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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The Plastisphere refers to microbial 
communities that colonise plastics. 

• This review highlights three mecha-
nisms by which AMR evolution may be 
driven in the Plastisphere: 

• Horizontal gene transfer of ARGs may 
increase in the Plastisphere. 

• AMR selective or co-selective com-
pounds adsorb to microplastics. 

• AMR selective or co-selective chemicals 
are impregnated within the plastic 
matrix.  
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A B S T R A C T   

Microplastics and antimicrobials are widespread contaminants that threaten global systems and frequently co- 
exist in the presence of human or animal pathogens. Whilst the impact of each of these contaminants has 
been studied in isolation, the influence of this co-occurrence in driving antimicrobial resistance (AMR)1 in 
microplastic-adhered microbial communities, known as ‘the Plastisphere’, is not well understood. This review 
proposes the mechanisms by which interactions between antimicrobials and microplastics may drive selection for 
AMR in the Plastisphere. These include: 1) increased rates of horizontal gene transfer in the Plastisphere 
compared with free-living counterparts and natural substrate controls due to the proximity of cells, co- 
occurrence of environmental microplastics with AMR selective compounds and the sequestering of extracel-
lular antibiotic resistance genes in the biofilm matrix. 2) An elevated AMR selection pressure in the Plastisphere 
due to the adsorbing of AMR selective or co-selective compounds to microplastics at concentrations greater than 
those found in surrounding mediums and potentially those adsorbed to comparator particles. 3) AMR selection 
pressure may be further elevated in the Plastisphere due to the incorporation of antimicrobial or AMR co- 
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horizontal gene transfer; MGE(s): mobile genetic element(s); QS: quorum sensing. 
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selective chemicals in the plastic matrix during manufacture. Implications for both ecological functioning and 
environmental risk assessments are discussed, alongside recommendations for further research.   

1. Introduction 

The increasing threat of anthropogenic stressors to global One Health 
systems (i.e., humans, animals and the environment (Robinson et al., 
2016)) has resulted in the proposal of a new approach to sustainability 
involving planetary boundaries wherein human society can safely exist 
and develop (Rockström et al., 2009). One such boundary considers 
‘novel entities’, where safe thresholds can be monitored in terms of the 
emissions of chemicals, including both antimicrobials and microplastics 
(Gwenzi, 2022). With over 120 trillion microplastic (sizes 0.1 μm–5 mm 
(Thompson et al., 2004)) particles estimated to be floating in the global 
ocean (Lindeque et al., 2020), microplastics are the most prevalent type 
of marine plastic pollution. Simultaneously, antimicrobials can accu-
mulate in aquatic ecosystems (Hayes et al., 2022), owing to the wide-
spread misuse and overuse of antibiotics. As a result, selection for 
antimicrobial resistance (AMR) has been documented within environ-
mental settings, leading to the spread of AMR bacteria (ARB) and AMR 
genes (ARGs) in environments across the globe (Gillings and Stokes, 
2012). AMR represents one of the greatest threats to human health, with 
an estimated 5 million deaths associated with bacterial AMR infections 
in 2019 alone (Murray et al., 2022). 

In many cases, microplastics will co-occur in environments alongside 
antimicrobials, ARGs and ARB (Fig. 1). Previous research has primarily 
discussed these contaminants in isolation within singular environments, 
yet the combined effects of these co-contaminants likely exacerbates the 
threats they pose individually. A key concern resulting from the coex-
istence of these contaminants is the role of microplastics as novel 
ecological habitats, supporting the formation of polymicrobial biofilms. 
These microplastic-attached communities, referred to as ‘the Plasti-
sphere’ (Zettler et al., 2013), have not only been found to be distinct 
from their surrounding environment and other, natural debris, but may 
also be platforms for the attachment of AMR bacteria and potential 
human or animal pathogens (Lear et al., 2022; Ormsby et al., 2023). 
Still, the significance and nature of the unique properties of micro-
plastics (Fig. 2) that shape AMR within the Plastisphere, or in supporting 
the colonisation of ARB, is not clear. Furthermore, the mechanisms 
which may drive the emergence of AMR in microplastic-associated 
communities due to their frequent co-occurrence with antimicrobials 
and other AMR selective pressures are yet to be understood. This review 
aims to discuss the potential roles of microplastics in the selection for 
AMR. 

Fig. 1. Potential pathways for microplastics, antibiotics and ARGs/ARB to enter the environment. A: Domestic/clinical waste - plastics will fragment into secondary 
microplastics and partially metabolised antibiotics are excreted alongside ARGs and ARB. B: Groundwater - antibiotic residues accumulate in groundwater following 
irrigation of agricultural crops with treated wastewater (Kampouris et al., 2022). Microplastics may be vectors for ARGs from the agroecosystem into groundwater 
(Lu et al., 2020). C: Food systems - widespread use of plastics within veterinary medicines (Eckert et al., 2018; Ma et al., 2020), agriculture e.g. mulching (Shi et al., 
2022a; Sun et al., 2018; Steinmetz et al., 2016) and aquaculture (Hou et al., 2021), leading to emission of secondary microplastics. Effect concentrations of anti-
microbials are also applied, including agricultural fungicides to crops (Stevenson et al., 2022) and antibiotics used prophylactically in aquaculture (Reverter et al., 
2020). D: Ice stores - microplastics are stored in pack ice (Peeken et al., 2018), arctic sea ice (Obbard et al., 2014) and mountainous peaks (Napper et al., 2020), 
where ARGs have also been discovered in ancient permafrost stores (Tuorto et al., 2014; Allen et al., 2009) and arctic soils (McCann et al., 2019). E: Coastal rec-
reation – casual littering of plastics emits secondary microplastics and shedding of ARB can occur from coastal users (Leonard et al., 2018; Gerba, 2000). F: Waste 
streams - including wastewater (Sun et al., 2019; Polanco et al., 2020), sewage sludge (Yang et al., 2019a; Tagg et al., 2022), livestock manure (Lu et al., 2020) and 
solid waste (landfill and landfill leachate) emit large volumes of microplastics, antimicrobial residues and ARB/ARGs (Shi et al., 2022b; Su et al., 2021). G: At-sea 
sources, including fishing (Andrady, 2011), container spills (Redford et al., 1997) or illegal historical dumping at sea (Coyle et al., 2020; Rhodes, 2018). H: Biological 
- microplastics may be ingested and subsequently egested, resulting in the vertical transport of microplastics and associated Plastisphere communities (Cole et al., 
2016). 
(Created with BioRender.com.) 
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2. Plastisphere communities 

Although there are many characteristics of microplastics that facili-
tate and influence the formation of the Plastisphere (Fig. 2), the 
importance of the microplastic substrate itself in shaping Plastisphere 
communities is unclear (see meta-analysis from Wright et al. (Wright 
et al., 2021)). For example, community composition has been found to 
differ according to plastic polymer (Frère et al., 2018; Hansen et al., 
2021; Muthukrishnan et al., 2019; Vaksmaa et al., 2021), particle size 
(Sun et al., 2022a; Wang et al., 2022a; Wu et al., 2022a; Banerjee et al., 
2022; Phothakwanpracha et al., 2021; Liu et al., 2022a; Kim et al., 2022; 
Wang et al., 2022b; Li et al., 2022a; Zha et al., 2022; Zhao et al., 2023) or 
even microplastics of different colours (Lear et al., 2022; Wen et al., 
2020). On the other hand, previous research has found that abiotic 
factors, including temperature, nutrient availability, depth and salinity 
are largely responsible for Plastisphere community profiles (Wright 
et al., 2021; Amaral-Zettler et al., 2020; Wright et al., 2020; Ober-
beckmann et al., 2018), rather than microplastic-dependent features. 

One of the barriers thus far to Plastisphere research is the frequent 
omission of natural substrate controls to compare community diversity 
and abundance (see Metcalf et al. (Metcalf et al., 2021)). Several studies 
have recently confirmed that Plastisphere communities are distinct from 
free-living communities (Zettler et al., 2013; Wen et al., 2020; Ober-
beckmann et al., 2018; Bryant et al., 2016; De Tender et al., 2015; 
Pinnell and Turner, 2019; Pinnell and Turner, 2020; Aguila-Torres et al., 
2022; Deng et al., 2022; Yu et al., 2022; Li et al., 2022b; Oberbeckmann 
et al., 2014; Wang et al., 2020; Hoellein et al., 2017; Amaral-Zettler, 
2022), but less commonly whether they are distinct from microbial 
communities attached to control substrates. So far, Plastisphere 

communities have been found to differ significantly from steel 
(Muthukrishnan et al., 2019; Lee et al., 2008; Rogers et al., 1994), the 
rhizosphere (Shi et al., 2022a), glass (Lee et al., 2008; Vosshage et al., 
2018; Ogonowski et al., 2018; Woodall et al., 2018; Kirstein et al., 2018; 
Pinto et al., 2019; Kirstein et al., 2019), cobblestone (Miao et al., 2019), 
wood (Muthukrishnan et al., 2019; Oberbeckmann et al., 2018; Miao 
et al., 2019; Song et al., 2022; Kesy et al., 2019), seston (Hoellein et al., 
2017; Kesy et al., 2019; McCormick et al., 2016; McCormick et al., 
2014), picoplankton (Bryant et al., 2016), seaweed (Quilliam et al., 
2014; Metcalf et al., 2022), sand (Delacuvellerie et al., 2019), gravel 
(Agostini et al., 2021), leaves (Wu et al., 2019), cellulose (Ogonowski 
et al., 2018; Tagg et al., 2019), quartzite (Wang et al., 2022c), fabric 
(Woodall et al., 2018), sponge and fish (Schmidt et al., 2014). In 
contrast, a core microbiome shared across microplastic and control 
substrates has been found to occur with glass (Oberbeckmann et al., 
2014; Pinto et al., 2019; Parrish and Fahrenfeld, 2019; Richard et al., 
2019; Kesy et al., 2016; Dang et al., 2008; Erni-Cassola et al., 2020), bath 
stone (Kelly et al., 2022), wood (Song et al., 2020; Hu et al., 2021), 
ceramic (Pinnell and Turner, 2019), and stones (Naz et al., 2016). These 
comparisons are crucial in developing our understanding of the Plasti-
sphere, as free-living controls can only provide evidence to support the 
role of surface attachment in selecting for unique, pathogenic or AMR 
communities, and do not highlight the importance of and risk posed by 
microplastics over natural substrates. 

3. Microplastics and the selection of AMR 

Regardless of whether the Plastisphere is distinct to communities 
occupying surrounding environments or neighbouring surfaces, 

Fig. 2. Key features of the Plastisphere. Top: Plastisphere-exploited advantages conferred by microplastic attachment – universal to all biofilms. Bottom: 
microplastic-dependent characteristics potentially influencing Plastisphere communities. 
(Created with BioRender.com.) 
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microplastics possess greater persistence and dispersal capabilities than 
other materials due to their recalcitrant surface, ever-increasing volume, 
and incomparable transport abilities (Wright et al., 2021). Likewise, if 
microplastics do harbour unique communities, it could also be suggested 
that microplastics may select for particular traits within those commu-
nities, including AMR. Therefore, it is crucial to determine whether 
Plastisphere communities have the potential to enrich AMR and human 
or animal pathogens over natural material controls. 

Our understanding of the evolution of AMR is informed largely by 
studies adopting clinically relevant concentrations of antimicrobials in 
vitro. However, recent research has uncovered that selection for AMR 
can occur at very low antibiotic concentrations, similar to those found in 
wastewater or even surface waters contaminated with antibiotic resi-
dues (Fig. 1) (Murray et al., 2018). One of the mechanisms driving the 
evolution of AMR in natural bacterial communities is horizontal gene 
transfer (HGT): the transmission of ARGs via mobile genetic elements 
(MGEs) due to conjugation, transformation or transduction between the 
same or even phylogenetically distinct species. Selection for de novo 
mutations, clonal expansion of resistant cells or HGT of ARGs typically 
increases under an elevated selective pressure, including the presence of 
selective (e.g., antibiotics) or co-selective (e.g., heavy metals) com-
pounds. Co-selection is the indirect selection for AMR where either a 
single gene confers for resistance to several compounds (cross-resis-
tance) or where multiple ARGs are harboured on an MGE, such as a 
plasmid (co-resistance) (Murray et al., 2019). 

AMR bacteria have been found to be selectively enriched on micro-
plastics over free-living counterparts (Yang et al., 2019b), and meta-
transcriptomic evidence has recently identified that, not only were ARGs 
present in sampled polyvinyl chloride and polylactic acid Plastisphere 
communities, but they were actively expressed to a greater extent than 
planktonic water communities (Wu et al., 2022b). Additional in-
teractions between microplastics and AMR have also been investigated, 
including the increased persistence of ARGs in microplastic biofilms 
(Yang et al., 2022) and, to a lesser extent, the role of microplastics as 
vectors of AMR within the food chain (additional summary of relevant 
literature can be found in Supplementary Material, Table 1). However, 
in recent years, researchers have begun to elucidate the importance of 
the Plastisphere in the selection for and emergence of AMR (Table 1). 

Importantly, these potential mechanisms driving the selection for 
AMR within the Plastisphere (Table 1) have not yet been critically 
synthesised and the importance of microplastics in facilitating this at a 
greater extent than biofilms associated with natural controls is incon-
clusive, with much remaining to be understood. Here, we address 
possible reasons for why microplastics may promote both ecological 
(between taxa) and evolutionary (within taxa) selection of AMR. 

We suggest three mechanisms by which microplastics may promote 
selection for AMR within the Plastisphere (Fig. 3):  

1) Due to the proximity of cells in the Plastisphere, co-occurrence of 
environmental microplastics and selective or co-selective com-
pounds, and the sequestering of extracellular ARGs in the biofilm 
matrix, rates of HGT are higher in the Plastisphere than in free-living 
counterparts.  

2) Microplastics are known to adsorb both AMR selective or co-selective 
compounds at concentrations greater than those found in sur-
rounding mediums, thus increasing selection or co-selection pressure 
for AMR in the Plastisphere if bioavailable.  

3) During the manufacture of plastic polymers, AMR selective or co- 
selective compounds are often incorporated into the plastic matrix, 
leading to an increased selection or co-selection pressure for AMR 
local to the Plastisphere if bioavailable. 

Though the literature used to support these hypotheses were not 
gathered in a fully systematic way, we have provided our literature 
search methodology, search terms and a detailed database of relevant 
literature in the Supplementary Material. 

3.1. Horizontal gene transfer 

Biofilms in general are associated with increased AMR due to the 
closer proximity of individual bacteria, promoting the HGT of MGEs 
bearing ARGs (Arias-Andres et al., 2018). The same is proposed for 
microplastic-associated biofilms, with biofilm-inducing quorum sensing 
(QS) systems facilitating cell-to-cell communication, the release of 
eDNA (Zhang et al., 2022b) and induction of type IV secretion systems 
(Amaral-Zettler et al., 2020; Kaur et al., 2021; Abe et al., 2020). 

Using laboratory microcosm assays, Zhang et al. (Zhang et al., 
2022a) reported that the conjugative antibiotic-resistance plasmid RP4 
in Escherichia coli (E. coli) promoted the irreversible colonisation of 
polystyrene microplastics, which was speculatively suggested to be 
caused by the expression of conjugative pili. This suggests that HGT of 
ARGs, particularly via conjugation, may increase due to the nature of 
surface attachment, inducing the expression of HGT factors. In addition 
to this, Liu et al. (Liu et al., 2023a) found that exposure to smaller 
fractions of polystyrene microplastics (nanoplastics) enhanced the 
conjugative transfer frequency of RP4 in E. coli. When investigating the 
mechanisms behind this, it was revealed that the nanoplastic exposure 
induced reactive oxygen species and oxygen stress, which subsequently 
increased cell permeability of both donor and recipient cells, and 
upregulated the expression of mating pair formation genes and DNA 
transfer or replication genes. Microplastics themselves could therefore 
be described as co-selective agents for AMR, as the attachment to 
microplastics induces HGT machinery, or exposure to micro/nano-
plastics results in the upregulation of conjugative transfer-related genes, 
thus indirectly selecting for an increased spread and genome incorpo-
ration of ARGs within Plastisphere communities. Furthermore, genetic 
linkage of AMR and virulence genes on multidrug resistant plasmids and 
virulence factors could also lead to the hitchhiking of AMR, due to the 
benefit conferred by the expression of virulence factors that support 
attachment. 

Arias-Andres et al. (Arias-Andres et al., 2018) performed the first 
AMR experimental evolution study in the Plastisphere, conducting 
conjugation experiments on Plastisphere communities versus free-living 
cells and bacterial communities present on natural aggregates. Biofilms 
incubated in lake water were also evaluated for plasmid permissiveness 
using fluorescence-activated cell sorting. Plasmid transfer rates were 
three orders of magnitude higher on microplastics than those of bacteria 
in suspension, and the permissiveness of microplastic-associated com-
munities was two orders of magnitude greater than bacteria in the sur-
rounding water and natural aggregates (Arias-Andres et al., 2018). 
These results clearly demonstrate the elevated HGT potential of the 
Plastisphere compared with the aqueous phase, and begins to uncover 
distinctiveness to natural aggregates in the Plastisphere community's 
ability to receive and maintain AMR plasmids (Moradigaravand et al., 
2022). Further to this, Feng et al. (Feng et al., 2023) found that conju-
gation rates of ARGs were significantly greater in the Plastisphere than 
compared with control wastewater communities, and that these ARGs 
could also be transferred horizontally to the free-living cells surrounding 
the microplastics. This postulates an additional concern where, not only 
may we see significantly greater HGT rates on microplastics, but this 
may also result in increased AMR in surrounding environments, 
including surface waters, if ARGs are indeed transferred from micro-
plastics to the ambient, free-living community. 

In addition to conjugation-based assays, the influence of micro-
plastics and nanoplastics on the transformation frequency of E. coli was 
also recently investigated by Wang et al. (Wang et al., 2022e), revealing 
that the presence of polystyrene nanoplastics increased transformation 
frequency significantly, but that microplastics had no significant impact. 
However, this study exposed E. coli to these particles and did not 
investigate transformation frequency within Plastisphere communities 
(see also Hu et al. (Hu et al., 2022b)). To the best of our knowledge, 
transformation within the Plastisphere had not been investigated until 
Wang et al. (Wang et al., 2023) recently investigated and compared 
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Table 1 
Studies investigating selection for antimicrobial resistance in the Plastisphere.  

Environment (in 
vitro) 

Plastic Control Methods Key Finding Ref 

Microcosm PP, PE & PS Quartz sand & free-living 
community 

Transformation assay & 16s 
rRNA sequencing 

Transformation frequency of ARGs in the 
Plastisphere was up to 1000-fold more than 
controls. 

(Wang et al., 
2023) 

Microcosm PE, PP & PS Landfill leachate qPCR & 16s rRNA sequencing Zinc oxide and zinc ion exposure significantly 
increased abundances of ARGs in the 
Plastisphere over control. 

(Shi et al., 2023) 

Batch reactor system PS Without PS exposure Metagenomics & HT-qPCR PS exposure significantly increased absolute 
abundance of intI1 and other ARGs. 

(Ren et al., 
2023) 

Microcosm PS nano- 
plastics 

Without PS exposure Conjugation assay & RT-qPCR Smaller PS significantly enhanced conjugative 
transfer frequency. 

(Liu et al., 
2023a) 

Aerobic and 
anaerobic 
wastewater 

PE, PP-PE, PC, 
PET & PS 

Wastewater community 16s rRNA sequencing, shotgun 
metagenomics & conjugation 
assay 

Rate of HGT was significantly greater on 
microplastics than control. 

(Feng et al., 
2023) 

Microcosm PE Without PE exposure Conjugation assay & RT-qPCR PE exposure significantly enhanced conjugative 
transfer rate. 

(Yu et al., 2023) 

Activated sludge Virgin or aged 
PVC 

Without tetracycline 
exposure 

16s rRNA sequencing & qPCR Increased adsorption of tetracycline on aged 
PVC and ARGs were significantly enriched on 
tetracycline-adsorbed PVC compared to 
controls. 

(Tian et al., 
2023) 

Anaerobic digestor PE Without PE exposure 16s rRNA sequencing & 
metagenomics 

Concentration of PE was significantly correlated 
with MGE and ARG abundance. 

(Wang et al., 
2022d) 

Microcosm PVC Without PVC leachate 
exposure 

Metagenomics PVC leachate exposure increased ARG relative 
abundance compared with control. 

(Vlaanderen 
et al., 2023) 

Cropland soil PP Soil 16 rRNA sequencing & qPCR Doxycycline exposure increased abundance of 
ARGs on PP. 

(Liu et al., 
2023b) 

Microcosm PS nano- 
plastics 

Bio-degradable nanoplastics 
(PLA & PHA) & without 
nanoplastic exposure 

Conjugation assay MGE transfer frequency increased following 
exposure to biodegradable nanoplastics more 
than PS exposure. 

(Liu et al., 
2023c) 

Activated sludge PE & PVC Without microplastic 
exposure 

Metagenomics Microplastic exposure increased ARG 
abundance and HGT. 

(Luo et al., 
2023) 

Coastal sedimentary 
sludge 

PE, PET & PVC Without microplastic 
exposure 

16s rRNA sequencing & 
metagenomics 

Microplastics promoted HGT of ARGs. (Zeng et al., 
2023) 

River (in situ) LDPE, PET, PP 
& PVC (macro- 
plastic) 

Glass, rock & free-living 
community 

qPCR Relative abundance of ARGs was greatest in free- 
living community over time, except ermF, which 
was greatest on plastic in later incubation 
periods. 

(Martínez- 
Campos et al., 
2023) 

Microcosm HDPE Glass & free-living 
community 

Flow cytometry (fluorescence) AMR, measured using fluorescence, was 
significantly higher in biofilms than free-living 
communities, but more on glass than HDPE. 

(Hu et al., 
2022a) 

Microcosm PS nano- 
plastics 

Without PS nanoplastic 
exposure 

qPCR, SEM of conjugative 
transfer system & conjugation 
assay 

Exposure to PS increased expression of 
conjugative transfer genes, transfer efficiency 
and production of EPS. 

(Liu et al., 
2022b) 

Agricultural soil PE Without PE exposure Metagenomic next-generation 
sequencing & disk diffusion 

Greater prevalence of AMR in plastic-degrading 
bacteria on PE than non-plastic degraders in 
control. 

(Edet et al., 
2022) 

Synthetic 
wastewater 
effluent and tap 
water 

PS Free-living community Cultivation, 16s rRNA 
sequencing & qPCR 

Significantly higher ARGs and MGEs on PS than 
control & with antibiotic pressure, compared to 
without antibiotic pressure. 

(Perveen et al., 
2022) 

Activated sludge PVC Sludge Metagenomics PVC had more potential ARG hosts, stronger 
correlation with ARGs and enriched resistance 
mechanisms compared to control. 

(Li et al., 2022c) 

Microcosm PS Without plasmid Conjugation assay, PCR & 
qPCR 

AMR plasmid promoted irreversible colonisation 
of ARB on PS. 

(Zhang et al., 
2022a) 

Microcosm PE Free-living community, 
sediment & quartz sand 

qPCR & 16s rRNA sequencing Antibiotics and metals significantly increased 
transfer of ARGs on PE, compared to controls. 

(Liu et al., 
2022c) 

Wastewater PE, PP, PS & 
recycled PE 

Without microplastic 
exposure 

Conjugation/transformation 
assays & qPCR 

Exposure to microplastics enhanced HGT of 
ARGs. 

(Cheng et al., 
2022) 

Lake water PE, PVC & PET Free-living community qPCR & 16s rRNA sequencing Intracellular ARGs and extracellular ARGs were 
selectively enriched on microplastics. 

(Zhang et al., 
2022b) 

Microcosm PS Without microplastic 
exposure 

Conjugation assay & qPCR Conjugation of ARGs was found to depend on PS 
size. 

(Zha et al., 
2022) 

Microcosm PS (aged vs 
virgin) 

No Conjugation assay, qPCR & 
transcriptomics 

UV-ageing & PS leachates enhanced HGT. (Yuan et al., 
2022) 

Soil HDPE Without HDPE phthalate 
exposure 

Metagenomics Phthalates released from HDPE enhanced soil 
ARG abundance, but effect of phthalates on 
ARGs was greater than that of HDPE. 

(Lu and Chen, 
2022) 

Surface water PET Free-living community & 
bio-degradable 
microplastics (PBAT) 

qPCR & 16s rRNA sequencing Transfer of ARGs between microplastics and 
receiving waters occurred. 

(Zhou et al., 
2022a) 

Microcosm PS No Transformation assay & PCR Smaller PS particles influenced the 
transformation of ARGs in E. coli. 

(Hu et al., 
2022b) 

(continued on next page) 
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transformation frequency of ARGs in the Plastisphere, quartz sand bio-
films and free-living counterparts. This work provides some of the first 
evidence to support a unique role of the Plastisphere in enhanced 
transformation-dependent HGT compared with natural substrate con-
trols and free-living communities, finding that transformation frequency 
was significantly greater in the Plastisphere compared with both free- 
living and natural particle controls. The authors suggest that enhanced 
transformation in the Plastisphere was observed due to correlations 
between transformation frequency and bacterial density, extracellular 
polymeric substance content (including eDNA (Cheng et al., 2022; 
Zhang et al., 2022b)), expression of biofilm formation or DNA uptake 
genes (e.g. flagella motility and bacterial adhesion) and, at the 
community-wide level, greater colonisation of transformants. Further-
more, cell lysis of biofilm-housed cells has previously been observed as a 
mechanism to strengthen the structure of the biofilm, which suggests a 
further source of eDNA available for transformation (Abe et al., 2020). 

To date, we are unaware of any investigation of transduction within 
Plastisphere communities, even though there is reason to suggest that 
elevated rates of this HGT mechanism would also be observed, due to the 
binding of bacteriophage proteins to plastics such as polystyrene 
(Bakhshinejad and Sadeghizadeh, 2016). 

Given that many of these HGT mechanisms are experienced univer-
sally in biofilms, further research is required to identify the importance 
of microplastic substrates in comparison to natural materials. However, 
even with the current lack of studies adopting appropriate natural 
substrate controls, the uniqueness and potential increased risk of 
microplastics can still be proposed, given the ubiquity or longevity of 
microplastic particles in comparison with natural materials, co- 
occurrence with selective chemicals (Fig. 1) (Bydalek et al., 2023) or 
additional microplastic-dependent drivers (Fig. 2). 

Table 1 (continued ) 

Environment (in 
vitro) 

Plastic Control Methods Key Finding Ref 

Microcosm PS nano- 
plastics & 
micro-plastics 

Without microplastic 
exposure 

Transformation assay PS nanoplastics significantly enhanced 
transformation of an exogenous ARG into E. coli, 
whilst PS microplastics exerted no influence. 

(Wang et al., 
2022e) 

Soil PE Soil qPCR & 16s rRNA Increase in total relative abundance of ARGs on 
PE was higher than that in soil. 

(Wang et al., 
2021a) 

Activated sludge PE & PS Fine sand 16s rRNA sequencing & qPCR PE and PS enriched ARGs in comparison with 
fine sand. 

(Pham et al., 
2021) 

Sewage PVC Sewage HT-qPCR & 16s rRNA 
sequencing 

Only tetracycline, ampicillin or zinc spiking 
resulted in higher ARG abundances on PVC than 
in sewage. 

(Zhao et al., 
2021) 

Lake water 
simulation 

PS Free-living community & 
natural aggregates 

Fluorescence activated cell 
sorting, flow cytometry & 16s 
rRNA sequencing 

Increased frequency of plasmid transfer on PS 
compared to bacteria that are free-living or on 
natural aggregates. 

(Arias-Andres 
et al., 2018) 

AMR: antimicrobial resistance, ARB: antimicrobial resistant bacteria, ARG: antimicrobial resistance gene, E. coli: Escherichia coli, EPS: extracellular polymeric sub-
stance, HDPE: high-density polyethylene, HGT: horizontal gene transfer, HT-qPCR: high-throughput-qPCR, LDPE: low-density polyethylene, MGE: mobile genetic 
element, PBAT: polybutylene adipate terephthalate, PC: polycarbonate, PCR: polymerase chain reaction, PE: polyethylene, PET: polyethylene terephthalate, PHA: 
polyhydroxyalkanoate, PLA: polylactic acid, PP: polypropylene, PS: polystyrene, PVC: polyvinyl chloride, qPCR: quantitative PCR, rRNA: ribosomal ribonucleic acid, 
RT-qPCR: reverse transcription-qPCR, SEM: scanning electron microscopy, UV: ultraviolet. 

Fig. 3. Schematic diagram summarising the three proposed AMR selection mechanisms. Left: horizontal gene transfer, Bottom: adsorbed co/selective agents, Right: 
co/selective agents incorporated in plastic matrix. 
(Created with BioRender.com.) 
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3.2. Adsorbed selective and co-selective compounds 

Microplastics display elevated adsorptive capabilities compared to 
other natural debris owing to higher surface-to-volume ratios, and can 
achieve chemical loads over 100-fold greater than the surrounding 
water (Imran et al., 2019). Many pollutants found to accumulate on 
microplastics are responsible for selection or co-selection of AMR, 
including antibiotics, pesticides, biocides, heavy metals and other xe-
nobiotics (Laganà et al., 2019; Rillig et al., 2018). Whilst the surface 
properties of microplastics (Fig. 2) or environmental conditions (e.g. 
salinity) partly facilitate the adsorption of these compounds, ageing (i.e. 
weathering, ultraviolet degradation of surface, biofilm formation) of 
microplastic particles has also been found to increase adsorption of 
pollutants (Bhatt et al., 2021). Though chemical contaminants can also 
adsorb to natural materials (Cederlund et al., 2016), it could be argued 
that microplastics more frequently come into contact with such pollut-
ants given co-occurrences (Fig. 1), especially in environments polluted 
with sewage or landfill leachate (Shen et al., 2022). 

Antibiotics are extremely susceptible to microplastic adsorption, 
which may result in the enhanced emergence, recruitment and fixation 
of ARGs in Plastisphere communities if these compounds are bioavail-
able (Du et al., 2022). To support this, a recent study found antibiotics 
(enoxacine, norfloxacin, ofloxacin and enroflocaxin) and various heavy 
metals adsorbed to macroplastic facemasks at significantly greater 
concentrations than stone controls (Liu et al., 2023d). Following further 
analysis, this work found that the selective pressure of the adsorbed co- 
contaminants led to the greater enrichment of ARGs in the Plastisphere 
compared to the biofilms attached to the natural, stone controls. Further 
examples of antibiotics shown to adsorb to microplastics include cip-
rofloxacin (Atugoda et al., 2020), sulfamethoxazole (Wang et al., 
2022f), oxytetracycline (Zhang et al., 2018), ampicillin (Zhao et al., 
2021; Wang et al., 2021b), tetracycline (Ma et al., 2020), trimethoprim 
(Li et al., 2018), chloramphenicol (Wang et al., 2020) and roxithromycin 
(Zhang et al., 2022c). Yu et al. (Yu et al., 2022), for example, detected 
relatively high concentrations of antibiotics adsorbed to microplastics, 
including nearly 26 ng/g of the macrolide antibiotic spiramycin. Like-
wise, heavy metals have also been found to have a high affinity for 
microplastics, with concentrations reaching more than 600 times those 
present in surrounding waters (Yang et al., 2019b). Examples of heavy 
metals that have been previously documented to adsorb to microplastics 
include lead, cadmium, copper, zinc, chromium, iron, arsenic, silver and 
mercury (Khalid et al., 2021). 

Very low, sub-inhibitory concentrations similar to those found 
adsorbed to microplastics have been previously shown to have AMR 
selective effects, including a study finding the minimal selective con-
centration for ciprofloxacin to be 100 pg/ml (Murray et al., 2018), 
suggesting that even low concentrations of antimicrobials present on 
microplastics may have a selective effect if they are bioavailable. In a 
study performed by Li et al. (Li et al., 2022c), polyvinyl chloride 
microplastics were pre-adsorbed with copper and/or tetracycline and 
incubated in an artificial activated sludge system. ARG diversity and 
abundance on microplastics and in sludge were then evaluated using 
metagenomics. The antimicrobials were found to distinctively enrich 
ARGs in the Plastisphere and surrounding sludge, particularly tetracy-
cline resistance genes, supporting the role of microplastics in exerting a 
selective pressure due to adsorbed antimicrobials. 

However, the role of selective concentrations of antimicrobial con-
taminants adsorbed to microplastics or the co-occurrence of antibiotic 
and metal resistance genes (Pal et al., 2015) driving co-selection for 
AMR on microplastics are yet to be fully understood, and the AMR se-
lective risk posed by this is largely dependent on the bioavailability of 
these chemicals once adsorbed. Bioavailability of compounds adsorbed 
to microplastics has been previously contested. For example, the 
bioavailability of organic pollutants to copepods was higher in the dis-
solved phase than when adsorbed to microplastics (Sørensen et al., 
2020). However, this study did not account for the potential influence 

microbes within the Plastisphere may have in increasing bioavailability 
of microplastic-associated chemicals through biodegradation, which is a 
potentially crucial yet understudied concern, highlighted below (Section 
3.3). 

3.3. Selective and co-selective compounds in the plastic matrix 

Chemical additives are incorporated into the plastic matrix during 
the manufacturing process (Li et al., 2022c), with nearly 1000 different 
compounds currently associated with plastic polymers (Wright et al., 
2020). Examples of some of these compounds include heavy metals like 
arsenic, cadmium, chromium and lead (Turner and Filella, 2021) or 
known antibacterial/antifungal agents, such as triclosan (Junker and 
Hay, 2004). Some of the services provided by these additives include 
performance enhancement, increased durability, plasticisers, antioxi-
dants, antifoulants, antimicrobials, ultraviolet and thermal stabilisers, 
colour pigments and flame retardants (Richard et al., 2019; Massos and 
Turner, 2017; Hansen et al., 2013). 

Though many of these chemicals are not chemically bound and leach 
from plastics due to environmental ageing (Hahladakis et al., 2018), it is 
unknown what proportion of these compounds are bioavailable to 
Plastisphere communities, and if so, whether they increase selection or 
co-selection for AMR. For the most part, the wider biological effects of 
these additives are also unknown. However, a recent study found that 
polyvinyl chloride leachate exposure significantly increased ARG and 
virulence gene relative abundance in a marine bacterial community, 
compared to the no-plastic leachate control (Vlaanderen et al., 2023). In 
addition, Lu and Chen (Lu and Chen, 2022) exposed a farmland soil 
community to high density polyethylene microplastics containing 
phthalates, and used metagenomics to explore the shifts in community 
composition and relative abundances of ARGs. Leaching phthalates from 
microplastics had a greater influence on ARG prevalence than micro-
plastic exposure alone (e.g., particles physically causing changes to soil 
porosity), demonstrating that plastic additives can drive the evolution of 
AMR. 

Notably however, these studies did not investigate the impact of 
additives on AMR in Plastisphere communities and focussed only on 
impacts to the surrounding microbiome and resistome. Further research 
should thus target understanding the impacts of plastic additives spe-
cifically within the Plastisphere and the importance of these unique, 
microplastic-dependent interactions in driving AMR. For example, the 
physical, chemical or biological degradation of microplastics may result 
in the increased bioavailability of additives to the Plastisphere. Indeed, 
the Plastisphere itself may increase additive leaching through the 
enzymatic hydrolysis of microplastic hydrocarbon bonds. Bacteria 
capable of producing plastic-degrading enzymes, also known as hydro-
carbonoclastic bacteria, have been previously documented in the Plas-
tisphere (Kelly et al., 2022; Du et al., 2022; Liu et al., 2022d). The 
subsequent release of additives as a result of biodegradation has not yet 
been investigated, but it has been noted that microplastics may be more 
likely to release these compounds than macroplastics, due to shorter 
diffusion path lengths (Liu et al., 2022d; Paluselli et al., 2018; Luo et al., 
2020; Bandow et al., 2017). 

Furthermore, some compounds included as plastic additives are 
known co-selective agents, including heavy metals. Turner et al. (Turner 
et al., 2019) found that concentrations of bromine, cadmium, chromium 
and lead on ~10 % of beached microplastics were ‘non-compliant’ or 
‘potentially non-compliant’ under the present regulations on hazardous 
plastic waste. Similar findings were observed in beached microplastics, 
where bioavailable concentrations of cadmium, lead and bromine 
exceeded those estimated as acceptable in the local seabird diet (Massos 
and Turner, 2017). It was proposed that the origin of bromine was likely 
due to the addition of brominated flame retardants. Crucially, a simu-
lated avian digestive tract study revealed that heavy metal additives 
were bioavailable from microplastics during seabirds' digestion (Turner, 
2017). This is of particular concern as seabirds are renowned for their 
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ingestion of plastic debris, and release of additives could co-select for 
AMR in seabird gut microbiomes. In addition, seabirds are already 
recognised as important sentinels of AMR in the environment and are 
also used as microplastic biosentinels (Morrison et al., 2014; Van Fra-
neker et al., 2011). 

Crucially, if microplastic leachates are bioavailable and exert an 
AMR selective pressure, this is a mechanism unique to microplastics and 
should be seriously considered when addressing ecotoxicological risk 
and the AMR co-selective nature of microplastics in environmental 
compartments. 

4. Pathogens and the plastisphere 

In addition to AMR, it is important to understand the role of the 
Plastisphere in supporting the adhesion of pathogenic bacteria, given 
the threat of AMR pathogens to both human and animal health. This has 
recently been reviewed (Kaur et al., 2021; Junaid et al., 2022; Bowley 
et al., 2021; Bowley et al., 2022), where the capability for microplastics 
to harbour a variety of potential pathogens was reported. 

Biofilms in general play a role in bacterial pathogenesis (Parsek and 
Singh, 2003). For example, the inducing of attachment phenotypes may 
increase infectivity of microbes, due to an increase in functional di-
versity or metabolic responses and pathways (Lyons et al., 2010; Sun 
et al., 2020). As previously discussed, QS is known to be an important 
driver of biofilm formation and cell-to-cell communication (Kaur et al., 
2021), and it is proposed that the change from planktonic to biofilm 
lifestyle is governed by QS systems (Salta et al., 2013). QS is also 
responsible for the control of virulence factors (e.g. Lami (Lami, 2019)), 
which suggests a direct link between biofilm formation and the 
expression of virulence. Virulence genes can also be associated with 
adhesion factors, leading to the expression of virulence proteins as a 
result of surface attachment (Kaur et al., 2021; Radisic et al., 2020). 
Inversely, whilst existing as sessile cells, biofilms do not express invasion 
or motility machinery (Feltman et al., 2001; Mahenthiralingam et al., 
1994), which may reduce colonisation potential and subsequent infec-
tion of the host. 

Some of the clearest evidence for pathogen enrichment on marine 
microplastics involves the colonisation of Vibrio species (Zettler et al., 
2013; Kirstein et al., 2016; Laverty et al., 2016; Rodrigues et al., 2019; 
Curren and Leong, 2019; Foulon et al., 2016; Silva et al., 2019; Sun et al., 
2022b; Tan et al., 2022; Lai et al., 2022). Using next-generation 
sequencing, Frère et al. (Frère et al., 2018) detected members of the 
Vibrio genus on nearly 80 % of their microplastic samples, yet not all 
Vibrio spp. are pathogenic and Vibrio biofilms have also been identified 
on various natural debris, including wood and glass (Bowley et al., 
2021). Other studies show the Plastisphere can not only harbour po-
tential human pathogens, including faecal indicator organism E. coli 
(Metcalf et al., 2022; Rodrigues et al., 2019), but also potent animal 
pathogens, such as the fish pathogen Aeromonas salmonicida (Lai et al., 
2022; Viršek et al., 2017). Strikingly, within the terrestrial environment, 
potential pathogens were found to be 12.4 times higher in Plastisphere 
communities than in the ambient soil (Zhu et al., 2022). If Plastisphere 
communities do indeed select for pathogens as detailed in these studies, 
the need for continued exploration of microplastic-associated AMR is 
even greater, in order to reduce the risks posed by microplastic- 
associated, multi-drug resistant pathogens on public health and impor-
tant food systems (e.g., aquaculture). 

5. Ecological implications 

Microplastic ingestion has been reported in over 200 species, with 
biofilm formation thought to increase palatability and thus the likeli-
hood of consumer ingestion (Reisser et al., 2014; Hodgson et al., 2018). 
If colonised microplastics are ingested, associated ARB, ARGs or 
adsorbed antimicrobials could detach, transmit or desorb into the host 
microbiome. Additionally, following the egestion of microplastics, 

members of the gut microbiota may be incorporated into Plastisphere 
communities and integrated into microplastic-laden faecal pellets (Cole 
et al., 2016). 

There is currently no information available on whether gut micro-
biota are incorporated into the excreted biofilm, how long they can 
survive after egestion, or the role of subsequent ingestion of contami-
nated faecal pellets. However, studies have started to elucidate the 
impact of microplastic exposure on gut microbiomes in vivo, where 
perturbed microbiomes can have critical negative impacts upon the 
host. Xu and Yu (Xu and Yu, 2021) exposed earthworms to polystyrene 
nanoplastics and microplastics, finding higher abundances of ARGs 
present in earthworm guts treated with microplastics in comparison to 
nanoplastics. Furthermore, a freshwater fish model (Carassius auratus) 
was used to assess the co-influence of the antibiotic roxithromycin and 
microplastics on ARG distribution on the fish gut microbiome and found 
a near 70 % increase in the ARG sul1 from the combined exposure to the 
antibiotic and microplastics, which was a marked increase compared 
with the single microplastic treatment and roxithromycin alone (Zhang 
et al., 2022c). 

These results suggest that the co-occurrence of microplastics and 
antimicrobial residues in environmental compartments may risk bio-
security by increasing ARG prevalence in reared food exposed to both 
pollutants, such as fish (Zhang et al., 2022c). This could result in higher 
risk of treatment failure in the reared organisms, in addition to the po-
tential increased risk of transmission to humans through occupational 
exposure or via the food chain. 

Finally, when considering the ecological impacts of adsorbed or 
incorporated antimicrobial compounds and microplastics, there are 
some critical points that must be considered. For example, adsorption 
kinetics of antimicrobial compounds, the degradation rate of antimi-
crobials in water/sediment versus those associated with microplastics, 
and the impact of microplastic biofilms in influencing these two pro-
cesses. Previous works (Tian et al., 2023; Wang et al., 2022g; Fan et al., 
2021; Sun et al., 2023; Zhou et al., 2022b; Shi et al., 2022c; Tang et al., 
2022) have begun to elucidate these interactions, for example, Sun et al. 
(Sun et al., 2023) found an increased adsorption of oxytetracycline to 
biodegradable microplastics when a biofilm was present, in comparison 
to virgin microplastics. In addition, Shi et al. (Shi et al., 2022c) report 
that the main adsorption mechanisms of microplastics rely on hydro-
phobicity interactions, hydrogen bonding and electrostatic interactions, 
and ageing increases heavy metal adsorption to both non-biodegradable 
and biodegradable microplastics. Further work is now required, espe-
cially when comparing microplastics to natural controls and adopting 
environmentally realistic conditions and concentrations, to fully un-
derstand these mechanisms and the unique risk posed by microplastics. 

6. Environmental risk assessment implications 

The universal framework for determining the environmental risk of 
pollutants (including both microplastics and antimicrobial chemicals), is 
to perform an ‘environmental risk assessment’. This typically includes 
an exposure assessment, effect assessment and risk characterisation 
(Everaert et al., 2018). Traditionally, effect assessments will quantify 
‘safe’ concentrations of a pollutant using ecotoxicological tests, with 
endpoints including reduced survival, reproduction, or growth. The 
concentration at which no adverse effect on a test organism is observed 
is known as the no observed effect concentration. A no observed effect 
concentration can then be used to generate a predicted no effect con-
centration through application of an assessment factor, which takes into 
account extrapolating data from lab to field, and the breadth, depth and 
quality of effect data available (CHMP, 2006). Ultimately, environ-
mental risk assessments produce a risk quotient or risk characterisation 
ratio by dividing the predicted or measured environmental concentra-
tion by the predicted no effect concentration. Generally, if the risk 
quotient or risk characterisation ratio exceeds 1, then the risk of that 
pollutant is considered high under European Union legislation (EU, 
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2006). 
There are areas for improving environmental risk assessment of an-

timicrobials, discussed elsewhere, e.g. Murray et al. (Murray et al., 
2021) and Alejandre et al. (Alejandre et al., 2023). However, the 
monitoring, legislation and mitigation of antimicrobials in the envi-
ronment seems to be adopted more widely by both industry and gov-
ernment than those for microplastics. For example, concentrations of 
chemicals (including antimicrobials) in wastewater across the UK are 
currently being monitored by the UK Water Industry Research and 
Environment Agency's Chemicals Investigation Programme (UKWIR, 
2020), and predicted no effect concentrations for both ecotoxicity and 
AMR selection risk are used to inform the EU Commission Water 
Framework Directory's Watch List of potentially hazardous substances 
(Gomez Cortes et al., 2022). 

On the other hand, the first environmental risk assessment per-
formed on microplastics was conducted in 2018 (Everaert et al., 2018), 
followed by Burns and Boxall (Burns and Boxall, 2018) and then for the 
first time with measured environmental concentrations in 2021 (Adam 
et al., 2021). All three of these global environmental risk assessments 
found that the concentrations of microplastics detected in the environ-
ment were orders of magnitude lower than those reported to have 
adverse effects on test organisms. However, these assessments did not 
include the risk posed by microplastics as vectors for chemicals in the 
environment or the effect of plastic additives. Endpoints that are typi-
cally adopted in microplastic ecotoxicological tests include reduced 
feeding, reproduction and growth, or tissue inflammation and mortality 
(Burns and Boxall, 2018), and test species are varied, including arthro-
pods (e.g. Calanus sp. (Cole et al., 2015)) and molluscs (e.g. Mytilus sp.) 
(Adam et al., 2021). 

Interestingly, one issue that has previously been highlighted for 
antimicrobial environmental risk assessments is the lack of testing 
against target microorganisms. Yet, ecotoxicological effects of micro-
plastic exposure have recently been tested against the bacterium Vibrio 
angiillarium, where the bacterial culture was exposed to increasing 
concentrations of polystyrene microplastics, and a no observed effect 
concentration was generated at the concentration of microplastics that 
significantly reduced culturability of the bacteria (Gambardella et al., 
2018). However, this does not consider any impact of microplastics on 
microbes associated with the Plastisphere. 

This review has discussed some potential interactions between 
microplastics and antimicrobials in the environment that may exacer-
bate the existing ecological threats of these pollutants. These in-
teractions are not currently considered in either antimicrobial or 
microplastic environmental risk assessment frameworks and so we 
recommend the following:  

a. To consider the role of microplastics as vectors for chemicals and the 
effects of plastic additives. 

b. To consider the mixture effects of antimicrobials and other poten-
tially co-selective pollutants (e.g. microplastics).  

c. To improve the monitoring of antimicrobials by considering those 
incorporated into plastics or adsorbed to the plastic surface.  

d. To consider that antimicrobials may persist on microplastics (Liu 
et al., 2018), increasing half-life durations and potentially altering 
where and when risks are present. 

7. Concluding remarks 

This review highlights three potential drivers of AMR selection 
within the Plastisphere, including increased HGT and the elevated AMR 
selection or co-selection pressures due to the presence of adsorbed or 
impregnated compounds. Though the ability of microplastics to enrich 
AMR communities relative to other substrates remains inconclusive, the 
persistence and transportation potential of these vastly abundant par-
ticles which co-exist with existing AMR selective pressures is evident. 

Therefore, it is imperative to develop our understanding of AMR within 
the Plastisphere so that combined threats of microplastics, ARB, ARGs 
and antimicrobial pollutants across One Health sectors can be fully 
assessed. 

8. Outstanding research questions  

• Biofilm-forming species are inherently resistant to antibiotic 
chemotherapy, due to reduced antibiotic penetration and slower 
growth rates. Also, large numbers of antibiotic-susceptible cheats 
may be enriched in the Plastisphere if antibiotic inactivating en-
zymes, e.g., beta-lactamases, are secreted into the extracellular 
polymeric substance. What is the role of the Plastisphere in the 
reduction of antibiotic efficacy and in the survival of susceptible and 
resistant human or animal pathogens?  

• Are existing laboratory-based findings reproducible in more realistic 
environments with less optimal growth conditions?  

• Is there greater acquisition of ARGs or de novo mutations in the 
Plastisphere than free-living phases, or natural substrate controls? 

• Do nanoplastics have a role in supporting attachment of AMR bac-
teria, or the increased transmission of ARGs?  

• Antimicrobials exist in complex mixtures in the environment. Do 
these behave synergistically or antagonistically in terms of driving 
AMR in the Plastisphere? 

• Does transduction play a role in HGT of ARGs within the Plasti-
sphere, as well as conjugation and transformation?  

• What is the role of microplastics in the increased transport of AMR 
bacteria between different environments, owing to increased pro-
tection and thus survival within the extracellular polymeric matrix?  

• If colonised microplastics are ingested, could associated ARBs, ARGs 
or adsorbed antimicrobials detach/desorb and affect the host 
microbiome? 

• Following the egestion of microplastics: are gut microbiota incor-
porated into the excreted Plastisphere, how long do these bacteria 
survive after egestion, and what is the role of subsequent ingestion of 
contaminated faecal pellets?  

• Are fungi and viruses important members of the Plastisphere? 
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