
Global Ecol Biogeogr. 2022;00:1–18.    | 1wileyonlinelibrary.com/journal/geb

Received: 9 April 2021  | Revised: 28 February 2022  | Accepted: 6 March 2022

DOI: 10.1111/geb.13515  

R E S E A R C H  A R T I C L E

Global estimates of the extent and production of macroalgal 
forests

Carlos M. Duarte1,2  |   Jean- Pierre Gattuso3,4 |   Kasper Hancke5 |   Hege Gundersen5 |   
Karen Filbee- Dexter6,7 |   Morten F. Pedersen8 |   Jack J. Middelburg9 |   
Michael T. Burrows10 |   Kira A. Krumhansl11 |   Thomas Wernberg7,12 |   Pippa Moore12 |   
Albert Pessarrodona12 |   Sarah B. Ørberg2,13 |   Isabel S. Pinto14 |   Jorge Assis15  |   
Ana M. Queirós16 |   Dan A. Smale17 |   Trine Bekkby5 |   
Ester A. Serrão15 |   Dorte Krause- Jensen2,13

1Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
2Arctic Research Centre, Aarhus University, Århus C, Denmark
3Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche- sur- mer, France
4Institute for Sustainable Development and International Relations, Sciences Po, Paris, France
5Norwegian Institute for Water Research (NIVA), Oslo, Norway
6Institute of Marine Research, His, Norway
7UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
8Department of Science and Environment, Roskilde University, Roskilde, Denmark
9Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
10Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK
11Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
12Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
13Department of Bioscience, Aarhus University, Silkeborg, Denmark
14Ciimar/CIMAR and Faculty of Sciences, University of Porto, Porto, Portugal
15CCMAR, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
16Plymouth Marine Laboratory, Plymouth, UK
17Marine Biological Association of the United Kingdom, Plymouth, UK

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial- NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.
© 2022 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd.

Correspondence
Carlos M. Duarte, Red Sea Research 
Center, King Abdullah University of 
Science and Technology (KAUST), Thuwal 
23955- 6900, Saudi Arabia.
Email: carlos.duarte@kaust.edu.sa

Funding information
Research for this paper was supported 
by Euromarine (http://www.eurom 
arine netwo rk.eu). We also received 
support from FCT –  Foundation for 
Science and Technology through project 
UIDB/04326/2020 and the transitional 
norm –  DL57/2016/CP1361/CT0035. 
JA and EAS received support from FCT 

Abstract
Aim: Macroalgal habitats are believed to be the most extensive and productive of 
all coastal vegetated ecosystems. In stark contrast to the growing attention on their 
contribution to carbon export and sequestration, understanding of their global ex-
tent and production is limited and these have remained poorly assessed for decades. 
Here we report a first data- driven assessment of the global extent and production of 
macroalgal habitats based on modelled and observed distributions and net primary 
production (NPP) across habitat types.
Location: Global coastal ocean.
Time period: Contemporary.
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1  |  INTRODUC TION

Coastal vegetated habitats are currently in the global focus be-
cause of their capacity to support substantial carbon sequestration 
(Duarte et al., 2013; Krause- Jensen & Duarte, 2016; Macreadie 
et al., 2019; Serrano et al., 2019). However, the role of macroal-
gae as blue carbon habitats had been neglected for decades on 
the grounds that they predominantly grow on rocky shores, which 
do not accumulate carbon (Krause- Jensen et al., 2018; Nellemann 
et al., 2009). Growing evidence for the globally relevant carbon 
export and sequestration from wild macroalgae (Krause- Jensen & 
Duarte, 2016; Ortega et al., 2019), along with possible contribu-
tions from large- scale farmed macroalgae, unique among coastal 
vegetated habitats, is raising awareness of the potential role of mac-
roalgal habitats in climate change mitigation (Duarte et al., 2017; 
Froehlich et al., 2019).

Macroalgal forests, a term we use hereafter to refer to macroalgal- 
dominated habitats in general, are important habitats that add struc-
tural complexity and allow the co- existence of a high diversity of 
species (Steneck et al., 2002; Teagle et al., 2017). Macroalgae are 
broadly distributed, occurring across all coastlines and oceans. They 
consist of brown algae, such as large canopy- forming kelps and 
intertidal fucoids, red algae and green algae. They occur from the 
intertidal zone to the greatest depths (> 200 m) receiving enough 
light to support their growth. This varies across functional forms, 
with crustose red algae having the lowest average light requirements 

among macroalgal types (Gattuso et al., 2006; Markager & Sand- 
Jensen, 1992). Many macroalgae require hard substrates to anchor 
to the seafloor and occur predominantly on bedrock, boulders, cob-
bles or biogenic structures (e.g. mussels, corals), while others are 
able to attach to soft sediments (e.g. Halimeda, Caulerpa) or may 
occur free- floating (e.g. Sargassum natans and Sargassum fluitans).

The high production of macroalgal forests supports food webs 
locally as well as at distant sites receiving their exported production 
(Krumhansl & Scheibling, 2012; Pessarrodona et al., 2018; Queirós 
et al., 2019). Food webs in macroalgal- dominated systems support 
highly productive commercial and recreational coastal fisheries 
(Bennett et al., 2016; Blamey & Bolton, 2018; Melis et al., 2019) The 
intense photosynthetic activity and attenuation of solar radiation by 
algal forests provide local refugia to vulnerable biota from elevated 
UV radiation and ocean acidification (Krause- Jensen et al., 2016; 
Wahl et al., 2018) and, in the case of intertidal fucoid canopies, 
from daily thermal extremes (Bulleri et al., 2018). Moreover, local 
reduction of currents by algal canopies protects shores from ero-
sion and increases the local retention of organic matter (Estes & 
Palmisano, 1974; Løvås & Tørum, 2001).

The growing attention to the roles of macroalgal habitats is, 
however, in stark contrast to our poor understanding of their 
global extent and production, and the changes they are undergoing 
(Duarte, 2017; Wernberg et al., 2019). This is a major limitation, since 
macroalgal forests are believed to form the most extensive and pro-
ductive habitats of all coastal vegetated ecosystems (Duarte, 2017; 
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Major taxa studied: Macroalgae.
Methods: Here we apply a comprehensive niche model to generate an improved 
global map of potential macroalgal distribution, constrained by incident light on the 
seafloor and substrate type. We compiled areal net primary production (NPP) rates 
across macroalgal habitats from the literature and combined this with our estimates of 
the global extent of these habitats to calculate global macroalgal NPP.
Results: We show that macroalgal forests are a major biome with a global area of 
6.06– 7.22 million km2, dominated by red algae, and NPP of 1.32 Pg C/year, dominated 
by brown algae.
Main conclusions: The global macroalgal biome is comparable, in area and NPP, to the 
Amazon forest, but is globally distributed as a thin strip around shorelines. Macroalgae 
are expanding in polar, subpolar and tropical areas, where their potential extent is 
also largest, likely increasing the overall contribution of algal forests to global carbon 
sequestration.
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Duarte & Cebrián, 1996; Smith, 1981). Macroalgal production varies 
across populations and communities, as well as with resource (light 
and nutrients) supply, hydrodynamic conditions (waves and cur-
rents) and herbivory (Bustamante et al., 1995; Carpenter et al., 1991; 
Castorani et al., 2021). The resulting net primary production (NPP) 
per unit area of many macroalgal stands ranks among the highest of 
any habitat in the world, rivalling that of tropical rain forests (Pace 
& Lovett, 2013).

Estimates of the global extent of macroalgae range from an early 
unsupported value of 0.6 × 106 km2 (Whittaker & Likens, 1973) to a 
maximum of 12.5 × 106 km2 constrained by sufficient light availability 
at the seafloor, based on the first decile of minimum light requirements 
for growth, excluding Antarctica (Gattuso et al., 2006), and with an 
average at around 3.54 × 106 km2 (Krause- Jensen & Duarte, 2016). 
Reported estimates of global macroalgal NPP range 20- fold from 0.13 
to 2.9 Pg C/year, calculated as the product of area estimates and the 
mean NPP per unit area of around 0.4 kg C/m2/year (Duarte, 2017; 
Duarte & Cebrián, 1996; Krause- Jensen & Duarte, 2016).

The huge uncertainties surrounding the global area covered and 
the global NPP of macroalgal habitats have not been constrained 
further over the past 50 years, with the global estimates available 
resting largely on guess work and very thin datasets propagated 
for decades across citation chains without being improved, so they 
should be considered tentative at best (Duarte, 2017). Yet, there has 
been, in parallel, a huge growth in the number of published reports 
and observations of macroalgal distribution and production avail-
able, relative to the thin datasets upon which previous estimates 
of global area and production were based. Hence, failure to update 
global estimates using the wealth of observations now available un-
necessarily perpetuates an unacceptable knowledge gap in a glob-
ally significant component of the ocean ecosystem and the carbon 
cycle it supports (Duarte, 2017).

Distribution models predicting the likelihood of occur-
rence of macroalgae have since been refined further at the re-
gional scale to include higher resolution climate, bathymetry 
and light estimates, along with other factors constraining the 
occurrence of macroalgae, such as seafloor type and wave ex-
posure. These refined models have been used to identify areas 
with high probability of occurrence of kelp forests along the 
coasts of the north- east Atlantic (Assis, Araújo, et al., 2018), the 
north- east Pacific (Gregr et al., 2019), eastern Canada (Filbee- 
Dexter, 2016), Australia (Martínez et al., 2018; Young et al., 2015), 
the UK (Burrows et al., 2018), and north- western France (Gorman 
et al., 2013), as well as of other seaweed types such as fucoids 
in the Mediterranean and Atlantic (Buonomo et al., 2018; Neiva 
et al., 2014). However, this approach has not yet been used to pre-
dict distributions at global scales.

Consequently, there is a need and an opportunity to narrow the 
order- of- magnitude of uncertainty on the global extent and produc-
tion of macroalgal forests. Moreover, existing estimates are rooted 
in insufficient appreciation of the diversity of habitats where mac-
roalgae grow, which include rocky shores, soft sediments and even 
the open ocean.

Here we provide improved estimates of the global area occupied 
by macroalgae and the primary production they support across dif-
ferent habitat types. We do so on the basis of three complemen-
tary approaches for estimating the global macroalgal area. The first 
approach estimates the upper boundary of the area suitable for 
macroalgal growth on the basis of a global niche model. The second 
approach estimates the upper boundary for the area of rocky shore 
macroalgae can occupy by simply quantifying the area of rocky 
shores shallower than 50 m. The third, more detailed, approach pro-
vides a global estimate of macroalgal area based on the sum of area 
estimates for macroalgal habitat types, including rocky shore habi-
tat, soft- bottom habitat and floating habitats. We then combined the 
resulting habitat- specific estimates of global macroalgal area with 
the average of reported NPP estimates for these habitats to yield an 
estimate of habitat- specific NPP and, by accumulating them across 
habitats, a global estimate of macroalgal NPP.

2  |  METHODS

2.1  |  Estimating the global macroalgal area

2.1.1  |  Global niche model (approach 1)

Niche models were used to estimate the global potential distribu-
tion of brown and red macroalgal species, modelled by combining in-
formation on habitat requirements for red and brown algae species. 
We first extended the approach of Gattuso et al. (2006) by including 
habitat requirements for macroalgae in addition to light, specifically 
high- resolution spatial thresholds of ocean temperature, salinity, 
ice extent and nutrients (cf. Duarte et al., 2021 for the data layers 
on predicted macroalgal occurrence). These thresholds identified 
regions with suitable niche conditions by crossing empirical physi-
ological information known to shape the distribution of seaweed 
species, alongside with high- resolution environmental gradients 
produced at global scales (Kearney & Porter, 2009). Environmental 
layers with high spatial resolution were produced to model the 
distribution of both intertidal and subtidal algal forests. This used 
the interpolation method detailed in Assis, Araújo, et al. (2018) and 
Assis, Serrão, et al. (2018) with the new General Bathymetric Chart 
of the Oceans (GEBCO) (https://www.gebco.net/, 2019 update), to 
provide standardized sea surface layers with a 15 arc- second resolu-
tion (approx. 450 m at the equator) of temperature, salinity, nitrate 
and ice thickness, as well as along- bottom layers of temperature, sa-
linity, nitrate and light availability. The data used in the interpolation 
were the Global Observed Ocean Physics Reprocessing, the Global 
Ocean Physics Reanalysis and the Global Ocean Biogeochemistry 
Non- assimilative Hindcast, all with native spatial resolutions of 15 
arc- minute resolution, temporal resolutions from 2000 to 2015, 
and available from the Copernicus data service (see Assis, Araújo, 
et al. (2018) and Assis, Serrão, et al. (2018) for more details).

Data on environmental requirements for species of brown algae 
(Ochrophyta, Phaeophyceae) and red algae (Rhodophyta) were 

https://www.gebco.net/
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compiled from the available literature. This depended on whether 
species were intertidal or subtidal and on the availability of environ-
mental layers at global scales. For intertidal species, data compiled 
considered sea surface temperature, salinity and nutrients (such 
as nitrates) and seasonal sea ice thickness (e.g. Assis et al., 2014; 
Song et al., 2021) while for subtidal species the compiled data in-
cluded ocean temperature, salinity, nutrients and light availability at 
the sea bottom, as well as permanent sea ice thickness (e.g. Assis 
et al., 2017). Among the range of tolerance limits found per vari-
able, the 95th percentile thresholds were used as extreme proxies 
for cross- taxa environmental requirements (cf. Table S2 for the en-
vironmental requirements shaping the distribution of different mac-
roalgal groups).

Threshold niche models were developed by reclassifying the 
environmental gradients to binomial surfaces (1: suitable; 0: unsuit-
able) using the physiological thresholds inferred for the different 
seaweed groups. A product function was applied to these surfaces 
(Table S3) to identify regions of agreement where suitable niche con-
ditions can be found. A global layer of intertidal habitats was fur-
ther computed by determining the regions above the hydrographical 
zero, within the range of tidal amplitude (e.g. Assis et al., 2014). This 
approach used the new GEBCO with the amplitude constituent of 
the Hamburg direct data Assimilation Methods for TIDEs model 
(Taguchi et al., 2014).

The final threshold outputs were used to produce maps of po-
tential distribution and to estimate global distribution areas. The 
intertidal layer was further used to discriminate between inter-
tidal and subtidal areas to yield upper boundary area estimates 
(Table 1).

2.1.2  |  Upper limit of distribution of rocky 
macroalgae constrained by the area of rocky shores 
shallower than 50 m (approach 2)

The potential maximum extent of macroalgae distribution on rocky 
shores (Figure 1b) was calculated as rocky seafloor area shallower 
than 50 m, which contains the majority of the areas with light con-
ditions suitable for macroalgae growth over suitable substrate (i.e. 
rocky bottom). Information on depth came from the GEBCO gridded 
bathymetric data (https://www.gebco.net/, GEBCO, 2019), which is 
a global terrain model for ocean and land at 15 arc- second intervals. 
The derived polygons of suitable light conditions were assigned to 
the world’s countries by linking them to a world map of the Exclusive 
Economic Zones (EEZ). To be able to calculate the approximate 
proportion of these areas (having sufficient light) having suitable 
substrate, the percentage of rocky seabed was estimated for each 
polygon based on percentage of the seabed along the shoreline of 
nations dominated by hard rocks, conglomerates, and rocky shores 
(Young & Carilli, 2019). This is an oversimplification as it only pro-
vides estimates at national scales, but represents the best global 
estimate available. If an estimate was lacking for a country in the 
dataset of Young and Carilli (2019), the estimate was selected from 

the neighbouring islands or by assigning averaged values from neigh-
bouring countries.

To validate the global map of the maximum extent of macroalgal 
distribution (presented in Figure 1b), we needed to assess the reli-
ability of the assumption that we could use the percentage of rocky 
seabed provided by Young and Carilli (2019) also in the subtidal 
areas further off the shore as an approximation of the percentage of 
areas having suitable substrate. To be able to do this, we used data 
from mapping programs from countries for which substrate mapping 
was considered to have good coverage (assessed by source person-
nel delivering the data). Data from the UK, Ireland, Spain (without 
the Canary Islands), Portugal (without the Azores and Madeira), 
France, Denmark and Finland were received from European Marine 
Observation and Data Network (EMODnet) Seabed Habitats (14 
December 2021 for the UK, 1 December 2020 for the other coun-
tries, EMODnet contact person: Elenora Manca, Joint Nature 
Conservation Committee). These layers were produced using data 
from EMODnet geology maps at 1:100,000 and 1:250,000 scales 
(Populus et al., 2017). Data from New Zealand were based on the 
New Zealand Sea Bed database, which includes data from ~150 pub-
lished, unpublished, national and international collections covering 
more than 30,000 sediment analyses and observations (Bostock 
et al., 2018). Bedrock, boulders and rocks were considered to be 
substrate types suitable for macroalgae growth and were therefore 
included in the dataset. The size of the rocky seabed area provided 
by this evaluation dataset and the size of the modelled rocky seabed, 
obtained by multiplying the size of the area with depths shallower 
than 50 m with the rock fraction is presented for each country in 
Table S4. From these data, the fraction of the mapped versus the 
modelled size was calculated (Table S4). This number varied be-
tween countries, but was on average 90% (SD = 65%), meaning that 
overall, the size of the observed rocky seabed (from the validation 
dataset) was 90% of what was modelled. This was used to correct 
the area of the upper limit to macroalgal area on rocky shores from 
5.4 × to 4.9 × 106 km2. This approach complements that based on 
niche models, as substrate type was not available in the global envi-
ronmental datasets available to develop niche models.

2.1.3  |  Global estimate of macroalgae based on the 
sum of area estimates for macroalgal habitat types 
(approach 3)

Improved assessments of the global macroalgael area can be de-
livered by aggregating separate estimates for different macroalgal 
habitat types. Rocky intertidal habitats along temperate and polar 
coastlines are generally dominated by brown algae, specifically 
Fucales, such as Fucus spp. in the Northern and Durvillaea spp. in 
the Southern Hemisphere. In the subtidal zone, large canopy form-
ing Laminariales, which include most kelps, are found along ~25% of 
the world’s coastlines (Wernberg et al., 2019), and typically extend 
to depths of 30– 40 m, and exceptionally down to 60– 80 m (Assis, 
Serrão, et al., 2018; Graham et al., 2007; Krause- Jensen et al., 2019), 

https://www.gebco.net/
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TA B L E  1  Estimates of the global macroalgal area: existing published estimates of total area, updated estimates of the upper boundary of 
total macroalgal area and updated estimates of macroalgal areas by habitat type including rocky habitats, soft/sandy habitats and floating 
habitats and the total area of these. Details in Methods and in Table S1 (estimates based on literature compilation)

Published estimates of macroalgal cover Global area (106 Km2) Reference, overall approach

Upper boundary of benthic habitats 13.3 Gattuso et al. (2006)

12.5 Gattuso et al. (2020)

Mean (range: 25−75% percentiles) of literature data 3.54 (2.8– 4.28) Krause- Jensen and Duarte (2016)

Global modelled estimates –  Approach 1

Intertidal brown algae 0.13 Global niche modelling approach, this study, independent of light 
threshold

Subtidal brown algae 2.50 Global niche modelling approach, this study, light threshold: first 
decile compensation irradiance (Ec) growth (Gattuso et al., 2006)

Intertidal red algae 0.40 Global niche modelling approach, this study, independent of light 
threshold

Subtidal red algae (all) 6.69 Global niche modelling approach, this study, light threshold: first 
decile Ec growth (Gattuso et al., 2006)

Subtidal red algae beyond brown algal belt 4.19 Global niche modelling approach, this study, light threshold: first 
decile Ec growth (Gattuso et al., 2006), after removing the 
area occupied by brown algae

Total macroalgal area –  upper boundary 7.22 Overall estimate of brown and red algae

Rocky shore area within 50 m depth (Approach 2) 4.9 Based on bathymetry and the fraction of shoreline that is 
rocky (.52, Young & Carilli, 2019), validated in this study (cf. 
Figure 1b, Methods and Table S4)

Estimates by habitat type (Approach 3)

Macroalgae on rocky habitat

Intertidal communities 0.013 Intertidal area (0.128 × 106 km2, Murray et al., 2019) multiplied 
by rocky shore fraction (.52, Young & Carilli, 2019) and 
assumed fraction of algal cover (.20).

Subtidal brown algae 1.68 (1.43– 1.79) Global correlative niche modelling approach, multiplied by 
the fraction of shoreline that is rocky (0.52, Young & 
Carilli, 2019), minus the estimated area of intertidal algae. 
Range of estimates in parentheses.

Subtidal red algae beyond brown algae 2.98 Upscaled from the ratio of the area of red algae growing at 
depths greater than the belt of brown algae, to the area 
of brown algae of 1.68 derived from the niche modelled 
estimates above.

Rhodoliths 0.021– 0.23 Minimum estimate (Moura et al., 2013) and maximum estimate 
(Carvalho et al., 2020)

Total macroalgal area on rocky habitat 4.78

Macroalgae on soft/sandy and coral habitat

Halimeda bioherms (along with Caulerpa, 
Padina and other green algae)

1.2 McNeil et al. (2016)

Coral reef- associated macroalgae 0.038 Reef area (Spalding & Grenfell, 1997), % cover (Bruno 
et al., 2009)

Total macroalgal area on soft/sandy and coral 
habitat

1.24

Floating macroalgae

Floating wild populations

Floating brown algae (Sargassum sp.) 0.050 Atlantic (Wang et al., 2019) and Chinese (Qi et al., 2017; Zhang 
et al., 2019) golden tides. Minimum estimate.

Floating green algae 0.001 Chinese green tides (Liu et al., 2013; Zhang et al., 2019). 
Minimum estimate

Seaweed aquaculture 0.002 Global production (Food & Agriculture Organization of the 
United Nations, 2020), yield (see Duarte et al., 2017, and 
references therein)

Total area of floating macroalgae 0.053

Total macroalgal area by habitat type 6.07 Sum for rocky, sandy and floating habitats
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with species of Desmarestiales also forming algal forests in the 
Southern Hemisphere. Other genera of brown algae form subtidal 
forests, including Cystoseira (sensu lato, Orellana et al., 2019) in the 
Mediterranean Sea and adjacent Atlantic Ocean, and Fucus in the 
Baltic Sea. Shade- tolerant red foliose, rhodolith and encrusting algae 

tend to occupy substrates below brown algal canopies, and domi-
nate in deeper regions with insufficient light for brown algal growth 
(Gattuso et al., 2006; Vadas & Steneck, 1988).

Other widely distributed macroalgal habitats include canopy- 
forming brown macroalgae on tropical reefs (e.g. Sargassum, 

F I G U R E  1  (a) Global potential distribution of benthic macroalgae inferred using a global niche model. (b) Global map of the maximum 
extent of macroalgal distribution, constrained by depths shallower than 50 m and suitable substrate (rocky). The percentage of cliff area is 
estimated relative to the territorial area of each country (cf. Methods for details) 
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Turbinaria), calcifying subtropical and tropical algae, red algal rh-
odolith habitats, and floating Sargassum aggregations. Macroalgae 
are also found on soft sediments in sheltered locations such as 
shallow estuaries, lagoons, mudflats, and in seagrass meadows and 
saltmarshes, where they attach to shells, stones and plants, are 
free- floating (e.g. the genera Fucus, Ulva, Chaetomorpha, Gracilaria, 
Ceramium in cold temperate waters and Sargassum, Turbinaria, 
Udotea, Acetabularia in warm temperate waters), or attached to 
soft sediments through rhizoids (e.g. Halimeda, Udotea and Caulerpa 
species in warm temperate and tropical waters and Charophytes in 
brackish waters worldwide). The macroalgae occurring on or over 
predominantly soft bottom habitats have been less studied than 
those on rocky substrates (with the exception of the genus Caulerpa), 
but may occupy large expanses of coastline and be of global biogeo-
chemical significance (Rees et al., 2007). Recently, macroalgal aqua-
culture has created a new habitat, which is growing at the global 
scale (Duarte et al., 2021).

The potential distribution of brown algae was predicted with an 
ecological niche model using the machine learning algorithm boosted 
regression trees (BRT) to derive the extent of their habitats. The po-
tential distribution of brown algae was also inferred with ecological 
niche modelling, by combining the machine learning algorithms BRT 
and adaptive boosting (AdaBoost) using the ensemble technique. 
The ensemble technique was chosen to reduce the inherent uncer-
tainty of algorithms while at the same time delivering the potential 
extent of habitat (Araújo & New, 2007). The algorithms fitted the 
high- resolution environmental layers against georeferenced occur-
rence records (presences and absences). The predictors chosen were 
sea bottom temperatures (long- term maximum and minimum), salin-
ity at bottom, nutrients at bottom (such as phosphate and nitrate), 
permanent sea ice extent and light at bottom, which are expected 
to develop biological meaningful models for marine forest species 
(Assis, Araújo, et al., 2018; Neiva et al., 2014). Presence records were 
compiled from the new fine- tuned global distribution dataset of ma-
rine forests (Assis et al., 2020), which provides ~1 million records 
of the large brown algae Laminariales, Tilopteridales and Fucales 
(floating species Sargassum fluitans, Sargassum natans and Sargassum 
pusillum were excluded).

Because BRT and AdaBoost require presence and absence 
records, and because only presences are available at the scales 
of our study, a dataset of pseudo- absences was produced using 
a threshold independent method. Pseudo- absences allow the al-
gorithms to be fed with information of where species do not po-
tentially occur, but their selection criteria can influence explained 
data variability, final accuracy of predictions and, most impor-
tantly, the extent at which models restrict distributions (Chefaoui 
& Lobo, 2008), particularly when using threshold dependent 
methods (Chefaoui & Lobo, 2007). The method used followed the 
three- step approach of randomly generating pseudo- absences 
within a constrained distance from presences, while considering 
regions that are environmentally dissimilar from presences (Senay 
et al., 2013). This is threshold independent, and aimed to capture 
ecological niches with high predictive performance and to reduce 

overprediction of area estimates (Assis, Araújo, et al., 2018; Senay 
et al., 2013). The two first steps used a kernel probability sur-
face developed with the records of occurrence and a spatial grid 
with the same resolution as the environmental layers, from which 
pseudo- absences were randomly generated (Senay et al., 2013). 
This accounted for bias resulting from an unbalanced distribu-
tion of occurrence records (Assis, Araújo, et al., 2018; Phillips 
et al., 2009) and restricted models to the actual distribution of 
brown algae species (Barve et al., 2011). The third step reduced 
surplus information by structuring random pseudo- absences with 
environmental information using the K- means clustering algo-
rithm with the total number of occurrence records as the k pa-
rameter (Senay et al., 2013).

The optimal parameters of BRT reducing overfitting (i.e. tree 
complexity, learning rate, and number of regression trees; Elith & 
Leathwick, 2011) and AdaBoost (i.e. number of interactions, shrink-
age and degrees of freedom; Martins et al., 2021) were tuned 
with cross- validation by partitioning both presences and pseudo- 
absences into 10 distinct latitudinal bands (using independent 
training and testing datasets). Mean area under the curve (AUC) 
identified the combination of parameters retrieving higher potential 
for spatial/temporal transferability (Elith & Leathwick, 2011).

Distribution maps were produced per algorithm by reclassify-
ing the output of each model (i.e. probability of occurrence) to a 
binomial surface reflecting presences and absences with a thresh-
old maximizing AUC. These maps were then ensembled (Araújo & 
New, 2007) to produce a final predictive map representing the con-
sensus of distributional areas of brown algae. The final performance 
of the ensemble model was reported with sensitivity (true presence 
rate), AUC, and true skill statistics (TSS > .8 excellent model accu-
racy, Allouche et al., 2006). Partial plots were produced to depict the 
effect of each environmental layer on the response of the models 
(Elith et al., 2008).

The area of intertidal rocky shore macroalgae was estimated as 
the product of the global intertidal area (0.128 × 106 km2, Murray 
et al., 2019) and the rocky shore fraction (0.52, Young & Carilli, 2019), 
further assuming 20% of the rocky shore to be covered by macroal-
gae. The area of subtidal brown algae was derived from the niche 
modelling approach corrected for the fraction of shoreline that is 
rocky (0.52, Young & Carilli, 2019), minus the estimated area of in-
tertidal algae. The area of subtidal red algae was upscaled from the 
ratio of the area of red algae (extending below the brown algae belt) 
to brown algae of 1.68 derived from the niche modelled estimates 
above. The area of rhodholiths was derived using the minimum 
(Moura et al., 2013) and maximum (Carvalho et al., 2020) estimates 
reported in the literature (Table 1).

The area of macroalgae over soft sediments was calculated 
as the area of Halimeda bioherms, and the area of macroalgae on 
coral reefs was derived as the product of the global coral reefs 
area and the reported percent algal cover (Table 1). The area of 
floating macroalgae was derived from the reported area of floating 
Sargassum species and green algae and the area of farmed sea-
weed (Table 1).
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2.2  |  NPP estimates by habitat type

We compiled estimates of macroalgae NPP using grey litera-
ture, peer- reviewed studies and personal unpublished data (see 
Pessarrodona et al., 2021 for details and Pessarrodona, Filbee- 
Dexter, Krumhansl, Pedersen, et al., 2021 for the database). To 
be included in our compilation, studies had to fit the following 
criteria: first, studies had to examine macroalgae NPP on a per 
area basis. Second, studies had to provide estimates of NPP at 
the primary producer level with minimal interference of hetero-
trophic organisms (i.e. net ecosystem primary production was not 
included). Third, studies had to capture seasonal variability in NPP 
throughout the year, with studies conducted at a single point in 
time, month or season not being included (with the exception of 
studies concerning annual species where the growth or biomass 
accumulation was measured at the end of their life cycle). Fourth, 
quantification of productivity had to be performed in situ on the 
reef or outdoor mesocosms mimicking natural reef conditions. 
Fifth, details of the specific sampling location and measuring 
method had to be provided. Sixth, studies had to provide new data 
not previously reported in other publications. After applying the 
criteria above, our final filtered dataset featured 229 independent 
studies published between 1967 and 2020.

Available data were extracted from text, tables, figures or sup-
plementary material in the articles. In our study, a record was con-
sidered to be the areal net primary productivity of a taxon over the 
course of a year. If a study reported NPP from multiple taxa, depths, 
sites, methods or time points, these were entered as separate case 
studies (separate rows). If the data were not directly reported as an-
nual rates, these were computed based on the monthly, bimonthly 
or seasonal means, with the corresponding standard deviation also 
being computed. Data were entered into the template in the same 
units as the original source, but were also standardized to annual 
areal carbon production (i.e. g C/m2/year). Values reported in fresh 
or dry weight (FW, DW respectively) were converted to carbon using 
species-  and genus-  (most cases) or family-  and order- specific fac-
tors when these were not available for a given species. Conversion 
factors provided in the studies were preferably used, but otherwise 
these were derived from the database provided in Brey et al. (2010). 
Metadata describing the depth, substrate, sampling year and sea-
son, taxonomy, study site and its geolocation, measuring method 
and data extraction procedure were attached to each individual row 
(Pessarrodona, Filbee- Dexter, Krumhansl, Moore, et al., 2021).

Given that estimates covered a wide range of algal forms, hab-
itats and depths, the methods used to estimate NPP varied across 
studies. These fell into three basic approaches: measurements of 
production using diel changes in dissolved oxygen inside photore-
spirometry chambers, and estimates based on changes of accumu-
lated biomass –  either through periodic harvests of entire plants, 
or by following increases in individual plant biomass (e.g. through 
tagging, staining or punching holes). A total of 87% of the records 
compiled used biomass- accumulation- based methods, which gener-
ally measure the carbon exclusively destined to thallus growth and 

are therefore underestimates of NPP since they do not account for 
assimilated carbon lost through exudation.

The final dataset featured measurements from 229 species from 
49 families and 26 orders, encompassing all major seaweed groups and 
functional forms (sensu Steneck & Dethier, 1994). This included all the 
major genera of canopy forming brown algae (e.g. Fucus, Ascophyllum, 
Laminaria, Ecklonia, Macrocystis), as well as the principal primary produc-
ers in coral reefs (algal turfs and Sargassum spp.) (Table S5). Measurements 
were classified into habitat categories defined based on vegetation 
structure (forming forests, beds, nodules or mounds), substrate (coral or 
rocky reef), the dominant vegetation (e.g. brown, red or green algae) as 
well as their position within the water column (benthic or pelagic). These 
were: rhodolith beds, Halimeda bioherms, subtidal (rocky reef) brown 
algae, subtidal deep (rocky reef) red algae, coral reef- associated algae, 
intertidal algae, floating brown algae (Sargassum) and floating green algae 
(referred to as green tides) (Pessarrodona, Filbee- Dexter, Krumhansl, 
Moore, et al., 2021). Measurements were obtained from a total of 420 
individual sites distributed on all continents from the intertidal to 55 m 
depth (Pessarrodona, Filbee- Dexter, Krumhansl, Moore, et al., 2021), al-
though the majority of measurements were conducted at shallow depths 
and in subtidal brown algae, coral- reef associated algae, and intertidal 
habitats (Pessarrodona, Filbee- Dexter, Krumhansl, Moore, et al., 2021).

To calculate the mean of NPP by each habitat type, we first ag-
gregated the NPP from species belonging to the same sampling area 
within each habitat type, sampling year, depth, measuring method 
and study. This yielded the total areal productivity at the plot level 
(e.g. by summing the NPP of multiple species of brown algae in a 
Sargassum spp. bed). We then averaged estimates within each site 
and habitat type by pooling across sampling years, depths, mea-
suring methods and studies. In this way, measurements made at 
different sites had equal weighting in our habitat NPP estimates re-
gardless of the number of observations conducted within a site. We 
chose this approach as we prioritized equal spatial representation 
across the areas that supported macroalgae, but not pooling the 
data produced similar results (Table S6). Finally, the mean and stan-
dard deviation of all the sites for a given habitat were calculated.

The NPP for seaweed aquaculture was derived from the global 
annual yield of 31 million tons FW (Food & Agriculture Organization 
of the United Nations, 2020), assuming DW to be 10% of FW and car-
bon to be 24.8% of DW (Duarte et al., 2017). The yield, however, rep-
resents a fraction of NPP, as a large fraction is lost in the environment 
prior to harvest. We then calculated the areal NPP from seaweed 
aquaculture from a yield of 1,604 tons DW/km2 (Broch et al., 2019) 
increased by the fraction of NPP lost in the environment, assumed to 
be 61% (Zhang et al., 2012). The global extent of seaweed aquaculture 
was calculated from the global yield of 31 million tons FW/year (Food 
& Agriculture Organization of the United Nations, 2020), adjusted for 
the areal yield (1,604 tons FW/km2), to estimate the global extent of 
seaweed aquaculture in 2017 to be about 0.002 × 106 km2.

The modelled global distribution of seaweed and the data-
set on NPP supported by macroalgae are available at https://
doi.org/10.6084/m9.figsh are.16574 822.v2 and https://doi.
org/10.6084/m9.figsh are.14882 322.v1, respectively.

https://doi.org/10.6084/m9.figshare.16574822.v2
https://doi.org/10.6084/m9.figshare.16574822.v2
https://doi.org/10.6084/m9.figshare.14882322.v1
https://doi.org/10.6084/m9.figshare.14882322.v1
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3  |  RESULTS

3.1  |  Global macroalgal extent

3.1.1  |  Global niche model (approach 1)

We applied a comprehensive niche model to generate an improved 
global map of potential macroalgal distribution (Figure 1a). When 
defining the light threshold as the first decile of minimum light re-
quirements for growth (Mineur et al., 2015), this approach generated 
upper global estimates of 2.63 × 106 km2 for brown algae, distributed 
between a subtidal area of 2.50 × 106 km2 and an intertidal area of 
0.13 × 106 km2. For red algae, the upper limit to their global area is 
estimated at 7.09 × 106 km2, with 6.69 × 106 km2 in the subtidal zone 
and 0.40 × 106 km2 in the intertidal. While the brown and red algal 
areas overlap over much of their distribution, the belt of subtidal red 
algae extending beyond the brown algal belt is estimated at a maxi-
mum of 4.19 × 106 km2. Overall, we find that the upper limit to the 
area that red and brown macroalgae occupy is 7.22 × 106 km2 (Table 1, 
Figure 1a). This estimate, which does not include habitats dominated 
by green algae, such as Halimeda bioherms, is considerably lower than 
the absolute maximum estimate of 12.5 × 106 km2 derived by Gattuso 
et al. (2020) using similar light thresholds, demonstrating the impor-
tance of salinity, nitrogen concentration, temperature and sea ice in 
constraining macroalgal distribution. Gattuso et al. (2006, 2020) did 
not include the distribution area of Antarctic macroalgae in their esti-
mate, but that is of minor importance as this constitutes < 0.25% of the 
global macroalgal area in our model estimates.

3.1.2  |  Area of rocky shore shallower than 50 m 
(approach 2)

We provided an independent estimate of the area macroalgae may 
occupy on rocky shores from the global distribution of rocky shores 
(Young & Carilli, 2019) at depths shallower than 50 m (cf. Methods). 
The resulting map (Figure 1b) yields an upper limit to macroalgal area 
on rocky shores of 4.9 × 106 km2 (Table 1). This is below our esti-
mated upper limit of the global macroalgal area of 7.22 × 106 km2 
(Table 1, Figure 1a), which did not consider seafloor characteristics 
among the constraining factors.

3.1.3  |  Global estimates by habitat type 
(approach 3)

We then proceeded to assess the global macroalgal area by habi-
tat type, including rocky shores, soft bottoms and floating habitats 
(Table 1). Use of recently developed remote sensing tools, new 
modelling approaches, intensified research efforts and monitor-
ing surveys in the coastal zone, and collaborative platforms to re-
port observations have greatly increased our knowledge of the 
global distribution of macroalgae across habitats (Assis et al., 2020; 

Krumhansl et al., 2016; Mora- Soto et al., 2020), although still limited 
to an absence– presence basis. The global intertidal area is estimated 
at 0.13 × 106 km2 (see Murray et al., 2019), of which 52% may rep-
resent the rocky seabed (cf. Methods). The percent of the seafloor 
occupied by rocky shores required to constrain the global map of the 
maximum extent of macroalgal distribution (presented in Figure 1b) 
was further tested and validated using datasets for a number of na-
tions for which the seafloor type is well documented (cf. Methods). 
These numbers varied substantially between the countries used for 
validating the models, which implies that a more precise estimation 
could be developed if more countries had substrate maps of suf-
ficient quality, resolution and coverage. Figure 1b shows the areas of 
suitable depth and the percentage of rocky seabed estimated rela-
tive to the territorial area of each country. The total estimated area 
of rock using this approach was 5.4 × 106 km2 (Table 1).

Assuming an algal cover of 20%, we estimate the total rocky 
intertidal area occupied by intertidal brown and red algae at 
0.013 × 106 km2, which represents a small contribution to the global 
macroalgal area (Table 1).

Assis et al. (2020) curated ~1 million distribution records from 
published sources, herbaria and databases of large brown algae 
species, which we used to fit an ecological niche model by applying 
high resolution environmental data as forcing, based on the machine 
learning algorithms boosted regression trees and adaptive boost-
ing (see Methods). The species included in these records comprise 
canopy- forming kelps and kelp- like species of the orders Laminariales, 
Tilopteridales, Desmarestiales and Fucales (Bolton, 2010; Wernberg 
et al., 2019). Given that rocky shores, where these algal groups typ-
ically grow, may occupy only 52% of the global shoreline (Young & 
Carilli, 2019), the ensemble model developed leads to an estimate of 
the total area covered by subtidal and intertidal brown algal stands of 
1.68 × 106 km2 (Table 1), with individual estimates ranging between 
1.43 × 106 km2 (AdaBoost algorithm) and 1.79 × 106 km2 (BRT algo-
rithm). This value compares favourably with recent efforts to assess 
the global extent of kelp habitat, which is estimated at 2.03 × 106 km2 
(Jayathilake & Costello, 2021), and is expected to be lower, considering 
the highly detailed climate data used (approx. 450 m at the equator).

While red algae were not modelled on the basis of observa-
tions, we applied the ratio of subtidal area occupied by brown and 
red algae of 1.68 derived from the niche modelled ‘total macroal-
gal area’ estimates above (Table 1), to estimate the area of subtidal 
red algal stands on rocky shores extending deeper than the brown 
algal stands at 2.98 × 106 km2 (Table 1). Among the red algae, rh-
odoliths, predominant in subtropical and tropical regions, occupy 
large areas. Rhodoliths off Brazil alone occupy between 0.021 × and 
0.230 × 106 km2, comprising the world’s largest known rhodolith 
habitat (Carvalho et al., 2020; Moura et al., 2013). The area of rhod-
oliths off Brazil constitutes a minimum area for these communities 
(Table 1). By combining the estimates above (intertidal and subtidal 
brown and subtidal red algae), we calculate that rocky shore habitats 
support a total macroalgal area of 4.78 × 106 km2 (Table 1).

Crucially, macroalgae growing on soft sediments also occupy vast 
areas, despite the general perception that macroalgae are confined 
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to hard- bottom habitats. Algae growing on coral reefs occupy an 
estimated area of 0.038 × 106 km2 (Table 1, Table S1). Halimeda 
bioherms (including other calcareous species such as Padina sp.) 
growing in subtropical and tropical soft sediments, are estimated to 
cover 1.24 × 106 km2 (Table 1). Although this is considerably less 
than the area on rocky shores, this area is larger than the global area 
of seagrass, mangroves and saltmarshes combined (Duarte, 2017). 
Our estimates do not include macroalgae associated with seagrasses 
and saltmarshes and those in mudflats because these habitats are 
not generally dominated by macroalgae. However, in any case, these 
would represent a contribution of about 0.05 × 106 km2, assum-
ing the area of mudflats [0.06 × 106 km2, assessed as global tidal 
area (Murray et al., 2019) multiplied by the non- rocky fraction, 48% 
(Young & Carilli, 2019)], the total area of seagrasses (0.35 × 106 km2, 
Duarte, 2017) and the total area of saltmarsh (0.05 × 106 km2, 
McOwen et al., 2017) were all covered by 10% macroalgae.

In addition to benthic macroalgal habitats, floating masses of mac-
roalgae are common in several open- ocean regions, including golden 
tides of Sargassum in the Caribbean Sea, the Sargasso Sea, and the 

wider tropical Atlantic Ocean (Wang et al., 2019), and golden and 
green tides (e.g. Ulva) in Asia (Liu et al., 2013; Qi et al., 2017). Floating 
macroalgal mats are also a feature of eutrophied coastal habitats else-
where (Valiela et al., 1997). Lastly, seaweed aquaculture is an emerg-
ing new floating habitat, which has already created 0.002 × 106 km2 
(Table 1) of area, largely in Asia (Table 1, Table S1), raising the com-
bined area of floating macroalgal habitats to 0.053 × 106 km2.

When all the habitat- based estimates are integrated, the total es-
timated macroalgal area amounts to 6.06 × 106 km2 (Table 1), close 
to our estimated upper bound of 7.22 × 106 km2. This implies that 
most potential macroalgal habitats are occupied.

3.2  |  Global production of macroalgae

We compiled areal NPP rates across macroalgal habitats from the 
literature (Figure 2, Table 2; see Pessarrodona, Filbee- Dexter, 
Krumhansl, Moore, et al., 2021; Pessarrodona, Filbee- Dexter, 
Krumhansl, Pedersen, et al., 2021 for details and full dataset) 

F I G U R E  2  Annual net primary productivity for different macroalgal habitat types. Small dots indicate the depth- averaged annual net 
primary production (NPP) at sites featuring that habitat, while larger dots and error bars indicate the means and standard deviation of each 
habitat type. The number of site- level measurements for each habitat type is indicated next to each graph (Table 2) 
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and multiplied the resulting average values by the estimates of 
the global extent of these habitats reported above (Approach 
3, Table 1). Subtidal brown macroalgal and intertidal macroalgal 
ecosystems supported similarly large contributions to macroalgal 
NPP with mean values of 0.54 and 0.59 kg C/m2/year, respec-
tively, and maximum reported site-  and annual- averaged values 
well exceeding 2 kg C/m2/year (Figure 2). Macroalgae floating as 
green tides were the second most productive habitats with mean 
NPP of 0.47 kg C/m2/year. Coral reef algae (0.17 kg C/m2/year) 
and red algal habitats, including rhodoliths and deep subtidal 
algae (both 0.11 kg C/m2/year), had somewhat lower productivity, 
while pelagic free- floating Sargassum supported the lowest NPP 
of 0.0002 kg C/m2/year. NPP in seaweed aquaculture was calcu-
lated to be about 2 Tg C/year, corresponding to an average NPP of 
1 kg C/m2/year (cf. Methods).

We then multiplied the estimated area of different macroalgal 
habitats by their mean NPP to yield a habitat- resolved global es-
timate of total macroalgal NPP of about 1.32 Pg C/year (Table 2). 
This estimate far exceeds early estimates of 0.03 Pg C/year (De 
Vooys, 1979) and is towards the centre of the range published more 
recently (0.127– 2.9 Pg C/year; Duarte, 2017).

4  |  DISCUSSION

The estimates compiled here lead to a global macroalgal area 
of 6.06 × 106 km2 (most likely estimates), and an upper bound of 
7.22 × 106 km2. The global area estimated here lacks an assessment 

of uncertainty, as the habitat- specific values added to yield the 
total global area lack error estimates. We provide, however, a range 
around our area estimate for brown algae derived from niche mod-
elling (mean area 1.68, range 1.43– 1.79 × 106 km2, Table 1). By 
combining estimates of global area with estimates for NPP for dif-
ferent macroalgal habitats, we derive a global NPP estimate of about 
1.32 Pg C/year.

The area of documented macroalgal habitats has increased mark-
edly over recent years, reflecting discoveries of previously uncharted 
macroalgal habitats. For instance, the largest reported rhodolith 
area of 0.021– 0.23 × 106 km2 off Brazil is a recent finding, resulting 
from the discovery of a major mesotrophic reef off the Amazon River 
(Carvalho et al., 2020; Moura et al., 2013) (Table 1). Climatic refugia 
for kelps have been recently found at seamounts/oceanic islands 
and other upwelling areas (Assis, Araújo, et al., 2018) and tropical 
deep water kelp refugia have also been discovered across the ocean 
with a potential area of 0.023 × 106 km2, as revealed by niche model-
ling (Graham et al., 2007). Enhanced efforts at exploring Arctic mac-
roalgal habitats also recently revealed that kelps grow much deeper 
in Greenland than previously thought (down to 60 m compared to 
earlier estimates of 40 m, Krause- Jensen et al., 2019). This finding is 
significant, because the Arctic represents 34% of the global shore-
line (Lantuit et al., 2012), much of which includes rocky bottoms 
suitable for macroalgal growth (Krause- Jensen & Duarte, 2014). 
Developments in remote sensing allowing floating macroalgal mats 
to be resolved are also now contributing more precise global esti-
mates of the area and standing stock of floating macroalgal masses 
in China (Chen et al., 2019) and the Sargasso Sea (Wang et al., 2019).

TA B L E  2  Macroalgal net primary production per unit area (NPP, mean, standard deviation and number of site- level estimates), global area 
and global NPP for the various rocky, soft- bottom and floating macroalgal habitat types for which we reported updated area estimates in 
Table 1

NPP by habitat type (kg C/m2/year)
Global area (million 
km2)

Global NPP 
(Pg C/year)

Mean SD n Mean

Algae on rocky habitats

Intertidal communities 0.587 0.818 79 0.013 0.008

Subtidal brown 0.546 0.632 142 1.680 0.917

Subtidal deep red (excl. rhodoliths) 0.105 0.130 7 2.980 0.313

Rhodoliths (max. area) 0.107 0.162 4 0.230 0.025

Total rocky habitat 0.273 4.780 1.263

Algae on soft/sandy and coral habitat

Halimeda bioherms 0.038 0.040 13 1.200 0.045

Coral reef algae 0.168 0.256 78 0.038 0.006

Total soft/sandy and coral habitat 0.041 1.240 0.051

Floating macroalgae

Brown algae (Sargassum) 0.000 0.000 5 0.050 0.000

Green algae 0.472 0.326 12 0.001 0.000

Seaweed aquaculture 1.000 0.002 0.002

Total floating habitat 0.057 0.053 0.003

Total macroalgae 0.224 6.073 1.317
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Our efforts at calculating global macroalgal NPP are based on a 
more thorough approach than previous estimates, combining areas 
and NPP per macroalgal habitat type and, therefore, more trans-
parent and reproducible (Table 2; Pessarrodona, Filbee- Dexter, 
Krumhansl, Pedersen, et al., 2021; Pessarrodona, Filbee- Dexter, 
Krumhansl, Moore, et al., 2021). Our estimate represents a first- 
order estimate, it is an important step towards unpacking the role 
macroalgae play in the carbon cycle, although further efforts are 
needed to improve the spatial and temporal resolution of macroal-
gal NPP fluxes. While our compilation incorporated measurements 
from across the globe, there was still a geographic bias in the num-
ber of measurements, with more study sites being clustered in the 
Northern Hemisphere (e.g. North Atlantic and Japan). Further, deep 
and challenging- to- study habitats featured a limited number of NPP 
measurements, which may not be entirely representative across the 
global extent of these habitats. In addition, available NPP estimates 
for macroalgae communities do not represent random samples, and 
are likely to target relatively well- conserved, high cover stands near 
major research institutions. Although we cannot discount that such 
sampling biases and shortcomings contributed error and uncertainty 
to our estimates, our study is based on the most robust collation 
of NPP measurements assembled so far, and therefore represents 
the most up- to- date knowledge on the global NPP of macroalgae. 
Improving beyond our estimates will require massive, concerted 
efforts, while conducting truly average assessments of macroal-
gae NPP will require accurate mapping of macroalgae by commu-
nity type and an approach to measurement that applies equally and 
can be conducted remotely, such as remote sensing estimates of 
NPP, which are possible for phytoplankton, but not for macroalgal 
communities.

We, however, acknowledge that our estimate of global mac-
roalgal NPP carries significant uncertainties as (a) it does not 
consider the production of red algal understories in brown algal 
forests; (b) it does not include macroalgal contributions to NPP 
in other habitats, such as mudflats, seagrass meadows and salt-
marshes, although these likely constitute a very small fraction of 
the total global NPP of macroalgae; (c) most (77%) of the NPP 
estimates were derived from biomass harvest or blade- elongation 
assessments, which do not account for the production lost as par-
ticulate and dissolved detritus; (d) the 20% cover in the intertidal 
zone is likely an underestimate for sheltered rocky shores; (e) 
our area estimates are binary, that is, either occupied or not by 
seaweed, implying macroalgal cover to be 100% where present, 
whereas suitable habitat is unlikely to be fully occupied, as sea 
urchin barrens devoid of macroalgae caused by overgrazing and 
other factors often lead to potentially suitable habitat being tem-
porarily free of macroalgal growth; and (f) NPP estimates for sea-
weed stands available in the literature are not a random sample 
and are likely to be biased towards stands of high cover. Although 
our compilation of macroalgal NPP is 10- fold greater than any pre-
vious compilation, the data gaps highlighted above provide direc-
tions of further work needed to improve our estimate. Amending 
global environmental datasets with estimates of wave action and 

substrate type will allow the development of improved models of 
algal cover and NPP. Reporting algal cover, not only presence– 
absence, will be important to improve further estimates to yield 
predictions of macroalgal cover, which would allow NPP to be 
scaled to the predicted cover.

Given a reported NPP for marine phytoplankton of 47 Pg C/
year (Dunne et al., 2007; Field et al., 1998), we calculate that mac-
roalgae contribute at least 3% of global marine NPP, but at least 
20% of coastal NPP, where phytoplankton contributes 6.5 Pg C/
year (Dunne et al., 2007). We, therefore, argue that future descrip-
tions of the global ocean C cycle, which currently only account for 
phytoplankton production (Ciais et al., 2014), should be amended 
to include macroalgal production, as well as the smaller amount 
of production contributed by other vegetated coastal ecosystems 
(i.e. seagrass, saltmarsh and mangroves). In addition, estimates of 
carbon sequestration by blue carbon habitats should include mac-
roalgal forests as well, given the potential for their production to 
be exported to and trapped within carbon storage habitats and 
the deep sea where sequestration can readily take place (Krause- 
Jensen & Duarte, 2016; Ortega et al., 2019; Smale et al., 2018). 
The estimates presented here highlight that macroalgae and 
coastal vegetated ecosystems are important components of the 
global ocean carbon cycle that should not be ignored in future 
assessments.

The assessment above implies that existing global NPP esti-
mates of about 100 Pg C/year, integrating contributions by oce-
anic plankton and land vegetation alone (Field et al., 1998), should 
be increased by 1.5% when including the contribution of marine 
macroalgae. Indeed, macroalgae contribute about 3% of global 
marine NPP and 20% of coastal NPP. This represents a significant 
contribution, of a comparable magnitude in area and NPP to that 
of the Amazon forest. The area of the Amazon forest is reported at 
between 6.77 × 106 km2 (Doughty et al., 2015) and 7.8 × 106 km2 
(Rödig et al., 2018), which combined with an estimated NPP of 
4.3 tons C/ha/year (Rödig et al., 2018), yields a NPP of 2.9– 3.4 Pg C/
year, twice that reported here for macroalgae (Table 2). Macroalgae 
also contribute to oceanic carbon sequestration through produc-
tion exported and buried in marine sediments and the deep sea 
(Krause- Jensen & Duarte, 2016; Krumhansl & Scheibling, 2012; 
Ortega et al., 2019; Queirós et al., 2019). Indeed, Krause- Jensen & 
Duarte (2016) calculated that the carbon sequestration supported 
by macroalgae matches the combined contribution by seagrass 
meadows, saltmarshes and mangroves.

4.1  |  Are macroalgal extent and production 
changing at the global scale?

Changes in the global extent and productivity of macroalgae may 
impact global carbon cycling and possibly climate change if their 
net CO2 removal is reduced or increased as a result (Pessarrodona 
et al., 2018). Moreover, even in the absence of changes in area and 
production, the contribution of macroalgae to C fluxes may change 
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if transport to sink sites or the preservation therein are altered. Lack 
of evidence for global- scale changes in macroalgal NPP led to the ar-
gument that macroalgae have a limited, or no, role in climate change 
regulation (Orr & Sarmiento, 1992), with the consequence that these 
important components of the biosphere have since been ignored in 
the climate change debate.

Ocean acidification is generally considered to be beneficial to 
some non- calcifying macroalgal species because of the scope for 
increased photosynthetic rates with elevated CO2 concentrations 
(Kroeker et al., 2013). Ocean acidification has also been invoked 
to favour, together with warming, the replacement of kelps by turf 
algae (Connell & Russell, 2010). Recent evidence suggests that 
ocean acidification may also lead to higher C : N ratios in the tissue 
of some Laminariales, which in turn may enhance carbon burial rates 
(Ravaglioli et al., 2019). Hence, the possibility that ocean acidifica-
tion, warming and other global stressors affect the fraction of mac-
roalgal production sequestered needs be resolved.

There is growing concern that macroalgal forests have experi-
enced environmental changes affecting their capacity for carbon 
fixation and export (Krumhansl et al., 2016). These changes include 
the replacement of kelp forests by algal turfs (Filbee- Dexter & 
Wernberg, 2018), the loss of fucoids [e.g. Mediterranean Cystoseira 
forests (Thibaut et al., 2005) and Atlantic Fucus stands (Mineur 
et al., 2015; Nicastro et al., 2013)] with warming, and overgrowth of 
impacted coral reefs by macroalgae and turf algae (Anton et al., 2020; 
Hughes et al., 2003, 2017), among others. There is now ample evi-
dence that macroalgal distributions are changing globally in response 
to changing climate (Poloczanska et al., 2013; Smale, 2020) and other 
human impacts (Wernberg et al., 2019). Tropical regions are experi-
encing an increase in macroalgae from coral reef degradation (Hughes 
et al., 2017), the expansion of floating algal mats (Wang & Hu, 2017; 
Wang et al., 2019), and increases in seaweed aquaculture (Duarte 
et al., 2021). In the warm- temperate zone, a shift from kelp to turf 
algae is taking place in many regions, leading to declines in biomass 
and productivity (Krumhansl et al., 2016; Smale, 2020), while in cold 
temperate zones macroalgal biomass and production may be expand-
ing somewhat due to green and golden tides (Zhang et al., 2019) and 
seaweed aquaculture (Food & Agriculture Organization of the United 
Nations, 2020). Lastly, macroalgae are expanding their distributional 
ranges poleward and experience increased productivity in polar wa-
ters (Krause- Jensen et al., 2020; Krause- Jensen & Duarte, 2014), 
while range contraction of some macroalgal species with climate 
change is also being reported (Des et al., 2020). Hence, macroalgae 
do not conform globally to a single increasing or decreasing trend, 
but these trends vary across latitudes and habitat types. Moreover, 
while the impact at the global scale is rather limited, efforts to restore 
macroalgal communities are accelerating around the world, particu-
larly so in the temperate region (Duarte et al., 2020). Hence, changes 
in macroalgal area and carbon flux in the tropics and polar regions, 
where macroalgal cover and production are likely increasing, will have 
a major influence on the global contribution of macroalgae to carbon 
fluxes that remains to be quantified.

4.2  |  Prospects

We report here improved estimates of the global area and NPP of 
macroalgae, as well as current and projected changes, that address 
a long- standing gap for this biome and provide an improved basis 
to assess their global role. There is, however, a need to improve 
our current understanding of the fate of macroalgal carbon along 
with actionable human intervention options to influence carbon 
fluxes, to assess the potential for algal forests to support nature- 
based solutions for climate change mitigation (Gattuso et al., 2018; 
Krause- Jensen et al., 2018). Our improved estimates of the global 
distribution, area and production of macroalgal forests clearly iden-
tify them as a major component of the biosphere, of comparable 
areal extent and production to the Amazon forest, and warrant their 
inclusion in depictions of the global carbon budget.
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