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of carbon stored in terrestrial ecosystems. For forests, this is routinely estimated
at the plot scale (typically 1ha) using inventory measurements and allometry. In
recent years, terrestrial laser scanning (TLS) has appeared as a disruptive technol-
ogy that can generate a more accurate assessment of tree and plot scale AGB;
however, operationalising TLS methods has had to overcome a number of chal-
lenges. One such challenge is the segmentation of individual trees from plot
level point clouds that are required to estimate woody volume, this is often done
manually (e.g. with interactive point cloud editing software) and can be very time

consuming.

. Here we present TLS2trees, an automated processing pipeline and set of Python

command line tools that aims to redress this processing bottleneck. TLS2trees
consists of existing and new methods and is specifically designed to be horizon-
tally scalable. The processing pipeline is demonstrated on 7.5 ha of TLS data cap-
tured across 10 plots of seven forest types; from open savanna to dense tropical
rainforest.

. A total of 10,557 trees are segmented with TLS2trees: these are compared to

1281 manually segmented trees. Results indicate that TLS2trees performs well,
particularly for larger trees (i.e. the cohort of largest trees that comprise 50%
of total plot volume), where plot-wise tree volume bias is +0.4 m° and %RMSE is

60%. Segmentation performance decreases for smaller trees, for example where
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1 | INTRODUCTION

Above-ground biomass (AGB) is an important metric that quantifies
the amount of carbon stored in terrestrial ecosystems, and as such
has been identified as an essential climate variable (ECV). However,
accurate quantification of forest AGB is a significant and ongoing
challenge owing to a number of factors, including systematic er-
rors when applying allometry to inventory data (Burt et al., 2020).
To improve the accuracy of AGB quantification in forests, groups
such as the International Panel on Climate Change (IPCC) and the
Committee on Earth Observing Satellites (CEOS) have identified ter-
restrial laser scanning (TLS) as a disruptive technology (Duncanson
et al., 2019; Ogle et al., 2019).

TLS is an active remote sensing technology that generates a de-
tailed 3D point cloud of the surrounding area with centimetre to mil-
limetre accuracy (Newnham et al., 2015; Calders et al. in Duncanson
et al., 2019). A TLS-based approach has been used to estimate AGB
across a range of forest types (Demol, Verbeeck, et al., 2022), for
example; tropical forests (Beyene et al., 2020; Brede et al., 2022;
Burt et al., 2021; Gonzalez de Tanago et al., 2018; Levick et al., 2021;
Momo Takoudjou et al, 2018), temperate forests (Calders
et al.,, 2015, 2022; Disney et al., 2020; Stovall et al., 2017), man-
groves (Feliciano et al., 2014) and trees outside forests (Kiikenbrink
et al., 2021; Van Den Berge et al., 2021; Wilkes et al., 2018). Over
the past decade, area scanned has increased from a few trees to
systematic acquisition across multiple hectares that replicates forest
inventory protocols (Wilkes et al., 2017).

The benefits of TLS based methods are that they are non-de-
structive, capture tree plasticity particularly of large trees (Burt
et al, 2021) and are (mostly) free from errors and assumptions
associated with allometric modelling (Chave et al. in Duncanson
et al,, 2019). When compared to destructive harvest, TLS has been
shown to be more accurate than the application of existing allome-
tries, particularly for larger trees that contribute disproportionately
to plot-level AGB (Demol, Verbeeck, et al., 2022). However, op-
erationalising a plot-level (i.e. 21 ha) TLS workflow as a “turn-key”
solution to produce an AGB product has yet to be fully realised
(Martin-Ducup et al., 2021).

DBH <10cm; a number of reasons are suggested including performance of se-
mantic segmentation step.

4. The volume and scale of TLS data captured in forest plots is increasing. It is sug-
gested that to fully utilise this data for activities such as monitoring, reporting and
verification or as reference data for satellite missions an automated processing
pipeline, such as TLS2trees, is required. To facilitate improvements to TLS2trees,
as well as modification for other laser scanning modes (e.g. mobile and UAV laser

scanning), TLS2trees is a free and open-source software.

above-ground biomass, Forest, FOSS, segmentation, terrestrial laser scanning

A TLS survey of a forest plot to estimate AGB typically involves:
(1) capturing scan data from multiple fixed positions across a plot,
(2) co-register scans to produce a single plot-level point cloud P, (3)
instance segmentation of P into a set of point clouds that represent
individual trees S, (4) semantic segmentation of s € S into wood and
leaf point classes, (5) estimate of woody volume for s € S, for exam-
ple using a Quantitative Structure Model (QSM) approach, and (6)
conversion of volume to AGB via an estimate of wood basic density.

Steps 1-2 have been largely been solved with improvements in
scanner technology and standardised scanning protocols (Calders
et al., 2020; Wilkes et al., 2017). There are also a number of exist-
ing methods for semantic segmentation (Vicari et al., 2019; Wang
et al., 2020) and QSM generation, where s € S are enclosed in a
geometric primitives, for example a set of cylinders (Hackenberg
et al.,, 2015; Raumonen et al., 2013; Stovall et al., 2017). Conversion
of volume to mass is an ongoing challenge for all non-destructive
methods of AGB estimation as wood density varies greatly within
and between trees and geographic regions (Phillips et al., 2019).
Therefore, it is suggested, that from a TLS workflow perspective at
least, the most significant remaining challenge to operational plot
level AGB estimation is the instance segmentation in step 3, that is
ScP.

P is encoded with geometric information of whole-tree struc-
ture, for all trees in the surveyed area regardless of size. If P is of
sufficient density and quality then S can be accurately segmented
and an unbiased assessment of plot-level AGB, with associated un-
certainties, can be produced (Burt et al., 2021; Calders et al., 2015;
Momo Takoudjou et al., 2018). Currently, the most accurate method
for S c P is to manually segment individual trees from their neigh-
bours and other vegetation using interactive point cloud editing
software (Brede et al., 2022; Disney et al., 2020; Gonzalez de Tanago
et al., 2018; Momo Takoudjou et al., 2018). Manually segmenting
trees increases tree- and plot-level estimation accuracy by a factor
of 10 and 3 respectively, compared to existing automated TLS pipe-
lines (Martin-Ducup et al., 2021). However, manual segmentation
can be very time consuming (10's of minutes per tree) as well as sub-
jective and difficult to reproduce or validate. These factors have lim-
ited the number (and provenance) of segmented trees, where total
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segmented trees is limited to 10's (and only in rare cases 100's) of
trees per hectare.

Automated whole-tree instance segmentation methods
have been previously demonstrated (Burt et al., 2019; Krisanski,
Taskhiri, Gonzalez Aracil, Herries, & Turner, 2021; Martin-Ducup
et al., 2021; Tao et al., 2015; Wang et al., 2021). Tao et al. (2015)
presented a method where a graph is constructed through clus-
tered P, then using a Dijkstra shortest-path method (Dijkstra, 1959)
clusters are mapped to a base node resulting in segmented S. They
applied their method to TLS data collected in three forest patches
and reported high accuracy for number of trees correctly identi-
fied and completeness of extracted trees. Subsequent methods
have built upon these graph based methods and have been applied
in different forest types such as Schelorphyll, coniferous and trop-
ical forests (Martin-Ducup et al., 2021; Wang et al., 2021). Burt
et al. (2019) presented a rule constrained clustering with proxim-
ity testing to segment trees in a tropical forest plot; this method
also requires an allometric assumption of DBH to crown height
and extent. The Forest Structure Complexity Tool (FSCT) (Krisanski,
Taskhiri, Gonzalez Aracil, Herries, Muneri, et al., 2021) is an end-
to-end workflow that generates plot level estimates of structure
parameters from laser scanning data. FSCTs innovative approach
combines deep-learning powered semantic segmentation which is
followed by a rule constrained cluster based instance segmenta-
tion. These methods have shown promise in demonstration plots,
this paper aims to build on these and present a method that is
scalable and is applicable across forest types.

There are a number of challenges that can hinder achieving
sufficient quality of Sc P with an automated workflow (Demol,
Verbeeck, et al., 2022). These include factors attributable to scan-
ning protocol and scanner specification, such as scanner type and
optics (Calders et al., 2020; Newnham et al., 2015), sufficient sam-
pling density to minimise occlusion (Wilkes et al., 2017), co-registra-
tion accuracy and co-alignment errors (Demol, Wilkes, et al., 2022)
and post-processing computational constraints, for example large
data volumes (data volumes are typically >65Gbha™). Further, au-
tomated segmentation also needs to be sensitive to forest demogra-
phy and composition where trees in a plot can range in size (height,
diameter, etc.) over orders of magnitude, neighbouring crowns may
intersect, parasite species such as lianas could be present (Moorthy
et al., 2019) and understorey vegetation maybe dense.

To address the interoperability and scalability challenges of au-
tomated tree segmentation from plot-level point clouds, we present
TLS2trees. TLS2trees is a set of Python command line tools that are
free and open-source software (FOSS) and are specifically designed
to be horizontally scalable (Kissling et al., 2022), for example, on a
High Performance Computing (HPC) facility. The output is a set of
segmented point clouds of individual trees, where points are clas-
sified into leaf and wood components. Below, TLS2trees is demon-
strated at 10 forest plots that cover seven forest types; from open
savanna to dense tropical forest. Additionally, segmented point
clouds are compared to a set of 1053 manually segmented reference
trees.

Methods in Ecology and Evolution B

ECOLOGICAL
SOCIETY

2 | MATERIALS AND METHODS
2.1 | Data acquisition

The TLS data used here were captured from 10 plots across seven
different forest types (Table 1). At each plot, data were acquired
with a RIEGL VZ-400 scanner (RIEGL Laser Measurement Systems
GmbH, Horn, Austria) where a set of scans | were captured on a reg-
ular grid (Kissling et al., 2022) or, for RUSH plots, in a star formation
(Calders et al., 2015). At each scan position two scans were acquired
where the scanner rotation axis was orientated perpendicular then
parallel to the ground surface. Manually-placed reflectors were used
as tie points between each scan position to aid co-registration. Post-
processing was done using RiSCAN Pro software (versions 2.1-2.9)
where individual scans were co-registered to a common coordinate
system on a per plot basis. Once registration was complete, a set of
4 x4 transformation matrices M were exported for each plot.

2.2 | TLS2trees

The TLS2trees software package consists of a set of Python com-
mand line tools. TLS2trees can be considered Free and Open Source
Software (FOSS) and is licensed under Creative Commons BY 4.0
(https://creativecommons.org/licenses/by/4.0/). Processing is hori-
zontally scalable, that is can be scaled across multiple computing
nodes (Kissling et al., 2022) where this is achieved using a tile-based
workflow. The workflow is also modular so new or additional meth-
ods can be added or existing steps replaced. For more information
and code see Wilkes et al. (2023).

This section presents a detailed description of the workflow. As
is shown in Figure 1, a coregistered global point cloud P is passed
through the TLS2trees pipeline to generate a set of segmented
tree point clouds S. The pipeline is presented in three steps: (1)
pre-processing (Section 2.2.1), (2) semantic segmentation (Krisanski,
Taskhiri, Gonzalez Aracil, Herries, & Turner, 2021) where points
are classified into different components (Section 2.2.2), and (3) an
instance segmentation where P is segmented to a set of individual
trees S (Section 2.2.3). Once S C P, structure traits, such as total
woody volume, are computed via TreeQSM (Section 2.4). Exposed
workflow parameters for each step are listed in the Appendix O. It
should be noted that, although data processed for this manuscript
was only captured with a RIEGL scanner, the workflow can be

adapted to other scanner types, for example Wielgosz et al. (2023).

2.21 | Step 1. Preprocessing

The workflow starts at the point of a set of individual scans | and
corresponding rotation matrices M; the first step is (I, M) = P. During
(I,M) = P, | are clipped to the plot extent determined by M, plus a
10m buffer (Martin-Ducup et al., 2021). The buffer is required to
capture the crowns of trees that have germinated inside the plot but
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TABLE 1 TLS plots.
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#Trees manually
segmented

65

Area
(ha)

Stem density ha™
(>10cm dbh)

221

Citation

Scan pattern

Forest type

Year Country

Plot (subplot)

RUSH

Calders et al. (2015)

Dry sclerophyll Box-lronbark forest

Australia

2012

34
31

5 scans

0.3

220°

RUSHO06
RUSHO7
WYT
NOU
KOG
CALI

5 scans

0.3

2222
379

Calders et al. (2018, 2022)
Burt et al. (2019)

Unpublished

559
155
118
156
25

20m grid

Temperate mixed deciduous (leaf-off)

UK

2015

501° 10m grid

Lowland tropical rainforest

French Guiana

Ghana
USA

2016

193¢ 20m grid

Guinean woody savanna

2016

Disney et al. (2020)

168-996¢

Coastal Redwood

2018

10m grid

CALI-01

12.5m grid 43

10m grid

0.3

CALI-02

WILKES ET AL.

88

CALI-07
MLA
AEP

Unpublished

199
29

10m grid

Tropical lowland dipterocarp forest 403¢

Malaysia

2019

Unpublished

10m grid

0.6

1015¢

Disturbed complex notophyll vine forest

Australia

2019

Murphy et al. (2014).
bChave et al. (2008).
“Malhi et al. (2021).
dFujimori (1977).
€Graham (2006).

where the crown overhangs the plot boundary. P is then projected
onto a 10mx 10m grid to produce a set of tiled point clouds T where
individuals tilest € T are the processing unit for subsequent steps. A
tile index of T is also generated to map the spatial location of neigh-
bouring tiles.

As is inherent with TLS data, objects closer to the scanner are
over sampled whereas objects further away (e.g. the top of the
canopy, or at the edge of a scanned region) can be undersampled
(Burt et al., 2019). To mitigate the impact of this difference and
to reduce file size, P is downsampled to a common point den-
sity using PDAL's Voxel Center Nearest Neighbour method (PDAL
Contributors, 2020) where here a voxel edge length of 0.02m is
used.

2.2.2 | Step 2: Semantic segmentation

Semantic segmentation is the process of labelling points into ho-
mogeneous groups; here this is into classes of different biophysi-
cal components, for example ground, leaf, wood and so forth.
Previous workflows have classified points simultaneously with or
after instance segmentation (Vicari et al., 2019; Wang, 2020; Wang
et al., 2020). However, instance segmentation can be hampered by
the presence of leaves that reduce gaps between tree crowns, or
cause neighbouring crowns to intersect.

Here we use the FSCT semantic segmentation method (Krisanski,
Taskhiri, Gonzalez Aracil, Herries, & Turner, 2021) prior to instance
segmentation (Krisanski, Taskhiri, Gonzalez Aracil, Herries, Muneri,
et al., 2021). The FSCT semantic segmentation uses the Pointnet
deep-learning method (Qi et al., 2017) applied via Python's PyTorch.
Using a pre-trained model, P is classified into 4 classes; ground
(G), woody (W), leaf (L) or coarse woody debris (X) (Figure 1b and
Equation 1)

P=Ps+ Py +P +Pyx (1)

The semantic segmentation is applied to t + t, € T, b refers to neigh-
bouring tiles used to generate a 5m buffer that mitigates any edge ef-
fect; once the semantic segmentation is complete only the class label
for t are retained. It should be noted that the pre-trained model has not
been modified since its initial release by Krisanski, Taskhiri, Gonzalez
Aracil, Herries, and Turner (2021), that is the model is not trained for
forest types specific to Table 1.

2.2.3 | Step 3: Instance segmentation
Instance segmentation is the process of identifying and segment-
ing individual trees S = {sy,s,, ...,5, } encoded in P, that is Py, — S.
Here, a new two step process is presented where (1) P, are grouped
into a set of individual woody stems S (Figure 3c), then (2) P, are as-
signed to s € S (Figure 3d).

Both steps use a Dijkstra's shortest path method (Dijkstra, 1959)

where a graph G = (N,E) is constructed; N are a set of nodes and
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FIGURE 1 TLS2trees applied to a
70mx 20 m strip of forest in plot RUSH
where (a) P is coloured by calibrated
reflectance, (b) semantic segmentation
into four classes using a method adopted
from FSCT Wielgosz et al. (2023), (c)
instance segmentation where only points
classified as wood are displayed and

(a) Reflectance
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segmented trees are coloured randomly
and (d) instance segmentation where leaf
points are attributed to individual stems.
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E are a set of edges that connect N. A path p can be defined that
connects two nodes (n,n,) € N, where p = [n,ny,n,, ... n; for each
(n, nk) pair there are multiple solutions to p. To determine the short-
est path between the pair (n,n,) a weight function w:E - R is de-
fined (Equation 2; Tao et al., 2015).

K
w(p) = Z w(ni_q,n;) (2
P

Previous methods have constructed graphs where N is a set of vertices
in R® and w are the Euclidean distances between N (Brede et al., 2022;
Tao et al., 2015; Vicari et al., 2019; Wang et al., 2021). Therefore the
shortest path min{w(p): n-— nk} is analogue to a vascular system (Tao
et al., 2015; Figure 2 left). However, experimentation found that if one
or more tree crown envelopes intersect, the shortest path could be
to the base of a smaller suppressed tree, resulting in a poor instance
segmentation (Figure 3). To solve this, a different approach is taken to
compute w.

To define a graph G, for wood classified points Py, a set of nodes
Ny, are first generated. To do this, P, is sliced horizontally (relative
to ground normalised height calculated from Pg) at intervals of 0.2 m;

slicing is required to regularise the distance between clusters. Then
for each slice, DBSCAN (Ester et al., 1996) is used to map P, to a
set of clusters C, (Figure 2). DBSCAN parameters are dependent on
acquisition and point cloud characteristics; after downsampling an
eps value of 0.1 m and minimum _sample of 20 points are used here.

For each cluster ¢ € Cy,, a convex hull is computed generating a
set of hull vertices V,, where V,, c C,, C Py, (Figure 2 right). A convex
hull retains information on the occupation of space and proximity to
neighbouring clusters, whereas collapsing a cluster to a single vertex
does not. A k-nearest neighbour search is then performed on V,, to
identify vertices in neighbouring clusters; within cluster connections
aredisregarded. The Euclidean distance where min(dist(VWc M ))
is used as the edge weight function w (Figure 2 right). w(p)xis theyre—
fore determined by distance between cluster edges (i.e. connec-
tivity) as opposed to distance between cluster centroids (i.e. path
length). A parameter is available to set allowable maximum distance
between VWc and VWc (Appendix 0).

Dijkstra sxhortest [y)ath analysis requires a subset of source nodes
n, ¢ Ny, from which to calculate distance from. Here n, are gener-
ated by taking a slice through Cyy |24, 2,]; 2, and z, are upper and lower
bounds of the slice relative to ground height and the median height
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of c € Cyy is used to determine intersection. RANSAC cylinder fitting
is then used to identify stem bases from noise such as small branches
or misclassified leaves (Burt et al., 2019). It is important to attempt
to identify all stems, regardless of diameter, otherwise smaller stems
can be erroneously included into larger neighbouring stems; here a
lower limit of @ = 0.05 m is used for stem detection.

Once the graph Gy, is generated, the Dijkstra shortest path
method is used where multiple source nodes n, can be defined. The
output of the shortest path analysis is a disjoint union of undirected
acyclic graphs. Then Ny, — C, and therefore P, can be mapped to a
set of individual stems S.

Once step 1 is complete, another graph G, is created that maps
leaf classified points P, (and Py, that are not attributed to a stem) to
s € S. N, are computed by first mapping P, to a set of voxels C; with
an edge length of 0.5m; C, is equivalent to the clusters C,, above. A
set of 6 vertices are generated for c € C; where a vertex is assigned
to the centroid of each voxel facet; this results in V| which are equiv-
alent to V|, above. E; and corresponding w are determined by calcu-
lating the Euclidean distances to neighbouring v € V,. A set of source
nodes n, C Ny are taken from Gy, where n € Ny, have no children,
that is nis a branch tip; n, are already associated with s € S. Shortest
path analysis is again used to connect N, with n, and therefore assign
P toses.

To run the instance segmentation, each t € T is buffered by
neighbouring tiles (see Table 2 for example buffer size). Once com-
plete, Sis pruned so that only trees whose germination point is within
t are retained; further, a first-pass filter to remove trees where DBH
<0.1m (as determined by the RANSAC cylinder fitting) is applied.

2.3 | Manually segmented trees

A total of 1281 trees have been manually segmented in previous
studies (Table 1). Methods for selecting trees to manually segment
from P differed for each plot. For RUSH plots, trees were selected
by the Victorian State Government to update statewide AGB allom-
etry, where a subset of trees were harvested across a range of sizes
and species (Calders et al., 2015; Murphy et al., 2014). For WYT, all
trees within a central 1ha plot were segmented from a larger 6 ha
scanned area, this reduces edge effects inherent at other plots.
Individual tree point clouds were also split into >1 tree if bifurca-
tion occurred <1.3m (Calders et al., 2018). All trees were segmented
from NOU where DBH >0.2m (Burt et al., 2019) and KOG where
DBH >0.1m. For AEP and MLA plots, tree species that comprised
80% of total basal area were selected and a 2-3 trees from each
species were segmented (Shenkin et al., 2020). It should be noted
no trees have been specifically manually segmented or modified for
this manuscript, that is trees were segmented before the inception
of this method.

Trees from plots RUSH, MLA, AEP and KOG were manually
segmented from the plot-level point cloud using either RiSCAN
Pro or CloudCompare v2.X (https://www.danielgm.net/cc/). Data
from WYT (Calders et al., 2018, 2022), NOU (Burt et al., 2019) and
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Euclidean Convex hull
0.191 m 0.020 m
0.196 m 0.022 m
0.213 m 0.022 m

1
0.206 m : 0.023 m

1

0.206 m 1 0.022m

Path Length = 1.01 m Path Length = 0.11 m

Point cloud vertex ® Hull vertex @® Cluster centre

FIGURE 2 A comparison of methods for the construction of
graphs through point clouds. Displayed are clusters (vertically
orientated) along a stem, adjacent clusters have been exploded

so connections between clusters are clearly visible. For the
“Euclidean” method, edge weights (values to the right) are
calculated as the Euclidean distance between cluster centres; this
is synonymous with path length (Tao et al., 2015). For the “Convex
hull” method, edge weights are calculated as the distance between
the vertices of neighbouring convex hulls (i.e. connectivity).

CALI (Disney et al., 2020) were first segmented with treeseg (Burt
et al., 2019), after which trees were modified manually, for exam-
ple removing overlapping crowns. During this process all trees were
manually verified for commission and omission errors by an experi-
enced operator.

After segmentation, all tree point clouds underwent a seman-
tic segmentation into leaf and wood points using the TLSeparation
Python package (Vicari et al., 2019); the exception being WYT where
data were captured in leaf-off conditions. Using the wood classified
point cloud only, per tree structural traits were then modelled using
TreeQSM (see Section 2.4).

2.4 | Quantitative structure models

Quantitative Structure Model (QSM) methods enclose the wood-
only point clouds in a set of geometric primitives, for example a cylin-
der. This allows for the estimation of morphological and topological
traits such as volume, length and surface area metrics (Raumonen
et al., 2013). TreeQSM (version 2.3.1, Raumonen, 2019) is used to
generate a QSM for all manually and automatically segmented trees.
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Correctly attributed points
® Wrongly attributed points

Manually segmented by
Calders et al. (2015)

Correctly segmented
with convex hull method

1 2 3

Segmented with Euclidean distance method

FIGURE 3 A tree segmented using (a) manual segmentation by Calders et al. (2015) (b) segmented using the convex hull method of
TLS2trees and (c) segmented using a Euclidean distance method. Grey boxes A and B highlight branches that have been wrongly attributed to
Trees 2 and 3, respectively [black points in (c)]. Trees 2 and 3 (c) can be seen at the base of the manually segmented tree [(grey points in (a)].

Leaf points identified in Panel a using TLSeparation (Vicari et al., 2019).

Since the version of TreeQSM and iterated parameter space may dif-
fer from previously published versions, it should be noted that mod-
elled values for manually segmented trees may also differ.

A set of TreeQSM parameters control the overall fit of cylinders, fol-
lowing Raumonen et al. (2013) three parameters are iterated over here;
PatchDiam1 = [0.20, 0.22, ... ,0,3], PatchDiam2Min = [0.5,0.7, ,0.15]
and PatchDiam2Max = [0.15,0.17,...,0.25]. TreeQSM is run in Octave
(Eaton et al., 2020) where, for each parameter set permutation 5
models are generated. This results in a total of 625 models per seg-
mented tree. An optimal model is then selected by minimising the
point to cylinder surface distance (Burt et al., 2019; Martin-Ducup
etal., 2021).

2.5 | Comparing tree pairs

To assess the accuracy of segmentation, a corresponding pair of
trees is identified in the manually and TLS2trees segmented sets.
Pairs are identified by firstly taking a slice through all segmented
trees between 2 and 3m and computing the centroid of the slice.
Tree pairs are then matched by selecting a tree from the TLS2trees
data set that mostly closely matches the position of a manually seg-
mented tree. Trees where more than one target tree is within 1m of
the reference tree or where a match is >2m from the reference tree
are disregarded from further analysis.

For matched tree pairs, QSM and point cloud metrics are com-
pared. QSM metrics include total woody volume (m3), trunk volume
(m®), total branch length (m) and DBH (m). Point cloud metrics include
leaf-on crown height (m), leaf-on projected crown area (m?), wood/
leaf point classification ratios and Jaccard Index metrics. The Jaccard
Index (Jaccard, 1912) is a measure of spatial concordance; values
range from 0%-100% where 0% and 100% indicate no overlap and
complete overlap of point clouds accordingly (Brede et al., 2022).
A Weighted Jaccard Index is calculated here by first voxelising the
segmented point clouds with an edge length of 0.5m, a weight w is

then assigned to each voxel corresponding to the number of points
per voxel. Then for each tree pair the weighted intersection and
union of voxel sets is computed using Python's sklearn (Pedregosa
et al., 2011) jaccard_index method.

Owing to the unbalance in number of segmented trees per plot,
when deriving metrics for all matched pairs, a bootstrap sampling
approach is taken where for each iteration a sample of 10 trees per

plot is drawn.

2.6 | Computing infrastructure and software

Insufficient computing infrastructure can be a bottle neck to pro-
cessing large geospatial data sets, such as point cloud data. TLS data
can generate particularly large data sets for relatively small regions
of interest when compared to other laser scanning instruments, for
example airborne. Therefore, for a new TLS data processing pipeline
to be operationalised it would ideally be capable of being horizon-
tally scaled.

Horizontal scaling is achieved in the semantic and instance seg-
mentation steps of TLS2trees by mapping P to a set of tiles T; then
t € T are run independently and in parallel. To process the plots in
Table 1, the UK's Natural Environment Research Council's (NERC)
JASMIN computing facility and the NERC Earth Observation Data
Acquisition and Analysis Service (NEODAAS) MAssive GPU for
Earth Observation (MAGEQ) cluster were used. The JASMIN facil-
ity (https://jasmin.ac.uk/) is designed for data intensive computing
and comprises a large volume of storage combined with general
purpose batch computing capability. The MAGEO cluster (https://
www.neodaas.ac.uk/) is a specialised system designed for earth ob-
servation data and comprises 40 GPUs, 200 GPU cores and 0.5PB
of fast storage. Data processing requirements and times for a subset
of plots are presented in Table 2.

All steps use Python as a base programming language, this in-
cludes common scientific libraries such as Numpy, Scipy and Pandas
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TABLE 2 Processing steps and benchmark times.
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MLA

RUSH NOU

Software

Parallelisable

GPU/CPU

0.3

Plot area (ha)

242

242

10
2.4

Number of scans

107.8

65.7

Raw data size (Gb)
Preprocessing

Within machine 10x CPU used for benchmark Python, PDAL

CPU

67.7M
7M

33.2M
5.5M

400K

Raw points per tile

350K
47 s

Downsample points per tile

Wall time

Semantic segmentation

1h 20min

45min

Python, PyTorch

TRUE

GPU

20min

13 min

1min
4.6

Mean CPU time per tile

WILKES ET AL.

82.3

39.7
4h

Maximum RAM usage per tile (gb)

Wall time

3.5h

11 min

Python, NetworkX

TRUE

CPU

Instance segmentation

7x7
4h 50min

5x5

3h

3x3

Buffer (tiles)

16 min
2.8

Mean CPU time per tile

129.8
18h

51.6

Maximum RAM usage per tile

Wall time

16h

1h 30min

(see Wilkes et al. (2023) for full list) which are managed with the
conda package and environment manager. In addition, the pre-pro-
cessing step also uses the PDAL library (PDAL Contributors, 2020),
semantic segmentation uses PyTorch libraries (version 1; Fey &
Lenssen, 2019) and instance segmentation uses Networkx (Hagberg
et al., 2008).

3 | RESULTS

3.1 | Plotwide segmentation
A total of 10,557 trees were segmented from 10 plots, of which
3908 trees were inside the plot boundary and have a DBH >0.1m
(Table 3). The tallest tree segmented is a 78.9m dipterocarp from
MLA and the largest tree by volume is a 211 m® coastal redwood
from CALI (CALI-A, Figure 3). Trees from WYT have far longer total
branch length where the longest is 8.5 km, this compares to the long-
est tropical branch length of <2km. This could be as a result of a
trees ontogeny, for example repeated pollarding followed by aban-
donment, or a systematic method bias where aggressive semantic
segmentation misclassifies smaller branches as leaves for evergreen
trees.

Estimated segmented stem density ranges from 247 stemsha™*
at the RUSH plots to 761 stemsha™ at the AEP plot (Table 3).
Compared to reported stem density values (Table 1) these are +10%
for RUSH, WYT, NOU and MLA,; larger discrepancies are evident at
AEP (-25%), KOG (+39%). Fujimori (1977) reported a large interval
for stem density in CALI-type (coastal redwood) plots as a function
of succession; values reported here fall within that range.

Figure 4 shows per plot the largest segmented tree point clouds
(by total woody volume); for each tree, both wood and leaf points are
displayed (and coloured accordingly). The Supplementary Material
presents all trees segmented for plots where TreeQSM computed
DBH >0.1m. In general, tree crowns appear complete with only small
omission and commission errors evident, for example small twigs/
branches from neighbouring trees. The crowns of large tropical trees
(plots MLA and NOU) are well segmented, even capturing the idio-
syncrasies of crown morphology, for example tree MLA-Q has bro-
ken and repsprouted (top row Figure 4). Along the length of some
tree stems there are erroneous leaf points that are either attributable
to lianas or crowns of smaller mid and understorey trees (e.g. trees
NOU-A and MLA-B in Figure 4). As described in Section 2.2.3, leaf
points P, are connected to a stem via branch tips, this would suggest
that graph connections have been made to branch points surround-
ing the stem. It should be noted that P, are not used to model volume.

TreeQSM appears to have overestimated the total volume of a
few trees (e.g. trees KOG-B, RUSH-AG, AEP-H, AEP-J and NOU-L
in Figure 4). This is a result of TLS2trees derived commission errors
where small disconnected woody structures (e.g. shrubs) have in-
flated the size of cylinders used to estimate volume, particularly at
the base. Further, a number of trees in the KOG plot have numerous
smaller stems at the base of each tree (see Section 4).
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TABLE 3 Summary of TLS2trees segmented trees, only trees that are within the plot boundary and DBH >0.1 m are considered. 99th percentile is used to remove outliers.

Projected crown area

(m?)

DBH (m)

Trunk volume (m?) Branch length (m)

Total volume (m®)

Height (m)

99th

Median

99th Median 99th Median 99th

Median

1S Sha™ Median 99th Max Median 99th

Plot

1.3
1.0
1.2
1.6
3.0
1.5

0.9

0.3

594.8
3570.6

54.0
337.7

2.0
5.2

11.7

0.2

4.2
20.9

0.3

156.7
291.4

24.5 26.1 15.8

2.5

1

247.0
393.0
521.0
268.9

162
393
547
292

RUSH

0.3

0.5

1.3
0.4

36.1
3

30.5

27.0
46.0

18.4
1

WYT
NOU
KOG
CALI

0.2

605.3

35.8

0.3

58.9 6.6 338.7 15.9
228.6

7.9
6.4

0.3

1166.8

41.6
111.0

54
75.4

0.2

10.3

0.4

26.7 24.2

25.7

0.5
0.3

1758.0
1066.1

1.8
0.3

85.7

2.3
0.4

283.9

11
0.2

72.9
19.8

68.4

23.9

326.4
3711

804
401
462

33.6

32.9

35.9

543.3

78.9

65.1

15.8

MLA
AEP

0.2

24.3 270.7

2.4

0.1

3.3

0.2

128.1

11.5 22.5 23.4

760.7
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3.2 | Comparison with manually segmented trees

A total of 1053 segmented trees were successfully paired to a
manually segmented tree, this represents a match rate of 82%
(Table 4). For the majority of plots a corresponding tree pair is
found for >90% of trees and for all plots a pair is found for all seg-
mented trees that constitute the largest 50% of total segmented
volume. The lowest rates are observed at WYT: see Section 4 for
discussion.

Scatter plots that compare key QSM and point cloud metrics
are presented in Figure 5. TLS2trees derived point clouds result in
TreeQSM total woody volume estimates (a precursor for estimating
AGB) with a per plot bias of +0.4m® and RMSE of 0.5-3m?®. The
exception being CALI where total woody volume bias and RMSE
are -1.4 and 16.7m® (%RMSE =70%) respectively. Segmentation
of smaller trees by TLS2trees is less accurate, this results in a
TreeQSM derived per tree total woody volume %RMSE of >1000%.
However, when considering the largest trees that constitute 50%
of total woody volume, %$RMSE of per-tree woody volume reduces
to 60%.

Presented in Figure 6 is a comparison of per plot summed total
volume; summed volume from TLS2trees segmented trees were
+10% that of manually segmented trees for all plots. The exception
is the RUSH and KOG plots where an 18% and 30% overestimate in
total woody volume is evident.

If using an existing allometric equation to estimate tree volume
or AGB then other structure metrics are important, for example
DBH and tree height. Tree height is estimated with an %$RMSE of
27% where the largest errors were at the tall tree sites (MLA and
CALI) as well as AEP. For AEP, tree height is underestimated owing
to semantic segmentation errors near the base of trees where
wood points were classified as leaf, this also impacted estimates of
DBH. Crown area is consistently overestimated by TLS2trees seg-
mented trees with a bias of 20m?. DBH is also overestimated by
TLS2trees segmented trees with a bias of 0.04 m and an %RMSE of
100%, this reduced to <40% when considering the cohort of larg-
est trees. Inflation of crown area and DBH by TLS2trees segmented
trees are attributed to outlier points that increase projected area;
it is suggested that a method to filter outlier points could improve
results.

Segmented tree pair similarity is tested using the Jaccard Index
(see Section 2.5). Mean Jaccard Index results for all trees is 75%; this
indicates that a pair of trees shared 75% of the voxel space (weighted
by point density; Table 4). Differences were predominantly caused
by the foliage around stems (e.g. top row Figure 4). Considering all
points, a Jaccard Index of >90% is evident at 3 the least densely
stocked plots the sites. Jaccard index values increase for all plots
when considering only the largest trees that comprise 50% of total
woody volume and are generally greater than 75% (except CALI
plots; Table 4). Trees at AEP performed poorly when considering
Jaccard Index values, with a median score of 13% increasing to 75%
when considering the 7 largest trees; it is suggested this is again due
to a poor semantic segmentation.
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FIGURE 4 The largest trees (by volume) segmented using TLS2trees for different forest types. Points are coloured leaf or wood

components as classified during the semantic segmentation step.

Considering wood and leaf point voxel occupancy (Table 4),
the Jaccard Index values were lower than for all-points values.
This indicates that there is a mismatch between wood/leaf point
segmentation methods. For example, at MLA 67% of points were
classified as leaf using TLSeparation whereas 91% of points were
classified as leaf using the deep-learning segmentation (Table 4).
This also impacts total branch length (Figure 5e) where TLS2trees
significantly underestimates length compared to manually seg-
mented trees.

4 | DISCUSSION

TLS methods are capable of generating accurate estimates of tree
and forest AGB. Operationalising TLS workflows could therefore

have implications for activities including National Forest Inventories
(NFI) (Liang et al., 2018); measurement, reporting and verification
(MRV) protocols; benchmarks; and reference datasets for AGB fo-
cused satellite missions (e.g. BIOMASS and GEDI; Chave et al., 2019)
and new or updating allometry (Disney et al., 2020; Stovall
et al., 2017). However, achieving operationalisation of TLS methods
has proved challenging for a number of reasons. In particular, and the
focus of this work, is the labour-intensive and time-consuming effort
to accurately segment individual trees from plot-level point clouds
which have caused a significant processing bottleneck. To address
this issue, here we have presented TLS2trees, a FOSS and horizon-
tally scalable Python-based pipeline for segmenting individual trees
from plot-scale TLS point clouds.

Manually segmenting trees from plot-level point clouds is cur-
rently regarded as the most accurate method, and it is suggested
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TABLE 4 Matched tree pair point clouds comparison between manually and TLS2trees (T2t) segmented trees.

Largest matched trees that contribute 50% of total volume

All trees

Points (%)

Jaccard index (%)

N

Points (%)

Jaccard index (%)

Leaf Wood

T2t

Leaf Wood Leaf

All

Wood
T2t

Wood
Man

Wood Leaf Leaf
T2t

Leaf

All

Wood T2t

Man

points points Man

points

points points Man

points

%N

N

PLOT

37.74

62.26 13.13

86.87

77.21

86.89

93.5

33
39

37.74

65 100 93.5 86.89 77.21 86.87  62.26 13.13

RUSH

95.68
84.02

91.47
67.51

66.7

373
153
112

WYT
NOU
KOG
CALI

20.62

25.43
41.88
22.26
32.32
31.31

79.38
68.12

74.57

72.39
77.55

47.74
81.04

47.92

24

11.69
30.79

17.99
41.35
22.42

82.01 88.31

58.6

61.25
70.19

46.72

98.7

31.88
257

58.12

92.64
71.21
84.49

20
78

69.06
72.62
90.59

75.2
48.05

90.1

94.9

74.3

77.74
6

65.2

27.38

77.58
66.71

93.6 73.24 63.8
49.61

146

15.46
10.46

83.41

3.1

68.2

53.67
39.18

12
7

6.87
9.86

15.5

29.33
33.01

27.02
46.06

37.11

88.9

177
27

MLA
AEP

all

82.31

50.08

63.63

76.65

89.03
80.78

60.07
71.45

4.41
46.08

13.34

74.43

93.1

26.06

59.66

82.2

1053
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that this is unlikely to change. However, such approaches are not
reproducible and lack the traceability or transparency that would
be required for carbon accounting and reporting programmes.
Manual segmentation is also not scalable, where, along with is-
sues of subjectivity, operator fatigue may degrade results. An
automated approach, such as TLS2trees, aims to address these
issues of reproducibility, subjectivity and scalability. However,
routinely segmenting many hundreds of trees per hectare pres-
ents additional challenges, for example, quality assurance (QA). As
seen here, different forest types present different challenges in
terms of generating an accurate result and therefore an applica-
tion focused QA strategy is suggested. For example, if the metric
of interest is AGB, a strategy of sampling the largest trees, that
disproportionately contribute to plot level AGB, as well as a subset
of smaller trees across the AGB range should identify systematic
issues.

TLS2trees performs well across a range of forest types, from open
savanna (KOG) to tall tropical rainforest (MLA), the workflow also
performs well within plots segmenting trees across a range of sizes
(Table 3). This is despite the fact the semantic segmentation base
model is only trained on a small area of Australian and New Zealand
forest (Krisanski, Taskhiri, Gonzalez Aracil, Herries, & Turner, 2021)
and TLS2trees model parameters were not adjusted for forest type
(Appendix 0). Retraining the semantic segmentation model to be for-
est type or sensor specific has yielded improved results (Wielgosz
et al., 2023); however, we suggest that using the FSCT base model is
sufficient for a first pass. We would also like to stress that TLS2trees
is a work in progress and there are a number of aspects of TLS2trees
that could be improved. We hope this can be achieved through a
user community (e.g. see Wielgosz et al., 2023) and have made the
source code open-source to facilitate this.

The success of each step presented in Figure 3 depends on the
success of the previous step. For example, as seen at the AEP plot,
misclassification of wood points as leaf points around the base of trees
caused errors in the instance segmentation. Similarly, QSM methods
such as TreeQSM require a “clean” point cloud with minimal noise
(Raumonen et al., 2013) and this is not always achieved, for example
inclusion of small neighbouring stems leads to volume inflation. Model
parameterisation will be forest type and scanner specific, for exam-
ple, the height at which ——-find-stems-boundary (Appendix 0) is
taken will differ depending on tree height and height and density of
the understorey. It is therefore suggested that improved results can
be achieved through an optimisation (Wielgosz et al., 2023) or heu-
ristic approach where model parameters are tested on individual tiles
before scaling up. Another approach could be to test different param-
eterisation in a simulated forest, for example a comparison of semantic
segmentation methods (Morel et al., 2020).

One particular aspect where TLS2trees performed poorly is
with the segmentation of smaller trees. Example errors include
commission errors where multiple stems are grouped into a sin-
gle tree or omission errors where smaller stems are missed. Again,
a different parameterisation of TLS2trees may improve perfor-
mance. An example is presented in Figure 7 where a change in
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--maximum-cumulative-gap reduces the number of erroneous
stems at the base of the tree; however, if the parameters is re-
duced too far then portions of the crown are removed. Instrument
limitations should also to considered when resolving smaller fea-
tures, where laser beam and scanning characteristics can limit ca-
pability (Demol, Wilkes, et al., 2022). An example of the impact of
the smallest trees is evident at WYT where total volume %RMSE
is 2000% when compared to manually segmented trees. However,

if considering only the largest trees that contributed 90% and 50%
to total volume, %RMSE reduced to 50% and 25% respectively.
Further, matching pairs of trees was a challenge at WYT where cop-
piced stools that forked below 1.3 m were often regarded as a single
tree by TLS2trees; whereas they were manually extracted as indi-
viduals by Calders et al. (2018). A suggested solution to improving
instance segmentation for small, forked trees is to perform a further
instance segmentation based upon topological information derived
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from the QSM. The output from TLS2trees is a point cloud file for
each individually segmented tree; therefore any tree can be man-
ually edited using software such as CloudCompare (https://www.
danielgm.net/cc/).

Considering the scalability of TLS2trees there may be a number
of options for improving code and routine efficiency. For example, a
10m x 10 m processing unit (see Section 2.2.1) was chosen to allow
high compute parallelisation of 1ha plots; however, this may not be

optimal for all forest types and processing architectures. Further, a
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total woody volume (m?)
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FIGURE 6 A comparison of per plot summed woody volume for
manually and TLS2trees segmented trees.
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maximum cumulative gap = 0.2 m

maximum cumulative gap = 1.0 m
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high tile edge length to area ratio increases the likelihood of dupli-
cate segmented trees. Other options for improved efficiency include
larger vertical slice (and therefore reduced number of clusters) in the
instance segmentation step (see Section 2.2.3) may improve com-
pute times. Here, TLS2trees was run on a state-of-the-art computing
facility that may not be available to all groups. An alternative option
would be to run on a commercially available cloud computing service
(e.g. Amazon Web Service or Microsoft Azure), to facilitate this we
have provided a containerised version of TLS2trees.

Lastly, although the name TLS2trees implies the workflow is lim-
ited to the processing of just TLS data, we suggest that the frame-
work presented here could be applied to other laser scanning modes.
The horizontal scalability functionality, built in to TLS2trees, is well

suited to the large area acquisitions possible with airborne platforms.

5 | CONCLUSION

There is an estimated 260 ha of plot-level TLS data collected from
forests across the globe (pers. comm. Dr. Atticus Stovall, NASA,
22nd November 2022); processing this data archive could yield
upwards of 260,000 individuals trees. The biophysical and eco-
logical insight that could be drawn from this data, including and
beyond the estimation of AGB, could be significant. Further, there
are a number of other potential uses for this data, including ac-
curate 3D representations of forest plots in radiative transfer
Calders et al. (2018) or other large area modelling approaches.
However, much of this data remains unprocessed (to individual
tree level) owing to instance segmentation bottlenecks, a prob-
lem we suggest is one of the remaining hurdles to operationalis-

ing TLS protocols. Here we have presented TLS2trees, a workflow

LA

maximum cumulative gap = 2.0 m

FIGURE 7 An example of different outcomes when altering model parameters. The parameter —~-maximum-cumulative-gap alters the
maximum cumulative gap between node and a base node. In this example, a low value segments the base well but removes smaller branches
at the top of the canopy whereas a higher value results in small stems around the base being included. The value used for this manuscript is
—-maximum-cumulative-gap=2m.
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and processing pipeline to segment point clouds of individual trees
from plot-level TLS point clouds, that we hope will begin to redress

this issue.
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TABLE A.1 Python commands and parameter values used to segment trees. All code can be found at https://github.com/tls-tools-ucl/TLS2t

rees. *specific to RIEGL VZ scanners.

Parameter

1. Preprocessing
rxp2ply.py’

--tile

—-deviation
—-reflectance
downsample.py
—-length

tile index.py

2. Semantic segmentation
semantic.py
—-buffer

—-model

3. Instance segmentation
instance.py
--n-tiles

—-slice-thickness

—--find-stems-boundary
—-find-stems-min-radius

—--find-stems-min-points

—-graph-edge-length
—-graph-maximum-
cumulative-gap

—-min-points-per-tree

—add-leaves

—add-leaves-voxel-length

—add-leaves—-edge-length

Purpose

Edge length of tile
Upper and lower bounds of deviation values

Upper and lower bounds of reflectance values

Edge length voxel where 1 point is retained per voxel

Size of buffer to use from surrounding tiles

File path to trained model

Number of tiles to use as a buffer, that is by 3x 3 or tiles or 5x5 tiles
Vertical slice thickness for constructing graph

Upper and lower bounds for extracting a slice within which to identify stems
Minimum radius of found stems

Minimum number of points for found stems

Maximum distance between individual nodes in a graph

Maximum cumulative distance between a base and a node

Minimum number of points for a tree to be segmented
Whether to add leaf points
Voxel size when add leaves

Maximum distance used to connect points in leaf graph

Value used

10
0,15
-20,0

0.02

5
Defaults to FSCT model

3,50r7
0.5
2.0,2.5
0.025
200

200
TRUE
0.5
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