correction, and normalisation of observation geometry. Δs

represents uncertainty due to differences in spatial representation;
i.e., uncertainty associated with relating meter-scale in situ
measurements with a satellite pixel. Δt represents uncertainty due to
differences in the temporal representation; i.e., uncertainty associated
with the time difference between the satellite overpass and the in situ
measurement. Eq. 4 is approximate, in the sense that the three sources
of uncertainty are modelled as independent.

Most Rrs validation studies do not consider Δs and Δt explicitly, and
instead aim to minimize their impact via selecting spatially
homongenous sample sites and sufficiently short time windows
about the satellite overpass (Concha et al., 2021). This is generally
done so that the validation accuracy metrics can be used to compare
different atmospheric correction schemes (i.e., the assumed dominant
sub-component ofΔd). In this study, we instead focus on spatial statistics
which relate to the Δs term in Eq. 4. Specifically, via characterization of
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the scale-dependence of Rrs variability, we consider how mobile
radiometers can reduce Δs via sub-pixel sampling. Additionally, via
characterization of the autocorrelation length, we provide pixel
separation distances for selection of spatially independent in situ Rrs.

3 Data

3.1 Radiometric measurement system

In situ Rrs were obtained using the autonomous Solar-tracking
Radiometry platform (So-Rad), developed at Plymouth Marine
Laboratory (Wright and Simis, 2021; Jordan et al., 2022), and based
on the earlier system described by Simis and Olsson (2013). So-Rad
obtains Rrs via three synchronised individual spectroradiometer
measurements of downwelling irradiance (Ed), sky radiance (Ls) and
total upwelling radiance (Lt). A key feature of So-Rad is that the Ls and
Lt sensors are mounted to an azimuthally rotating motor which enables
optimization of the azimuthal viewing angles with respect to solar
azimuth and ship heading. The Ls sensor is at viewing zenith of 40°, with
the Lt sensor in the corresponding specular direction. To ensure an
unobstructed field of view, the Ed sensor is ideally mounted in an
elevated position with unobstructed view of the sky.

The Ed, Lt, and Ls instruments used in So-Rad were TriOS
RAMSES ARC (radiance) and ACC (irradiance), calibrated annually
at Tartu Observatory (Estonia). The calibrated spectral range of all
sensors was 320–950 nm, the spectral resolution was ~ 10 nm, and
the spectral sample spacing was 3.3 nm. The temporal sample
spacing between sets of Ed, Lt, and Ls measurements was
nominally 15 s. So-Rad was automatically set to record data for
solar zenith angles < 60°. The field of view of the TriOS RAMSES
ARC sensors is 7°. For a typical platform height of ~ 5 m this
translates to measuring a spot size of ~ 1 m in diameter and we
therefore refer to in situ observations as being “meter-scale”.

3.2 Reflectance processing

The retrieval of in situ Rrs used the 3C (3 glint component) algorithm
(Groetsch et al., 2017), following the parameterization in Jordan et al.
(2022). 3C reconstructs Rrs by inputting a set of Ed, Lt, and Ls spectra into a
spectral optimization procedure that incorporates models for solar
irradiance (Gregg and Carder, 1990) and the inherent optical properties
of water (Albert and Mobley, 2003). The 3C Rrs equation is of the form

Rrs λ( ) � Lt λ( )
Ed λ( ) − ρs

Ls λ( )
Ed λ( ) − Δ λ( ), (5)

where the air-water reflectance factor (ρs) and spectral offset (Δ(λ)) are
both solved for within the spectral optimization. 3C is particularly
useful in automated, stand-alone deployments, as it bounds how
physically realistic a solution is via an optimization residual parameter
(Pitarch et al., 2020). It is also effective in non-ideal conditions; e.g.,
glint affected data or higher wind speeds (Groetsch et al., 2020).

The quality control for Rrs follows the previous steps for the 3C
algorithm (Groetsch et al., 2017) as described in Jordan et al. (2022)
and provided through the monda (MONocle Data Analysis) Python
package (Simis et al., 2022). The key steps are as follows. First, a set of
radiometric filters were applied tomeasured Ed(λ), Ls(λ), and Lt(λ); for

example, setting a minimum value on the spectral maximum of Ed(λ)
(500 mWm−2nm−1). Second, we removed glint affected spectra when
Lt(λ)/Ed(λ) exceeded an empirical threshold of 0.025 sr−1 on the
interval 850–900 nm. Third, filtering was applied based on the
convergence and residuals of the 3C algorithm optimization.

3.3 Field deployments

The study consists of deployments at three different water
bodies. In each case, a So-Rad system was mounted onboard a
ship-of-opportunity undergoing operational tasks:

1. Lake Balaton (Hungary) between 28 May and 5 July
2019 onboard the car ferry connecting Tihany and Szántód.
The coverage consists of an approximately 1 km transect
between the North and South shores of the lake, with the
round trip taking approximately 40 min and with minor
variation in the exact route over the course of the day.

2. The Western (English) Channel, United Kingdom, between
25 April and 13 October 2021 onboard the Plymouth Marine
Laboratory research vessel Quest. The coverage typically consists
of weekly transects from the harbour in Plymouth to the L4 buoy
and once per month extending to the E1 buoy, approximately
16 km and 37 km from the shore respectively. Radiometric data
from Quest, with similar spatial sampling to this study, is
presented by Martinez-Vicente et al. (2013).

3. The Tagus Estuary in Lisbon (Portugal) between 29 June and
27 November 2021 onboard the Lisboat sight-seeing ferry. The
coverage consists of counter-clockwise circuits of the estuary
inlet channel that are approximately 20 km in total transect
length.

Example reflectance spectra and coverage maps from each
deployment are shown in Figure 1. All three deployments have
reflectance peaks between 550 and 600 nm which is typical of
inland and nearshore marine water. Lake Balaton (Figures 1A,B)
has the highest absolute reflectance values, whilst the Western
Channel (Figures 1C,D) has the lowest. The Western Channel
dataset spans a larger geographical area and has larger distance
between observations due to ship speed. It has the greatest
apparent variation in spectral shape and amplitude, and the
spectral shape is less constrained towards shorter wavelengths
compared to the other sites. All transects correspond to data
collected from a 4 h time window (Tagus Estuary) or 6 h time
window (Lake Balaton and the Western Channel) centred at
12 noon (approximate solar maximum) in the local time zone
as used in the variograms.

3.4 Data gridding and selection from time
window

Prior to the variogram analsyis (Section 4), the
hyperspectral in situ Rrs spectra were downsampled to
discrete spectral bands centred on 443, 560, 665, and 783 nm
using a Gaussian weighting based on the full width at half
maximum of the MSI spectral response function. The band
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centres correspond to the chlorophyll-a absorption maximum
(443 nm), the chlorophyll-a reference/absorption minimum
(560 nm), the second chlorophyll-a absorption maximum/
suspended sediment band (665 nm) and an NIR band used
for atmospheric correction (783 nm). OLCI has similar band
centres at 443 nm, 560 nm, 665 nm. Rrs within each spectral
band was then resampled to a regular 20 m grid, taking the
mean Rrs when there were multiple measurements within
each grid cell. The gridding represents a practical lower
bound on the length scale for comparisons to be made
between in situ and satellite Rrs, and follows how in situ Rrs

has been gridded for MSI validation (Warren et al., 2019). The
gridding also regularizes the sampling for the variograms as

longer time series when the ship is stationary are averaged to a
single measurement.

Our variogram analysis considers the spatial dependence of Rrs

variability, but neglects (explicit) temporal variation. For each
variogram computation, in situ Rrs were selected on a daily basis
from a time window centred about 12 noon in the local time zone,
allowing ±3 h from noon for the Lake Balaton andWestern Channel
deployments, and ±2 h for the more dynamic Tagus Estuary. The
time window lengths are a trade-off so that data can be adequately
sampled to generate the variograms, whilst being sufficiently short to
be (broadly) comparable to a satellite match-up window (Section
2.1). The variograms are computed from multiple pairwise in situ
measurements, so the associated timescale differs from the single

FIGURE 1
Example reflectance (Rrs) spectra and ship transects from each deployment. Top row (A, B) Lake Balaton. Centre row (C, D) Western Channel.
Bottom row (E, F) Tagus Estuary. The Rrs spectra correspond to a time window of data as used in the variogram analysis (6 h for Lake Balaton and the
Western Channel and 4 h for the Tagus Estuary) centred around noon in the local time zone. The Rrs spectra are referenced to the points and colour bar in
the coverage maps.
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match-up pairs that are used in satellite validation. The distribution
of pairwise time separation therefore gives an alternative
quantification of the time difference between Rrs measurements
within the variogram (Figures 2A–C). The distributions have a
strong positive skew and median time separations of
1.29 decimal hours (Lake Balaton), 0.90 decimal hours (Western
Channel), 1.05 decimal hours (Tagus Estuary). The Western
Channel has the lowest pairwise time separation, as the transects
are typically collected over a fraction of the allowed time window
(e.g., Figure 1D).

Additionally, the distribution of pairwise point separations,
which are an input to the variogram analysis, are shown for each
deployment in Figures 2D–F. The maximum point separations are ~
1,200 m for Lake Balaton, ~ 35,000 m for the Western Channel, and
~ 8,000 m for the Tagus Estuary.

4 Materials and methods

4.1 Overview of variogram analysis

The variogram is a commonly used graphical method to
characterize variation in a geographic quantity as a function of
the separation distance between measurements, and is described in
geostatistics textbooks (e.g., Cressie, 1993) aswell as ocean colour
studies (e.g., Glover et al., 2018). The variogram enables
partitioning of variance into a structural component that is
associated with spatial separation and an intrinsic component
not associated with spatial separation. The variogram also
enables characterization of the autocorrelation length, which is
the characteristic length scale at which a quantity ceases to be
spatially correlated with neighbouring observations.

Variogram analysis expresses the semivariance (γ) as a function
of separation distance (h), which is also referred to as the lag or
ground-sample distance (GSD). For in situ Rrs, computation of the
semivariance uses an equation of the form

γ h( ) � 1
2N h( ) ∑N h( )

i�1
Rrs xi( ) − Rrs xi + h( )[ ]2, (6)

where Rrs(xi) is an in situ reflectance observation at geographic
location xi and, N(h) is the total number of measurement pairs at
distance h (Glover et al., 2018). γ(h) is computed separately for each
spectral band. The summation in Eq. 6 applies across the set of all
pairwise point separations, and pivots about each data point in turn,
sampling from a circular annulus with thickness δh (the lag bin
width). The radial samplingmethod can be applied to both distributed
data (as occurs for the variable paths of the Lake Balaton car ferry,
Figure 1A) and purely transect-like data (as is the case for theWestern
Channel deployment). Eq. 6 assumes that γ(h) depends only on h but
not on the spatial location. In other words, γ(h) represents an average
quantity computed over the extent of the geographic survey, unless
spatial windowing is applied. As it graphs the semivariance, the
variogram is sometimes referred to as a semivariogram (Bachmaier
and Backes, 2011). Eq. 6 is applied after quality control of Rrs (see
Section 3.2). Numerical details on the computation of γ(h) and fitting
procedure are provided in Section 4.3.

γ(h) in Eq. 6 can be interpreted as representing the variance in Rrs
at separation distance h (refer to Bachmaier and Backes (2011) for an
explanation how the formula relates to a conventional expression for
the variance). In the context of in situ Rrs, γ(h) has units sr−2. In
satellite validation of Rrs it is preferable to express uncertainty in units
of sr−1 (i.e., expressed as a standard deviation of Rrs). We therefore
consider graphs of

����
γ(h)√

which we refer to as the “root-variogram”.

FIGURE 2
Top row (A–C): Normalized frequency distributions of pairwise time separation for each deployment. Bottom row (D–F): Normalized frequency
distributions of pairwise point-separation distance for each deployment.
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4.2 Interpreting the root-variogram and
spatial structure of in situ Rrs

This section describes the features of the root-variogram and
how these relate to spatial properties of Rrs. A schematic example
from Lake Balaton is shown in Figure 3 for Rrs(560). The root-
variogram (Figure 3A) shows empirical computations (points) and
fitted curves (solid lines), with the computations and fitting
procedure described in Section 4.3. The root-variogram has three
fitted parameters:

���
C0

√
is the value of

����
γ(h)√

when h = 0 (with C0

often referred to as the variogram nugget),
���
C∞

√
is the value of����

γ(h)√
as h tends to infinity (with C∞ often referred to as the

variogram sill) and L is the autocorrelation length (often referred to
as the variogram range). The model fits (Section 4.3) assume a
Gaussian semivariance function of the form����

γ h( )
√

�
�����������������������������
C0 + C∞ − C0( ) 1 − exp −kh2/L2( )( )√

, (7)

where k is a constant. In the data analysis we also consider the
root-variogram normalized by the survey mean (Rrs) which we
define as C̃V(h) � 100

����
γ(h)√

/�Rrs due to the analogy with the
coefficient of variation. This normalization is done to compare
relative variation between spectral bands and deployments, as the
Rrs magnitude can vary substantially (Figure 1). Examples of the
normalized variogram curves are shown in Figure 3B.���

C0
√

,
���
C∞

√
, L and derived parameters relate to the spatial

structure of in situ Rrs as follows:
Intrinsic variability represents variation in Rrs that is not due to

measurement point separation. In the root-variogram, intrinsic variation

is quantified by
���
C0

√
(the h = 0 intercept of the fitted curve) and in the

normalized root variogram, by C̃V(0) � 100
���
C0

√
/�Rrs. In the data

analysis, we focus on C̃V(0) as it provides a relative measure of
intrinsic variation between spectral bands and deployments. Intrinsic
variability arises from a combination of factors including instrument
noise, environmental perturbations, and precision of the Rrs retrieval
method (further discussed in Section 6.3).

Spatial variability represents variation in Rrs that occurs due to
measurement point separation. The quantity

���
C∞

√ − ���
C0

√
, the amount

by which the root-variogram nugget exceeds the root-variogram sill,
quantifies the maximum spatial variation in Rrs that occurs due to
measurement point separation, and is indicated graphically in
Figure 3A. In the data analysis we focus on spatial variability at a
length scale representative of amedium resolution sensor pixel (300 m).
We do this by quantifying the fraction of variation inRrs associated with
spatial separation at 300 m

f300 �
�������
γ 300( )(√

− ���
C0

√( )/ ������
γ 300( )

√
, (8)

where the numerator,
�������(γ(300)√ − ���

C0
√

, represents the spatial
component of variability at 300 m and the denominator,

������
γ(300)√

,
represents the total variation. A way to interpret f300 is that it relates to a
reduction in spatial discrepancy uncertainty (i.e., reduction of the Δs

term in Eq. 4) due to sampling across the satellite pixel. Specifically,������
γ(300)√ − ���

C0
√

represents the additional variation across the pixel that
the mobile radiometer samples relative to a fixed platform which
samples a single fixed location and

������
γ(300)√

represents the total
variation that measurements from a fixed platform would be subject
to. Therefore f300 � ( ������

γ(300)√ − ���
C0

√ )/ ������
γ(300)√

serves as a relative

FIGURE 3
Annotated examples of (A) root-variogram,

������(γ(h))√
, (B) normalized root-variogram C̃V(h) � 100

����
γ(h)√

/�Rrs , (C) corresponding reflectance map for
Rrs(560). Panel A shows the three fitted parameters:

���
C0

√
(variogram nugget, representing variation in Rrs as h tends to zero),

����
C∞

√
(variogram sill,

representing variation in Rrs as h tends to infinity), and L (autocorrelation length; the distance Rrs ceases to be spatially autocorrelated), along with the
curve fit (mean percentage) error. Panel B shows measures of normalized variation at h = 0 m and h = 300 m that are used in the computation of
f300, using Eq. 8. The example is from 2019-06-27 and corresponds to the same data as Figures 1A,B.
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measure of the capacity of the mobile radiometers to sample sub-pixel
variability. f300 is illustrated graphically in Figure 3B, taking into account
that the f300 ratio is the same in the normalized plot;
i.e., (

��������˜CV(300)
√

−
������
C̃V(0)

√
)/

��������˜CV(300)
√

≡ ( ������
γ(300)√ − ���

C0
√ )/������

γ(300)√
.

Spatial autocorrelation. The autocorrelation length L quantifies
the separation distance at which Rrs measurements cease to be
spatially correlated with the original location. This is also the
distance at which further increasing measurement point separation
does not increase the variation inRrs. In general, the definition of L can
vary between variogram models and correspondingly the decay
constant k in Eq. 7 can also take different definitions (Mälicke,
2022). Here we set k = 3 which corresponds to the fitted curve
reaching ~ 98% of the difference between the sill value ( ���

C∞
√ ) and

the nugget value ( ���
C0

√ ).

4.3 Computation and fitting of the
variograms

Prior to the variogram analysis, geographic coordinates were
converted to Universal Transverse Mercator coordinates using the
WGS 84 ellipsoid. The variogram computations were performed
using the Python geostatistics module (Mälicke 2022) using the
inbuilt variogram function to compute γ(h) via Eq. 6. The

computations select Rrs data from 12 discretized lag (h) bins.
Following recommendations that the maximum lag must be
order half the maximum point separation or less (Mälicke,
2022), the maximum possible lag of 600 m was used for Lake
Balaton, corresponding to a bin width of δh = 50 m. For the other
deployments a maximum lag of 1,500 m was used, corresponding
to a bin width of δh = 125 m.

The fitting of Eq. 7 to the empirical variogram, which
determines

���
C0

√
,

���
C∞

√
and L, used the Levenberg-Marquardt

(non-linear least squares) algorithm. The absolute mean
percentage error between empirical and fitted variogram
curves was used to measure the goodness-of-fit. It was then
used as a quality control parameter to filter out poor fits to
the Gaussian model, with 10% used as maximum allowed value.
In our study the Gaussian model was used as it gave the best
overall fit to the data from the conventional choices of variogram
model (spherical, Gaussian, exponential). Future studies on
different data sets should experiment with different choices of
parametric model, or non-parametric approach to extract the
variogram parameters. Additionally, we required that at least 60
(Lake Balaton) or 100 (Western Channel, Tagus Estuary) data
points were present to generate the variograms. (The number of
data points available fluctuates due to the variable ship paths,
variable time intervals when the ship is stationary, and Rrs quality
control (Section 3.2)).

FIGURE 4
Illustrative examples of root-variograms

������(γ(h))√
(panels A and D), normalized root-variograms C̃V(h) � 100

����
γ(h)√

/�Rrs (panels B and E), and
corresponding reflectance maps (panels C and F) from the Lake Balaton deployment for Rrs(560). The examples illustrate difference degrees of spatial
structure.
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5 Results

5.1 Variogram structure of in situ Rrs

We first illustrate how the spatial distribution of in situ Rrs

relates to variogram structure, and how this can differ for
different days within each deployment or between spectral
bands. The examples from Lake Balaton (Figure 4) illustrate
different degrees of spatial structure within the green band
(Rrs(560)). The example in the top row (Figures 4A–C) has
significantly more spatial variation than the bottom row
(Figures 4D–F) indicated by the steeper curve and the greater
difference between

���
C∞

√
and

���
C0

√
(absolute measure of total

spatial variation) and f300 (relative measure of spatial variation at
300 m). The differences in variogram structure relate to the
Rrs(560) map in the top row having greater spatial coherence
than the bottom row. The examples from the Western Channel
(Figure 5) are chosen to illustrate subtle differences between the
variogram structure for different spectral bands within the same
match-up window. Notably, Rrs(560) in the bottom row has a
longer autocorrelation length (1,053 m) than Rrs(443) in the
bottom row (678 m). The larger autocorrelation length means
that spatial variation in Rrs(560) occurs over a longer length scale
than Rrs(443), visually corresponding to a smoother spatial
gradient in the Rrs(560) map. The examples from the Tagus

Estuary (Figure 6) are chosen to illustrate different degrees
of intrinsic variation that can occur within each deployment.
Specifically, the example in the bottom row has much
higher intrinsic variation (C̃V(0) = 16.3%) than the top
row (C̃V(0) = 8.3%).

Figures 7, 8 show summaries of root-variograms ( �
γ

√ (h)) and
normalized root-variograms (C̃V(h) � 100

����
γ(h)√

/�Rrs) across the
three deployments in four spectral bands: 443 nm (blue), 560 nm
(green), 665 nm (red), 783 nm (NIR). The purpose here is to provide
an overall summary, and related variogram statistics are described in
Section 5.2. Each individual

�
γ

√ (h) curve represents a theoretical fit
to the empirical root variogram. Curves based on the median
goodness-of-fit parameters are also shown. The

�
γ

√ (h) curves in
Figure 7 illustrate that, for each deployment, the dependence of
absolute variation in Rrs scales broadly with the spectral shape and
magnitude of the Rrs spectra in Figure 1. Specifically, across the
deployments, the values of

�
γ

√ (h) are highest for the 560 nm band,
and lowest for the 783 nm band. The C̃V(h) curves in Figure 8
illustrate that relative variation in Rrs typically ranges between 5%
and 40% for the length scales shown. In reverse of the result in
Figure 7 the 665 nm and 783 nm bands have higher relative
variability than the shorter wavebands.

The diversity of curves in each panel in Figures 7, 8 show that
a range of variogram structure exists for each deployment and
spectral band. However, some clear trends are present. Notably,

FIGURE 5
Illustrative examples of root-variograms

������(γ(h))√
(panels A and D), normalized root-variograms C̃V(h) � 100

����
γ(h)√

/�Rrs (panels B and E), and
corresponding reflectance maps (panels C and F) from the Western Channel deployment for Rrs(443) (top row) and Rrs(560) (bottom row). The examples
illustrate subtle differences in the variogram shapes and autocorrelation length between the 443 nm and 560 nm bands. The data in both rows is the
same as in Figures 1C,D.
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the variogram curves from Lake Balaton have a markedly
different shape than the other deployments, with the sill
being reached at shorter length scales than the other
deployments (note the different horizontal axis scale in
Figure 7). This difference in variogram structure represents
that spatial variation in Rrs occurs over a shorter length scale
in Lake Balaton than other deployments. Additionally, the Tagus
Estuary generally has a greater spread of variogram curves and
higher relative variability than the Lake Balaton and Western
Channel deployments.

5.2 Variogram statistics for spatial structure
of in situ Rrs

Figure 9 shows frequency distributions for C̃V(h) � 100
���
C0

√
/�Rrs

for each deployment and spectral band. This parameter measures the
relative intrinsic variation in Rrs (i.e., percentage variation in Rrs not
due to measurement point separation) and corresponds to the
distributions of the h = 0 intercepts in Figure 8. Median values of
C̃V(0) range from 7% to 21% across spectral bands and deployments.
Within each deployment, the blue and green bands typically have the
lowest variability with the red and NIR bands having the highest
variability. Averaged across spectral bands, the Tagus Estuary has
significantly higher C̃V(0) than the other two deployments (17%
compared with 11% and 10% for Lake Balaton and the Western
Channel respectively).We note that the results in Figure 9 hold for the
normalized variograms. Alternatively, intrinsic variability could be

expressed in steradians for absolute values of Rrs (the h = 0 intercepts
in Figure 7).

Figure 10 shows frequency distributions for f300, Eq. 8, for
each deployment and spectral band. This parameter represents
the fraction of Rrs variability due to measurement point
separation at 300 m (chosen due to the pixel size of OLCI).
The values of f300 are significantly higher for Lake Balaton than
the other deployments, with median values > 30% in the blue,
green and red bands. The Tagus Estuary has lower values of f300
than the other deployments with median values < 10% in all
bands. The Western Channel has the greatest difference in f300
between spectral bands, with median value 21% for the green
band and 7% for the NIR band. The f300 distributions are broad
and values often greatly exceed the median; e.g., the example in
the top row of Figure 4 has f300 > 100%, indicating that over half
of the variation at 300 m is due to measurement point
separation.

Figure 11 shows frequency distributions for the autocorrelation
length, L. Lake Balaton has lower values of L than the other
deployments, with median values between 250 and 300 m. The
Western Channel has median values of L between 1,000 and
500 m, with the Tagus Estuary between 1,800 and 2,500 m. In all
panels the frequency distributions for L are broad, indicating that
the spatial autocorrelation structure of in situ Rrs is changeable
throughout the timescale of the deployment.

We note that the results for f300 in Figure 10 and for L in
Figure 11 hold for both unnormalized ( ����

γ(h)√ ) and normalized
(C̃V(h)) root-variograms.

FIGURE 6
Illustrative examples of root-variograms

������(γ(h))√
(panels A and D), normalized root-variograms C̃V(h) � 100

����
γ(h)√

/�Rrs (panels B and E), and
corresponding reflectancemaps (panelsC and F) from the Tagus Estuary deployment for Rrs(560). The examples illustrate differences in intrinsic variation
in Rrs. The data in the top row is the same as in Figures 1E,F.
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6 Discussion

6.1 Comparison with previous variographic
analyses of ocean colour and inland water
quality

The spatial structure of Rrs (or related ocean colour variables) has
been assessed in numerous past studies, based on satellite images (Yoder
et al., 1987; Aurin et al., 2013; Glover et al., 2018), airborne (Bissett et al.,
2004; Davis et al., 2007; Moses et al., 2016) and shipborne (Moses et al.,
2016) radiometric platforms. The key novelty of our study is
quantification of the spatial structure of in situ Rrs from
autonomous radiometric systems deployed in the context of satellite
validation. In coastal regions, reported autocorrelation lengths range
from ~ 1–100 km (Davis et al., 2007; Aurin et al., 2013; Moses et al.,
2016), consistent with the Western Channel and Tagus estuary
deployments in our study (Figure 11). For example, in near-coastal
waters Moses et al. (2016) established that Rrs variability can increase
rapidly when measured on scales of 10–100 m (up to a ~ three-fold
increase in the local coefficient of variation from a point measurement)
with typical autocorrelation lengths being kilometer-scale. In Monterey
Bay, California, Davis et al. (2007) showed autocorrelation lengths to be
> 2 km. Aurin et al. (2013) showed that sediment river plumes have
autocorrelation lengths which range from ~ 10–100 km. In the open

ocean, spatial autocorrelation can occur over even larger length scales,
with Glover et al. (2018) showing autocorrelation lengths to be in the
range 50–300 km.

Spatial structure analysis has also been applied to a diversity of
chlorophyll measurements (which strongly correlates with Rrs) in
inland water bodies. Using a chlorophyll index derived from airborne
optical data Hedger et al. (2001) investigated spatial correlation in two
Scottish Lochs (Loch Ness, and Loch Awe) reporting autocorrelation
lengths between 500 and 1,300 m. Using discrete in situChlorophyll-a
measurements, Yenilmez et al. (2014) reported autocorrelation length
1,200 m for the Porsuk Dam Reservoir in Turkey, and Anttila et al.
(2008) reported autocorrelation lengths of 945 m and 1,357 m in Lake
Vesijärvi, Finland. These autocorrelation lengths are slightly higher
than the ferry transect we analysed in Lake Balaton (Figures 11A–D)
suggesting that ~ 1 km is a typical length scale of autocorrelation in
inland waters.

There are examples of ocean colour variogram structure being
more complex than the monotonically increasing Gaussian model
used in this study. For example, Aurin et al. (2013) revealed the
presence of ‘sub-sills’ (i.e., where the variogram levels out, then rises
again), associated with sediment plumes. As we applied a goodness-
of-fit filter to the Gaussian model, variograms that deviated
significantly from a monotonic increase were filtered out. In
comparing variograms between different ocean colour studies, it

FIGURE 7
Summary of root-variograms ( �

γ
√ (h)) in four spectral bands for each window/day of deployment. Top row (A–D): Lake Balaton. Middle row (E–H):

Western Channel. Bottom row (I–L) Tagus Estuary. The vertical scale is fixed within a deployment, but differs between different deployments. The
horizontal data range is smaller for Lake Balaton than the other deployments. Curves based on median fit parameters are shown. The number of curves
(N) varies slightly between spectral bands within each deployment due to quality-control filtering of the variogram fitting (Section 4.3).
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remains important to note that the transect-like data from shipborne
or airborne sampling result in non-uniform spatial sampling,
whereas a satellite image will be approximately uniform.

6.2 Opportunities and challenges of using
mobile radiometers in satellite validation

Mobile radiometers deployed on ships-of-opportunity enable high-
frequency spatial sampling of in situ Rrs in coastal and inland waters. In
the context of satellite validation, the obvious advantage to using a
mobile system (versus a fixed-platform deployment) is that it enables
sampling of variation in in situ Rrs within a satellite pixel and across
optical gradients. Quantifying within-pixel variability is important as
nearshore waters are dynamic across short spatiotemporal scales which
means that selecting spatially homogeneous sites for satellite validation
is not always possible or desirable. Sampling in situ Rrs across optical
gradients is particularly desirable to validate the response of algorithms
over a wide biogeochemical concentration range. A specific challenge in
improving validation practice from moving platforms is to account for
spatial autocorrelation when selecting in situ data for match-ups
with the same satellite image. In a wider context of data
integration, it is also desirable to relate point-like in situ

reflectance data to optical image data taken at different scales;
ranging from drone flight imagery to high and moderate
resolution imagery from satellites.

To quantify pixel-scale variation in in situ Rrs within our 4 or 6 h
time windows, we introduced the parameter f300 which quantifies
the percentage of in situ Rrs variation due to spatial separation at
300 m (representative of the medium resolution OLCI sensor). The
advantage of using a mobile radiometric system to sample sub pixel
variation was particularly clear for the Lake Balaton deployment,
where f300 was greater than 30% across all spectral bands (median
values in Figure 10). This was likely because spatial coherence of in
situ Rrs was preserved throughout the time window. On the other
hand, the Western Channel and Tagus Estuary deployments are
more dynamic systems, which likely results in lower spatial
coherence and lower values of f300. In tidal systems, fixed-
monitoring stations are also able to sample spatial variation due
to the flow of water (Salama et al., 2022), representing an alternative
strategy to reduce uncertainty in a validation analysis.

Ultimately, it is the average value of in situ Rrs sampled within
the extent of a satellite pixel that is compared to the satellite
observation, and numerically relates to Δs in Eq. 4. The spatial
sampling of the mobile radiometer will reduce the standard error on
the pixel mean by a factor proportional to ( ������

γ(300)√ − ���
C0

√ )/ ��
N

√

FIGURE 8
Summary of normalized root-variograms (C̃V(h) � 100

����
γ(h)√

/�Rrs) in four spectral bands for each window/day of deployment. Top row (A–D) Lake
Balaton. Middle row (E–H)Western Channel. Bottom row (I–L) Tagus Estuary. Curves based on median fit parameters are shown. The number of curves
(N) varies slightly between spectral bands within each deployment due to quality-control filtering of the variogram fitting (Section 4.3).
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where N is the number of spatial locations within the pixel that are
sampled, and ultimately determined by platform speed and sensor
sampling rate. This means that, for mobile radiometric systems, it is
valuable to retain all observations sampled along a transect prior to
any data reduction by aggregation or selection, and even on-board
analysis of transect observations could be considered. In the context
of using in situ data for sub-pixel averaging, interpolation across the
pixel (e.g., Kriging, based on the variogram structure) could be used
to get a more spatially representative average to compare with the
satellite image.

In general, accounting for the spatial autocorrelation of in situ
Rrs in validation of remotely-sensed reflectance becomes more
important as the resolution of the satellite sensor increases. This
is because neighbouring measurements become more likely to be
located in adjacent pixels, rather than being averaged within the
same pixel. If multiple match-up pairs are used from the same
image, a simple approach to account for spatial autocorrelation is to
downsample the match-up pairs, based on the autocorrelation
length, L. Using Lake Balaton as an example, with a median
value of L between 250 and 300 m, match-up pairs for high
resolution sensors such as MSI could be downsampled to a
300 m spacing, thus reducing the effect of spatial autocorrelation,
and thus providing a suitable number of match-up pairs. As the Lake
Balaton autocorrelation lengths were generally comparable to the

OLCI pixel scale downsampling is not necessary for OLCI match-up
pairs from this area of Lake Balaton. For the other two deployments,
downsampling match-up pairs to a separation distance of ~ 2–3 km
would be effective to reduce the effects of spatial autocorrelation.

Due to the breadth of the L distributions in Figure 11, and the
range of reported water autocorrelation lengths in Section 6.1, it is
desirable that downsampling uses the specific variogram on the day
of data collection to set the separation distance for the
downsampling of in situ Rrs. However, recognising that
coincidence of remote and in situ observations is a rarity, as a
rule of thumb ~ 1 km is likely to be an appropriate separation
distance for inland waters, with 1 km a minimum distance for
coastal waters, being aware that sediment features may have
much longer scales of autocorrelation (Aurin et al., 2013).
Additionally, spatial structure analysis could be applied to
climatologically-averaged ocean colour products to produce a
map representing a first-order approximation of spatial
autocorrrelation. Downsampling represents just one approach to
account for spatial autocorrelation in validation statistics.
Alternatively, validation statistics could be modified for spatial
autocorrelation; for example, spatially-weighted regression
methods (Anselinm and Bera, 1998).

As chlorophyll-a concentration often controls the majority of the
variability in Rrs, it typically results in a high degree of co-variance

FIGURE 9
Frequency distributions of the intrinsic variation in Rrs as measured by C̃V(0) � 100

���
C0

√
/�Rrs where

���
C0

√ � ����
γ(0)√

is the intercept of the root-
variogram. Top row (A–D) Lake Balaton. Middle row (E–H)Western Channel. Bottom row (I–L) Tagus Estuary. This parameter represents all variation inRrs

not due to measurement point separation.
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between spectral bands (e.g., Cael et al., 2023). This is reflected in the
variogram statistics in Section 5.2 which show similarity between
spectral bands, although band differences can exist (e.g., as shown for
the Western Channel in Figures 10, 11) when there is variation in the
spectral shape of Rrs (Figure 1C). We anticipate that variogram
statistics could have the most pronounced differences between
spectral bands in optically complex waters, where higher
concentrations of suspended sediment and CDOM are present. We
therefore recommend continued evaluation of variogram statistics
across reflectance bands in coastal and inland waters, until more
general conclusions can be drawn on differences between spectral
bands.

6.3 Relationship between intrinsic variation
and uncertainty of Rrs

In this study, we used the metric C̃V(0) � 100
���
C0

√
/�Rrs to

characterize intrinsic variation in in situ Rrs; i.e., all variation not
due to measurement point separation (see Figure 9 for a summary).
This quantity has parallels with the variation in in situ Rrs that would
be measured at a fixed-location, e.g., using a coefficient of variation
metric applied to time series of Rrs in a local time window (Groetsch

et al., 2020), with C̃V(0) representing a survey-wide average of
variability at a fixed location. This interpretation is supported by the
values of C̃V(0) in Figure 9 being broadly comparable with fixed-
location variability from the same radiometric system (Jordan et al.,
2022), where typical coefficient of variation values were ~ 5%–20%
across different measurement conditions.

Measures of Rrs variability provide only a proxy for uncertainty.
Formal uncertainty assessment from fiducial reference measurements
refers to a component-by-component propagation of sources of
uncertainty, traceable to metrology standards (Ruddick et al., 2019;
Banks et al., 2020). Individual sources of uncertainty include
radiometric calibration, sensor characteristics (e.g., straylight, non-
linearity, thermal response), and the uncertainty of the Rrs estimation
method, which is impacted by environmental conditions: i.e., cloud
cover and windspeed (surface roughness). Environmental sources of
uncertainty are typically half of the total uncertainty budget
(Lin et al., 2022), with higher windspeeds and scattered cloud
leading to higher uncertainties. Variable environmental conditions
are therefore likely to be a dominant factor influencing the spread of
C̃V(0) in Figure 9. As co-located wind data were not available to do
this in the current study, investigating environmental controls on
variogram structure (including strictness of quality control) is an area
for future investigation.

FIGURE 10
Frequency distributions of spatial variation in Rrs as measured by f300 � 100( ��������(γ(300)√ − ���

C0

√ )/ �������
γ(300)√

. Top row (A–D) Lake Balaton. Middle row
(E–H) Western Channel. Bottom row (I–L) Tagus Estuary. This parameter represents the percentage of the variation in Rrs associated with spatial
separation at a length scale of 300 m; typical of a medium resolution sensor such as OLCI. Outliers (f300 > 100 %) are not shown.
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6.4 Limitations of variogram analysis and
future work

Due to computing the variogram over a 4 or 6 h time window,
there are temporal sources of variation that are present in the analysis.
These include variation inRrs due to changing solar zenith and relative
azimuth (Mobley, 1999), as well as natural temporal fluctuations in
water constituent concentrations. Casting the analysis in terms of the
normalized water leaving radiance, which adjusts for Rrs variable
zenith angle and atmospheric attenuation (Gordon andWang, 1994),
would give a more accurate picture of how the water properties vary
spatially. Additionally, the variogram structure will be impacted by
temporal variation. For example, in the Tagus Estuary deployment,
the relatively high variation in in situ Rrs at shorter length scales
(Figure 9) is hypothesised to be partially influenced by the ship
revisiting a location where Rrs changed temporally due to tidal
influence (see neighbouring transects collected at different times in
Figure 1F). Temporal Rrs differences between neighbouring transects
is also likely to have an impact on the spatial structure analysis from
Lake Balaton.

An important caveat to the variogram analysis is that the ship
transects do not uniformly sample across the survey area, or each pixel.
Therefore, the variogram structure is anticipated to be specific to the
path of the ship within each deployments, and is likely to be very

different for alternative ship paths in the samewater body. Additionally,
due to the quality control of in situ Rrs (Section 3.2) the effective
temporal sampling frequency is also subject to change, because not all
observations taken along a transect are suitable to derive estimates
of Rrs.

A future research direction is to extend the “static” variogram
analysis to the temporal dimension, and hence enable spatial and
temporal autocorrelation to be considered in a unified way. It is
likely this will require the data sampling strategy to be developed
around the analysis method; i.e., obtaining repeat in situ
measurements at a set of fixed locations that can be used to
robustly window the variograms. Alternatively, a sequence of
images from geostationary satellites which have hourly revisit
times (e.g., Choi et al., 2012) could be used to gain insight.

7 Summary and conclusion

This study quantified the spatial structure of in situ Rrs from
mobile radiometers deployed in coastal and inland water bodies. The
overarching aim was to inform how spatial statistics can be used to
aid in satellite validation practice where ship-transect data is used. A
first focus was quantifying how mobile radiometers can reduce
variability via sub-pixel sampling and a second focus was

FIGURE 11
Frequency distributions of variogram autocorrelation lengths (L). Top row (A–D) Lake Balaton. Middle row (E–H)WesternChannel. Bottom row (I–L)
Tagus Estuary. This parameter represents the maximum distance at which in situ Rrs is considered spatially correlated with neighbouring observations.
Outliers (L > 1,000 m in the top row and L > 3,000 m in the middle and bottom rows) are not shown.
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quantifying spatial autocorrelation, and thereby informing in situ
data selection for match-up analysis.

There were pronounced differences in spatial structure between
the deployments, within each deployment, as well as more subtle
differences between spectral bands. At a 300 m length scale (typical
pixel size of a medium resolution ocean colour satellite sensor) we
showed that typically 5%–35% of the total variation in in situ Rrs was
due to the spatial separation of measurements. For validation of
medium-resolution sensors, mobile radiometers therefore provide a
distinct advantage in generating more spatially representative data
than a fixed platform, reducing the contribution of in situ variability
in the validation process. The autocorrelation length, which informs
an ideal minimum separation distance for in situ Rrs in validation,
ranged from ~ 100–1,000 m. Consequently, validation of high-
resolution sensors (sub 100 m pixel size) requires either
downsampling of in situ data to ensure spatial independence or
for validation statistics to take spatial autocorrelation into account.

In the future, we anticipate that spatial statistics will become
increasingly important for both validation and data integration of
aquatic reflectance across multiple sensor systems, including
spaceborne, shipborne, airborne, and ground-based platforms.
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