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Abstract

Synchronous dynamics (fluctuations that occur in unison) are universal

phenomena with widespread implications for ecological stability. Synchronous

dynamics can amplify the destabilizing effect of environmental variability on

ecosystem functions such as productivity, whereas the inverse, compensatory

dynamics, can stabilize function. Here we combine simulation and empirical
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analyses to elucidate mechanisms that underlie patterns of synchronous

versus compensatory dynamics. In both simulated and empirical communi-

ties, we show that synchronous and compensatory dynamics are not mutu-

ally exclusive but instead can vary by timescale. Our simulations identify

multiple mechanisms that can generate timescale-specific patterns, includ-

ing different environmental drivers, diverse life histories, dispersal, and

non-stationary dynamics. We find that traditional metrics for quantifying

synchronous dynamics are often biased toward long-term drivers and may

miss the importance of short-term drivers. Our findings indicate key mech-

anisms to consider when assessing synchronous versus compensatory

dynamics and our approach provides a pathway for disentangling these

dynamics in natural systems.

KEYWORD S
community dynamics, compensatory dynamics, disturbance, environmental fluctuations, life
history, metacommunity, stability, variance ratio

INTRODUCTION

The extent to which communities of interspecific
competitors exhibit synchronous versus compensatory
temporal fluctuations and the underlying mechanisms
driving these fluctuations have been of fundamental
interest in ecology for decades (MacArthur, 1955).
Community synchrony and its alternative pattern, com-
pensatory dynamics, describe how the dynamics of species
aggregate to influence community stability through time.
Synchronous fluctuations of species’ abundances reduce
stability and often arise when species respond similarly to
environmental fluctuations (Ives, 1995; Loreau & de
Mazancourt, 2013), or through facilitative interactions
between species. In contrast, compensatory dynamics stabi-
lize overall community properties, as species fluctuate in a
negatively correlated manner (Peterson, 1975) often due to
competitive interactions or opposing responses to environ-
mental drivers (Gonzalez & Loreau, 2009; Ives, 1995;
Loreau & de Mazancourt, 2013). Quantifying the degree of
synchronous versus compensatory dynamics has emerged
as a key component of several recent advances in commu-
nity ecology, such as how functional diversity influences
resilience and how environmental change may impact
coexistence (Hallett et al., 2019; Lindegren et al., 2016).

Synchronous and compensatory dynamics have often
been considered mutually exclusive, as they reflect oppo-
site correlations among abundances (e.g., Houlahan
et al., 2007); however, there is a growing recognition that
synchronous and compensatory dynamics can instead be
timescale and spatial scale dependent (Downing et al.,
2008; Lasky et al., 2016; Vasseur et al., 2014). For

instance, species may be synchronous at one timescale
and compensatory at other timescales (Downing
et al., 2008; Vasseur et al., 2014), they may be synchro-
nous in certain life history stages but asynchronous in
others (Lasky et al., 2016), and they may be synchronous
under some environmental conditions and asynchro-
nous in others (Xu et al., 2015). A wide range of pro-
cesses can influence species dynamics and correlations
in species fluctuations, including environmental varia-
tion (Allstadt et al., 2015; Tredennick et al., 2017),
biotic interactions (Pedersen et al., 2016), variability in
species demographic rates (Jucker et al., 2014), and dis-
persal (Wang et al., 2019). While all of these processes
may affect synchronous versus compensatory dynam-
ics, many have not been explored in a timescale-
specific manner.

Linking patterns of timescale-specificity to mecha-
nisms is essential for predicting stability patterns under
global change. For example, multiple environmental
drivers operating at different timescales are one potential
mechanism explaining timescale-specificity (Frost et al.,
1995; Sheppard et al., 2016). If this is a primary mecha-
nism, then shifts in the timescale of dynamics would
reflect shifts in the timescale of each driver. Alternatively,
different life history strategies, in which some species
respond quickly to the environment while others exhibit a
lagged response, are another mechanism that could drive
timescale-specific dynamics (Loreau & de Mazancourt,
2013). If this is the primary mechanism, then shifts in the
timescale of environmental drivers may have a nonlinear
effect on synchronous versus compensatory dynamics,
depending on whether lagged species have sufficient time
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to recover (Benton et al., 2001). These primary effects may
be further mediated by species interactions, causing
emergent fluctuations to depend not only on underly-
ing environmental drivers or species demographic
rates, but also on the abundances of other species in
the community (Gonzalez & Loreau, 2009; Loreau & de
Mazancourt, 2013).

While there is a long history in population ecology of
assessing the timescale of oscillations for single-species
abundance patterns (Sheppard et al., 2016), and even how
species interactions may modulate these oscillations
(Ives, 1995; Ripa et al., 1998), at the community level
many fundamental studies of synchronous versus compen-
satory dynamics have used simple covariance and correla-
tion methods that aggregate across timescale (e.g., de
Mazancourt et al., 2013; Grman et al., 2010; Gross et al.,
2014; Hallett et al., 2014; Houlahan et al., 2007). However,
when examining community dynamics using a timescale-
specific methodology, multiple signals of differing periodic-
ity can be identified in a single timeseries (Downing et al.,
2008; Vasseur et al., 2014). Advances in scale-specific
metrics allow us to gain a new understanding of synchro-
nous versus compensatory dynamics (Brown et al., 2016;
Downing et al., 2008; Keitt & Fischer, 2006; Vasseur et al.,
2014; Vasseur & Gaedke, 2007), and new and less data-
intensive methodologies are opening up our ability to
empirically characterize timescale-specificity in terrestrial
and aquatic systems (Zhao et al., 2020). These methodolo-
gies, coupled with growing open-access and long-term
monitoring data, have the potential to expand our under-
standing of temporal fluctuations and their drivers across
a wide range of ecosystems, with implications for con-
necting patterns of synchrony and stability to underlying
mechanisms.

Here we use simulations and empirical analyses to
examine four mechanisms that can underlie timescale-
specificity of synchronous and compensatory dynamics.
We first examine timescale-specific dynamics with
multiple underlying environmental drivers of species’
abundances, where environmental fluctuations occur at
different timescales. Second, we assess a biotic mechanism
in which species share a response to drivers but differ in
their demographic rates. Third, we assess a spatial mecha-
nism in which different timescale dynamics occur in local
patches connected via dispersal, and we examine how they
aggregate to affect larger-scale metacommunity dynamics.
Finally, we consider a nonstationarity mechanism in
which global change may alter the timescale-specific
signature of synchronous and compensatory dynamics
coupled with species-specific threshold responses. We
focus our analyses on pairwise interactions to mechanisti-
cally and directly examine how differences in species’
environmental responses and demography manifest across

timescales. Our approach identifies key ecological factors
that may cause synchronous and compensatory dynamics
to operate at different timescales, while providing a path
forward to parsing these dynamics and understanding
their importance for stability in natural systems.

A TIMESCALE-SPECIFIC VARIANCE
RATIO

Studies of synchronous and compensatory dynamics in
community ecology have classically focused on their
implications for ecosystem stability (Gonzalez & Loreau,
2009), with many studies approaching synchronous and
compensatory dynamics phenomenologically, using
covariance methods such as the variance ratio and related
metrics (Klug et al., 2000; Loreau & de Mazancourt, 2008;
Peterson, 1975; Schluter, 1984). For instance, the classic
variance ratio, denoted by φ, compares covariances (cov)
among species over time to the variances (var) of the
individual, component species (Peterson, 1975; Schluter,
1984) and is defined for a timeseries xi tð Þ of species abun-
dances i¼ 1…,S as

φ¼
P

i,jcov xi tð Þ,xj tð Þ
� �

P
ivar xi tð Þð Þ : ð1Þ

A variance ratio > 1 reflects synchrony, whereas a vari-
ance ratio < 1 describes compensatory dynamics. While
applications of the variance ratio have advanced our
understanding of drivers of synchrony, this summary
metric cannot distinguish timescale-specificity in syn-
chronous versus compensatory dynamics.

Timescale-specific metrics make it possible to
parse the timescales of dynamics (Downing
et al., 2008; Lindström et al., 2012). We use a newly
developed approach that extends the classic variance
ratio (see Zhao et al. [2020] and the R package tsvr
[Reuman et al., 2019]). Paralleling the notation for
the variance ratio (Equation 1), the timescale-specific
variance ratio is denoted for a given timescale σ as
φts σð Þ. The variances and covariances are now replaced
by power spectra and co-spectra. We denote the power
spectrum of xi tð Þ as sii σð Þ and the co-spectrum of xi tð Þ
and xj tð Þ as sij σð Þ. We then can define the timescale-
specific variance ratio as

φts σð Þ¼
P

i,jsij σð ÞP
isii σð Þ : ð2Þ

This provides a variance ratio value across multiple
timescales. As with the classic variance ratio, values
φts σð Þ>1 correspond to synchrony at a given timescale σ,
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whereas values φts σð Þ<1 correspond to compensatory
dynamics.

The timescale-specific variance ratio allows for a direct
comparison to the classic, non-timescale-specific approach,
facilitating a comparison between studies that implement
either approach. To average the timescale-specific variance
ratio such that the classic variance ratio is recovered,
we define a normalized timescale-specific measure of pop-
ulation variability, w σð Þ¼P

isii σð Þ=Pivar xi tð Þð Þ, which
allows for a mapping between variance ratios such
that

P
σw σð Þφts σð Þ¼φ (Zhao et al., 2020). The different

timescales that can be assessed depend on the overall
time series length, T, ranging from a lower bound of
σ¼T= T�1ð Þ to an upper bound of σ¼T. For annually
sampled data, previous authors have adopted the practice
of computing weighted averages of the φts σð Þ over “short”
(σ<4 years) and “long” (σ ≥ 4 years) timescale bands
(Sheppard et al., 2016; Zhao et al., 2020). We follow
this convention for all of our analyses below for ease of
interpretation, but note that dynamics on individual
timescales can be studied instead. The threshold of σ¼ 4
time steps (sampling intervals) for differentiating short
and long timescales was chosen because σ¼ 4
corresponds to a frequency that is half the maximum
frequency that can be assessed (one cycle every two time
points). Additionally, σ¼ 4 is the boundary between
persistent and anti-persistent dynamics for sinusoidal
oscillations, as measured with a lag-1 autocorrelation
(Sheppard et al., 2016; Zhao et al., 2020).

THEORETICAL MODEL OVERVIEW

We applied the timescale-specific variance ratio to output
from theoretical models and an empirical case study. All
theoretical scenarios are based upon a model of popula-
tion and community dynamics that uses a modified ver-
sion of the model of Loreau and de Mazancourt (2013),
adapted for multiple environmental drivers:

Ni tþ1ð Þ¼Ni tð Þexp

� ri
z}|{
intrinsic
growth

1�Ni tð Þ
Ki

�βi,jNj tð Þ
Kj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

competition

0
BBB@

1
CCCAþ ϵ1,iμ1 tð Þ

zfflfflfflffl}|fflfflfflffl{env:1 effect

þ ϵ2,iμ2 tð Þ|fflfflfflffl{zfflfflfflffl}
env: 2 effect

2
6664

3
7775:

ð3Þ

Ni tð Þ is the abundance of species i at time t, r is the intrinsic
(density-independent) growth rate, K is the carrying capac-
ity, and βi,j is the competition coefficient of species j on i.

We incorporate two environmental drivers, creating envi-
ronmental fluctuations of varying timescales and amplitudes
where μe tð Þ¼ aesin betþ ceð Þ for environmental conditions

e¼ 1,2. Environmental fluctuations vary based on a sinu-
soidal function (sin), where ae denotes the amplitude, be
controls the period, and ce denotes the phase shift. Spe-
cies’ sensitivities to environmental fluctuations are
defined via ϵe,i. We modify the above baseline model and
its parameters to examine each of our four mechanisms.
For each, we run the model for 100 time steps, with the
first 50 discarded to remove any potential effects of initial
conditions, and the last 50 time steps included in our syn-
chrony analyses. We set species’ initial abundances to
their carrying capacities, K1 and K2. All analyses have
complete code provided online (see Data Availability).

EMPIRICAL CASE STUDY

To test mechanisms 1 and 2 in an empirical case study,
we applied the timescale-specific variance ratio to long-
term data from a California serpentine grassland
(Appendix S1: Figure S1a–c). California serpentine
grasslands are dominated by annual forbs and support
native perennial grasses. They are characterized by a
highly variable climate; at our site, Jasper Ridge in San
Mateo County, California, USA, annual rainfall ranges
from 200 to 1200 mm (Hallett et al., 2018). Climate pat-
terns are influenced by long-term cycles, including the
El Niño Southern Oscillation and the Pacific Decadal
Oscillation, and species exhibit differential responses to
wet and dry years (Hallett et al., 2018; Hobbs
et al., 2007). Within the site, gopher activity creates dis-
turbances that remove all of the vegetation in small pat-
ches across the landscape (Hobbs et al., 2007; Hobbs &
Mooney, 1985; Appendix S1: Figure S1d). We
(R. J. Hobbes and L. M. Hallett) have collected plant spe-
cies composition data and gopher disturbance data in
216 0.5 � 0.5 m quadrats annually for 37 years (1983–
2019; see Hobbs et al. [2007] for sampling details). Using
these data, we focused on species contrasts that we
hypothesized would exhibit timescale specificity via abi-
otic and biotic mechanisms.

MECHANISM 1: MULTIPLE
ENVIRONMENTAL DRIVERS

Theoretical test

Environmental variability is a key driver of abundance
fluctuations, and different environmental drivers
may affect species in similar or opposing manners
(Downing et al., 2008; Ives, 1995; Keitt & Fischer, 2006;
Zhao et al., 2020). The combination of different environ-
mental drivers operating a different timescales may gen-
erate a timescale-specific pattern of synchronous versus
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compensatory dynamics (Frost et al., 1995). To assess this
mechanism we applied the timescale-specific variance
ratio to the simulated two-species community influenced
by two drivers: a short-timescale driver to which species
had a shared response, and a long-timescale driver to
which species had opposing responses (drivers represen-
ted in Figure 1a–c, individual species responses in
Figure 1d,e; model parameters in Appendix S1:
Section S1).

Empirical test

To test the empirical implications of different environ-
mental drivers on timescale-specific synchronous and
compensatory dynamics, we focused on two species of
annual forbs that exhibit highly variable abundances over
time at Jasper Ridge, California: Plantago erecta and
Microseris douglasii (Appendix S1: Figure S1e,f). We
hypothesized that these species would share a similar,
short-timescale response to gopher disturbance (initially
negative but rebounding quickly) but contrasting long-
timescale responses to climate (P. erecta does better in
dry years and M. douglasii has no discernible response;
Hallett et al., 2018; Hobbs et al., 2007). To test this, we fil-
tered the full data set to include only years and quadrats
in which both species were initially present at moderate
to high abundances ( > 3% cover in year 0), the quadrat
was disturbed in year 1, and was undisturbed through at

least year 9. We set this minimum length to ensure
timeseries of at least 10 years (as recommended by Zhao
et al., 2020), although all retained timeseries were lon-
ger (ranging from 17 to 35 years). This process resulted
in 85 timeseries with 19 different starting years. We then
applied the timescale-specific variance ratio to each
timeseries.

Results and discussion

Our simulated community exhibited highly synchronous
dynamics at short timescale and highly compensatory
dynamics at long timescales, and this expected pattern
was easily discernable using the timescale-specific vari-
ance ratio (Figure 1f,g). In comparison, the effect of the
short-timescale driver was largely masked with the clas-
sic variance ratio (Figure 1g). Our empirical case study at
Jasper Ridge mirrored our theoretical results, such that
species were synchronous on short timescales and com-
pensatory on long timescales. Further, the classic vari-
ance ratio primarily captured the longer timescale
dynamics (Figure 2).

There are both statistical and ecological explanations
for the striking importance of long-timescale dynamics for
the classic variance ratio. Statistically, the relationship
between the classic variance ratio and the timescale-specific
decomposition depends on the length of the timeseries
and on differences in the amplitude of short-term versus

(a)

D
riv

er

Short timescale

(b)

Long timescale

(c)

Composite

Short−term driver
Long−term driver
Species 1
Species 2
Total biomass

(d)

Ab
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da
nc

e

(e)

Time

(f)

Short 
 timescale

Long
 timescale

Classic
0

1

2

Variance ratio

(g)

F I GURE 1 Environmental drivers operating on different timescales can create timescale-specific synchronous and compensatory

dynamics. Environmental drivers may operate over (a) short timescales, (b) long timescales, and (c) in combination. (d) Shared species

responses to a single, high-frequency driver result in high species synchrony and unstable total biomass, whereas (e) opposite responses to a

single, low-frequency driver result in compensatory dynamics and stable total biomass. The combination of these responses results in (f)

synchrony at short timescales and compensatory dynamics at long timescales. As a result, (g) a timescale-specific variance ratio differentiates

these dynamics, whereas the classic variance ratio does not reflect short timescale synchrony
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long-term environmental fluctuations (ae) and species’
sensitivities (ϵ). As such, the contribution of long-term
dynamics to the variance ratio increases with both
timeseries length and the amplitude of long-term drivers.
As all timeseries here are relatively long (i.e., ≥17 years),
the classic variance ratio mirrors the long timescale sig-
nal. Ecologically, long-timescale drivers may most
strongly influence patterns of community synchrony for
several reason. First, long-timescale climate drivers, such
as the Pacific Decadal Oscillation and the North Atlantic
Oscillation, are more regular than short interannual vari-
ation in weather patterns and may therefore be more
detectable in their effect on community structure (Chiba
et al., 2012; Downing et al., 2008). Long-term climate

drivers like the Pacific Decadal Oscillation may underlie
the pattern of long-timescale compensatory dynamics we
observed at Jasper Ridge (Figure 2a,b), where annual spe-
cies often rebound quickly from frequent disturbance
(such as gophers), leaving only a fleeting signature on
patterns of community synchrony (Figure 2a,b). Second,
long-timescale fluctuations may reflect the differing role
that rare versus common events have on populations.
Daily temperature fluctuations and summer heat waves,
for example, can both influence population dynamics.
The effect of daily temperature fluctuations on
populations are typically felt over short timescales,
whereas high mortality due to a rare and extreme heat
wave may have a long-lasting signal on population
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F I GURE 2 Applying the timescale-specific synchrony metric to a case study at Jasper Ridge, California, USA. (a) Averaged timeseries

(� SE) of two native annual forbs Plantago erecta and Microseris douglasii before and after gopher disturbance (disturbance occurred during

the gray bar at time 1). (b) Short timescale, long timescale, and classic variance ratio for P. erecta and M. douglasii communities (average

value of the metric after it was calculated on individual timeseries � SE). (c) Averaged timeseries (� SE) of a native annual forb P. erecta and

native perennial grass Elymus glaucus before and after gopher disturbance (gray band). (d) Short timescale, long timescale, and classic

variance ratio for P. erecta and E. glaucus communities (� SE)
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dynamics (Lindström et al., 2012). While the effects of
the timescales of environmental fluctuation and distur-
bance have been explored in the context of population syn-
chrony and extinction risk (Heino, 1998; Schwager
et al., 2006), if some species can tolerate extreme events
while others cannot, extreme events may leave a long-
lasting signature of compenasatory dynamics in communi-
ties (Till et al., 2019).

MECHANISM 2: DIFFERENCES IN
SPECIES DEMOGRAPHIC RATES

Theoretical test

Species differ in their intrinsic growth rates, which can
manifest in differences in the timescale of their
response to an environmental driver (Grime, 1977). For
example, a species that exhibits a lagged response to
the environment may appear compensatory with
respect to one that rapidly tracks the environment,
even when both species share the same directional
response to environmental conditions (Ives, 1995;
Loreau & de Mazancourt, 2008). To explore this mech-
anism, we modified our model such that species shared
the same directional response to two environmental
drivers but differed in their response times (parameters
in Appendix S1). Species either tracked the environ-
ment, exhibited a lagged response, or exhibited a rapid
response (initially overshooting their carrying capacity
and then exhibiting dampening oscillations; Figure 3a).

We compared three different examples. In the first, both
species’ growth rates track environmental fluctuations
(Figure 3b; r1 ¼ r2 ¼ 1:00). In the second, one species
tracks the environment and the other exhibits a lagged
response due to its slow intrinsic growth rate (Figure 3c;
r1 ¼ 1:00, r2 ¼ 0:15Þ: In the last, one species tracks the
environment while the other exhibits dampening oscilla-
tory responses to environmental fluctuations (Figure 3d;
r1 ¼ 1:00, r2 ¼ 1:8).

Empirical test

To explore whether differences in the timescale of species
responses to the environment are reflected in the time-
scale of synchrony, we focused on P. erecta and a peren-
nial grass, Elymus glaucus (Appendix S1: Figure S1e,g).
We hypothesized that they would share similar, negative
short-timescale responses to gopher disturbance, but that
their recovery times would differ, with the annual
P. erecta rebounding quickly but the perennial E. glaucus
recovering more slowly. We subsetted the data following
the protocol described for mechanism 1, analyzing
41 timeseries ranging from 10–35 years in length with
13 different starting years.

Results and discussion

The presence of species with different environmental
response rates can reduce synchrony and even generate
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F I GURE 3 Differences in the growth rates of species can alter the timescale of synchrony, even when species share the same

directional response to the environment. (a) Growth curves of species with different density-independent growth rates, r. The black species

tracks the environment, the tan species exhibits a lagged response, and the pink species responds rapidly enough to create dampened

internal oscillations. (b–d) Population dynamics among species that share directional responses to (e) two timescale-specific environmental

drivers. (f–h) The resulting timescale-specific and classic variance ratios
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compensatory dynamics, even when all species share
the same directional response to the environmental
driver, as shown in our simulations (Figure 3b–d). The
compensatory effect of lagged responses was strongest
when the timescale of the lag matched the timescale of
the environmental driver. For example, the presence of
a species with a slow growth rate generated compensa-
tory dynamics across all timescales (Figure 3c,g). Across
systems, differences in the timescale of species
responses versus recovery times in poor environmental
conditions may drive timescale-dependent patterns. We
observed this at Jasper Ridge, in which both the annual
and perennial species shared an initial, negative response
to disturbance that enhanced short-timescale synchrony
(Figure 2c,d). However, the perennial species had a
slower recovery rate (i.e., a lagged response) that pro-
moted compensatory dynamics at longer timescales by
delaying its recovery relative to the annual species
(Figure 2c,d). These difference in recovery rate caused
timescale-specific dynamics, even when species
responded similarly to underlying abiotic drivers, such as
disturbance.

Endogenous population cycles, often induced by fast
growth rates, may decouple some species’ fluctuations
from the environment (Haynes et al., 2019). As such, spe-
cies cycling at different rates will be less synchronous
than predicted based solely on environmental response,
although this effect is timescale dependent (Figure 3d,h).
In our simulation, a species with a fast growth rate more
closely tracked short-timescale environment fluctuations,
reflecting the fact that environmental conditions changed
before the species internal dynamics dominated its popu-
lation cycles. As a result, the fast-growing species was
synchronous with a species whose growth tracked the
environment at short timescales (Figure 3d,h). At long
timescales, however, the population cycles of the fast-
growing species became increasingly decoupled from the
environmental driver, and correspondingly, the other
species (Figure 3d,h). Consequently, internal dynamics
generated by fast growth rates may also promote
increased compensatory dynamics, particularly in com-
munities structured by long-timescale drivers.

MECHANISM 3: DISPERSAL AND
SPATIAL PROCESSES

Theoretical test

Species interactions and responses to environmental fluc-
tuations do not occur in isolation, but rather local-scale
dynamics are embedded in a larger spatial context, where
communities are connected via dispersal. As such, we

explore if the timescale of a driver affecting a single patch
may still generate timescale specificity in other patches
and at the landscape-scale via dispersal. To examine this
mechanism, we modified our general model of species’
abundances through time (Equation 3) to create a two-
patch metacommunity, where patches exhibited different
underlying timescales of environmental fluctuations.
In our model, species responded similarly to short-term
fluctuations that occurred in patch 1 (denoted by the
subscript x), but in opposing manners to long-term fluc-
tuations in patch 2 (subscript y; Figure 4a,d). We quanti-
fied the timescale-dependent signature of dispersal (d) by
comparing cases without (d¼ 0:0) versus with (d¼ 0:4)
strong dispersal between patches (parameters in
Appendix S1). Abundances of species i within patches x
and y followed

Ni,x tþ1ð Þ¼

Ni,x tð Þexp ri 1�Ni,x tð Þ
Ki

�βi,jNj,x tð Þ
Kj

� �
þ εx,iμx tð Þ

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{local dynamics

þ dNi,y tð Þ|fflfflfflffl{zfflfflfflffl}
immigration

� dNi,x tð Þ
zfflfflfflffl}|fflfflfflffl{emmigration

ð4Þ

Ni,y tþ1ð Þ¼Ni,y tð Þexp ri 1�Ni,y tð Þ
Ki

�βi,jNj,y tð Þ
Kj

� �
þϵy,iμy tð Þ

� �

þdNi,x tð Þ�dNi,y tð Þ:
ð5Þ

Results and discussion

Applying the timescale-specific variance ratio at multiple
spatial scales elucidated the interplay between local and
regional processes in landscapes with spatial heterogene-
ity (Figure 4a,d). For example, in the absence of dispersal,
synchrony in abundances was driven solely by within-
patch dynamics, as expected (Figure 4b,e). Here, the
timescale-specific variance ratios recover the classic vari-
ance ratio. However, at the larger landscape scale
(Figure 4g), the signatures of each patch’s environmental
fluctuations were detected with the timescale-specific
variance ratio, while the classic variance ratio was again
biased toward the long-term drivers occurring in patch
2 (Figure 4i).

Dispersal between patches was detectable in a hetero-
geneous landscape using the timescale-specific metric,
highlighting how spatial processes can impact our inter-
pretation of temporal synchrony (Figure 4c,f,h). In this
case, synchronous dynamics from short-term drivers
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(in patch 1) and compensatory dynamics from long-term
drivers (in patch 2) were evident in both patches (Figure 4i
vs. j). Within patches, comparing the timescale-specific
variance ratio with the classic ratio elucidated the focal
patch; the classic variance ratio was synchronous in patch
1 but compensatory in patch 2 (Figure 4j). This shows how
a temporally-focused method can detect spatial hetero-
geneity and dispersal effects when applied at different
levels of spatial aggregation. In more complex scenarios,
we expect these spatiotemporal patterns to also yield sig-
natures in the timescale-specific variance ratio. For
example, the order in which species arrive can alter

long-term community composition and patterns in syn-
chrony (Fukami et al., 2016). Furthermore, arrival itself
can depend on fluctuations in underlying environmen-
tal conditions that alter species’ dispersal kernals and
propagule density, yielding complex spatiotemporal
dynamics (Sullivan et al., 2018).

At larger spatial scales, spatial patterning and
interdependence between patches plays a key role in deter-
mining stability. Here we compare patches with different
underlying environmental drivers. However, previous
work highlights how overall landscape stability depends
not only on trade-offs and compensatory dynamics of
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species within patches, but also on trade-offs among pat-
ches (Wang et al., 2019; Wilcox et al., 2017). These among
patch trade-offs can create compensatory flucutuations
among patches, stabilizing overall landscape fluctuations.
Our results provide additional insight into the role of
dispersal and how connectivity between plots manifest as
different synchrony and stability patterns depending on
the scale of spatial aggregation.

MECHANISM 4: GLOBAL CHANGE
AND NONSTATIONARITY

Theoretical test

Changes in synchronous and compensatory dynamics,
and their timescale-specificity, will likely also be
impacted by global change and non-stationary environ-
mental fluctuations, especially as species cross thresholds
where their responses to environmental conditions shift
(Ives, 1995; Radeloff et al., 2015). For example, a rise in
climate extremes may increase synchronous dynamics if

temperatures periodically surpass the physiological limits
of all species in a community; while these thresholds
may be present under stationary conditions, they are
predicted to be increasingly important under global
change (Somero, 2012). To examine these potential global
change and threshold effects, for our final mechanism,
we modeled an individual driver that oscillated on both
short-term and long-term timescale (Figure 5a). To do so,
we summed the effects of short- and long-term fluctuations
of a single driver (Figure 5b); this could, for example, repre-
sent temperature oscillating over seasons with a multi-year
effect from drivers such as the North Atlantic Oscillation.
We examined the timescale of synchrony (1) in the original
stable environment (ehistoric), (2) under directional environ-
mental change (Figure 5c), and (3) under a new environ-
mental steady state (enew, where enew ¼ ehistoricþ0:5.
Figure 5d; parameters in Appendix S1).

We considered a community where both species
responded with the same strength to environmental
fluctuations (ϵe ¼ 0:5), but the second species responded
to the environment only above a certain threshold,
e.g., when e>0:5. As such, enew was more often above
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species 2 to respond to the driver more frequently. Finally, under a stable climate with an elevated mean, both species become synchronized

by environmental variability across timescales (d, j)
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the threshold for species two’s response than under
ehistoric conditions. This case represents commonly
observed demographic responses across species and eco-
systems. For example, rainfall and moisture thresholds
are common for breaking impermeable seed coat dor-
mancy (Jaganathan et al., 2019), and phytoplankton spe-
cies often have different threshold responses to pH
(Klug et al., 2000).

Results and discussion

Under baseline historic conditions, the combination of com-
petition and species-specific environmental thresholds yielded
strong compensatory dynamics on long timescales and wea-
ker compensatory dynamics with the classic variance ratio
(Figure 5b,e,h). This occurred even though species responded
in the same manner to environmental fluctuations. Compen-
satory dynamics driven by competition overshadowed syn-
chronizing effects of a shared environmental driver, as species
2 responded to the environment only relatively rarely. In con-
trast, global change increased synchrony at all timescales,with
dynamics intermediate between those observed under the his-
toric versus new environment (Figure 5c,f,i). Once the envi-
ronment settled on a new equilibrium, our model yielded
increased synchrony. This increase in synchrony occurred
because the environment was more often above the threshold
where both species responded to the driver. Environmental
fluctuations therefore weremore important under enew, while
competition dominated dynamics under ehistoric condi-
tions (Figure 5d,g,j).

Our model results hint that increased environmental
forcing from more extreme climate conditions in the future
may overshadow competitive effects, yielding an increase in
community synchrony and a loss of compensatory dynamics.
To date, the effects of climate change on synchrony
have been examined primarily in a single-species context or
in relation to phenological synchrony between pairs of
species. For example, increased spatial synchrony between
populations has been observed among populations of dam-
selfish in the Great Barrier Reef (Cheal et al., 2007), North
American wintering birds (Koenig & Liebhold, 2016), and
Greenland caribou (Post & Forchhammer, 2004). In contrast,
however, climate-induced shifts in phenology can disrupt
synchrony in plant–herbivore (Hunter & Elkinton,
2000; Tikkanen & Julkunen-Tiitto, 2003), predator–prey
(Logan et al., 2006; Sanford, 1999), and host–parasitoid
interactions (Hance et al., 2007; Klapwijk et al., 2010;
Visser & Holleman, 2001), causing increased extinction
risk for codependent species. Our model suggests that, as
for single-species populations, synchrony within commu-
nities may increase with climate change. The application
of timescale-specific methods in empirical communities,

including Fourier transformations as employed here,
and wavelet analyses when longer timeseries are available,
provides a pathway for assessing whether natural commu-
nities match theoretical expectations.

FUTURE DIRECTIONS

Our findings suggest promising next steps for both theoreti-
cal studies as well as challenges for empirical research. A
promising avenue for future theoretical work is to investigate
the interaction between different mechanisms. For example,
resource fluctuations may directly alter the timescale of syn-
chrony, but resource availability may also alter the growth
rate of different species, creating a scenario in which mecha-
nisms 1 and 2 vary interactively (Benton et al., 2001). In addi-
tion, analyses of species fluctuations commonly focus on
either phenological, population, or community dynamics, yet
phenological and population synchrony can impact commu-
nity dynamics and vice versa (Ripa et al., 1998). Linking
these different forms of synchrony could increase theoretical
understanding of synchronous and compensatory dynamics
across spatial as well as temporal scales. Finally, demo-
graphic and environmental stochasticity may also alter the
signature of synchronous versus compensatory dynamics
(Loreau & de Mazancourt, 2008, 2013), which could inform
both future theoretical and empirical studies (Shoemaker
et al., 2020). A key challenge for empirical studies will be to
extend a timescale-specific approach to mechanistically
understand dynamics in diverse as well as pairwise commu-
nities. A second key empirical challenge will be to design
experiments that can disentangle mechanisms that operate
on long versus short timescales, as our analyses indicate that
long-term drivers consistently had a stronger effect on overall
dynamics.

CONCLUSIONS

Understanding patterns of synchronous versus compensa-
tory dynamics remains an ongoing challenge in community
ecology. Our results demonstrate how multiple mecha-
nisms, including environmental drivers, species demogra-
phy, and dispersal can shape the timescale of synchronous
versus compensatory dynamics. To date, most empirical
assessments of community synchrony, particularly in terres-
trial systems, have not accounted for timescale specificity.
Building from recent methodological advances that
allow timescale specificity to be determined with shorter
timeseries of abundances (Zhao et al., 2020), our work
points to specific mechanisms of community dynamics
that, if characterized, can help us better understand syn-
chrony and stability patterns across timescales.
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