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Abstract: Marine biogeochemical models have been widely used to understand ecosystem dynam-

ics and biogeochemical cycles. To resolve more processes, models typically increase in complexity, 

and require optimization of more parameters. Data assimilation is an essential tool for parameter 

optimization, which can reduce model uncertainty and improve model predictability. At present, 

model parameters are often adjusted using sporadic in-situ measurements or satellite-derived total 

chlorophyll-a concentration at sea surface. However, new ocean datasets and satellite products have 

become available, providing a unique opportunity to further constrain ecosystem models. Biogeo-

chemical-Argo (BGC-Argo) floats are able to observe the ocean interior continuously and satellite 

phytoplankton functional type (PFT) data has the potential to optimize biogeochemical models with 

multiple phytoplankton species. In this study, we assess the value of assimilating BGC-Argo meas-

urements and satellite-derived PFT data in a biogeochemical model in the northern South China 

Sea (SCS) by using a genetic algorithm. The assimilation of the satellite-derived PFT data was found 

to improve not only the modeled total chlorophyll-a concentration, but also the individual phyto-

plankton groups at surface. The improvement of simulated surface diatom provided a better repre-

sentation of subsurface particulate organic carbon (POC). However, using satellite data alone did 

not improve vertical distributions of chlorophyll-a and POC. Instead, these distributions were im-

proved by combining the satellite data with BGC-Argo data. As the dominant variability of phyto-

plankton in the northern SCS is at the seasonal timescale, we find that utilizing monthly-averaged 

BGC-Argo profiles provides an optimal fit between model outputs and measurements in the region, 

better than using high-frequency measurements. 
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1. Introduction 

Numerical models play a vital role in investigating complex marine ecosystem dy-

namics. Numerical models require multiple parameters to formulize the ecological pro-

cesses, but it is often difficult to constrain model parameters. As the complexity of a ma-

rine model increases, thus does the number of model parameters. Constraining model 

parameter values and their uncertainties have a great influence on model performance 

[1,2], and one way of doing that is through data assimilation. Assimilating ocean remote 

sensing observations into the model to adjust model parameters and reduce their uncer-

tainties can help towards a better representation of marine ecosystem dynamics [3–9].  

Processes of growth, decay, and interaction by plankton are important in under-

standing marine ecosystem models and dynamics. Model parameters related to these pro-

cesses are usually tuned empirically and arbitrarily. In order to reproduce observed data 

such as the distribution of phytoplankton and analyze underlying dynamics, it is required 

to reasonably estimate model parameters. Here, we developed and optimized a physical-

biogeochemical model in the South China Sea (SCS) to study phytoplankton distributions 

and dynamics. The SCS is a large semi-enclosed marginal sea in the western Pacific. In 

winter, the SCS is dominated by the strong northeasterly monsoon, whereas in summer 

the winds reverse direction to southwesterly. The seasonal change of monsoon winds 

leads to variability in the upper ocean circulation [10,11]. The dominant temporal varia-

bility of biogeochemical processes in the upper ocean occurs on the seasonal time-scale 

[12]. Ning et al. [13] reported low surface production in summer and high in winter. In 

the northern SCS, previous studies showed a negative correlation between satellite-de-

rived chlorophyll-a concentration (Chla) and sea surface temperature [14,15]. Recently, 

Geng et al. [16] demonstrated that the buoyancy flux induced mixing controls the seasonal 

variability of vertical nutrient transport and phytoplankton production in the northern 

SCS. 

The winter mixing also has the potential to shoal the subsurface chlorophyll-a maxi-

mum (SCM) and change the vertical distribution of chlorophyll-a [16,17]. The SCM is a 

common feature in the northern SCS, contributing significantly to the depth-integrated 

primary production [18]. The formation and maintenance of SCM in the SCS have been 

investigated with idealized models [16,17,19], which identified key factors such as detritus 

remineralization, zooplankton grazing, phytoplankton sinking, and phytoplankton pho-

toacclimation in modulating the SCM. However, the relative importance of these pro-

cesses is largely determined by their parameterizations in the model. Rigorously quanti-

fying processes that influence vertical distributions of chlorophyll-a thus requires a prior 

optimization of the model parameters. 

Satellite-derived chlorophyll-a concentration has been widely used to constrain or 

evaluate biogeochemical models. However, ocean color satellites only detect the near-sur-

face. The SCM is generally located at ~75 m in the northern SCS [16], which is far beyond 

the detection depth of satellites. In addition, satellite-derived chlorophyll-a is the bulk 

value of the near-surface water. It can be used to constrain the biogeochemical model that 

only simulates one phytoplankton group. For biogeochemical models with multiple phy-

toplankton groups or sizes, large uncertainties exist when using the satellite-derived bulk 

chlorophyll-a concentration to constrain the model, as additional assumptions are re-

quired on the relative contributions of phytoplankton groups [20–23]. 

Recent advances in estimating phytoplankton functional type (PFT) from satellite 

provides an opportunity to constrain models with multiple phytoplankton groups [24,25]. 

The PFT models are mostly derived from in situ High Performance Liquid Chromatog-

raphy (HPLC) pigment data. Pigments determined by HPLC can be found in a variety of 

phytoplankton taxa and size classes, which may introduce uncertainties in the PFT model. 

For satellite PFT data, per-pixel uncertainties are generally difficult to quantify, especially 

in regions that are not covered by satellite and in situ match-up datasets [25]. Additional 

uncertainties can also occur because of differences in the temporal and spatial scales be-

tween satellite and in-situ data. Nevertheless, assimilation of PFT in the model has been 
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shown to improve the simulation of phytoplankton community structure and produce a 

better total chlorophyll-a forecast in the North Atlantic [26,27]. Studies provide a PFT-

based eco-regionalization of the Mediterranean Sea [28] and improve the simulation of 

PFT in the global ocean [29]. Biogeochemical-Argo (BGC-Argo) floats are able to sample 

the ocean vertically and continuously. Wang et al. [9] reported that assimilating profiles 

sampled by a BGC-Argo float yielded significant improvements for both surface and sub-

surface chlorophyll-a simulation. Utilizing both satellite PFT and BGC-Argo data in multi-

phytoplankton biogeochemical models may thus have great potential in adjusting model 

parameters. 

In this study, a one-dimensional (1D) physical-biogeochemical model has been de-

veloped in the northern SCS. By using a genetic algorithm, we investigate the value of 

using satellite PFT and BGC-Argo data to optimize model parameters. The aim of this 

study is to improve the simulation of vertical distributions of phytoplankton chlorophyll-

a and particulate organic carbon (POC) concentrations in the northern SCS. Due to the 

computational cost, parameter optimization in a three-dimensional (3D) model is chal-

lenging. However, parameters optimized by using the 1D model can provide a useful 

baseline for 3D modeling [9,30,31]. 

2. Methods 

2.1. Model Description 

A coupled physical–biogeochemical model was developed in the northern SCS. The 

physical model is based on the Regional Ocean Modeling System (ROMS), which repre-

sents an evolution in the family of terrain-following vertical-coordinate models [32]. The 

model was set up with 100 layers in the vertical direction. The Mellor–Yamada Level 2.5 

turbulence closure scheme was used in the model. The 1D model only considers vertical 

mixing processes without advection. Although it is simplified, previous studies have 

shown that the 1D coupled model can simulate vertical structures of biogeochemical var-

iables reasonably well in the SCS basin [16,17]. The biogeochemical model is based on the 

Carbon, Silicate, and Nitrogen Ecosystem (CoSiNE) model, which has been calibrated and 

configured in the SCS [33,34]. The model has 2 phytoplankton groups (pico-phytoplank-

ton (S1, Chl1) and diatoms (S2, Chl2)), 2 zooplankton groups (micro-zooplankton (Z1), 

mesozooplankton (Z2)), 2 size classes of particulate organic nitrogen (small (SPON), large 

(LPON)), biogenic silica (bSi), 4 inorganic nutrients (nitrate (NO3), ammonium (NH4), 

phosphate (PO4), silicate (Si(OH)4)), dissolved oxygen (DO), and carbonate variables (dis-

solved inorganic carbon (DIC), total alkalinity (TALK)). In addition to the nitrogen-based 

biomass of phytoplankton, phytoplankton chlorophyll concentration for each group 

(pico-phytoplankton and diatom) was modeled following Geider et al. [35] by considering 

phytoplankton photo-acclimation with variable chlorophyll to biomass ratio. Nutrients 

such as nitrate, ammonium, and phosphate determine the growth of phytoplankton. Sili-

cate is the additional nutrient that controls the growth of diatoms. Microzooplankton 

grazes on pico-phytoplankton, while mesozooplankton grazes on diatoms, microzoo-

plankton, and detritus. The mortality and aggregation of phytoplankton and zooplankton 

form detritus, which are remineralized into inorganic matters during sinking. The 2 sizes 

of detritus were parameterized with different sinking speeds and remineralization rates. 

Model equations are as follows: 

𝜕𝐶

𝜕𝑡
= 𝑃𝐻𝑌(𝐶) + 𝐵𝐼𝑂(𝐶), (1) 

where C represents the concentration of a biological variable. PHY(C) represents the con-

tribution to the concentration change due to physical processes. BIO(C) represents bioge-

ochemical source-minus-sink terms. The detailed equations are presented in Appendix A 

and the original model parameters are listed in Ma et al. [34]. 

The CoSiNE model has the capability of simulating 2 phytoplankton functional 

groups, pico-phytoplankton and diatom, which are 2 dominant phytoplankton groups in 
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the northern SCS. Resolving phytoplankton functional groups in the model is important 

for realistic simulations of nutrient and carbon dynamics, because diatom-related aggre-

gation and grazing processes tend to generate large particles that sink faster and reminer-

alize deeper than the pico-phytoplankton related processes. As a consequence, biogeo-

chemical models with 1 phytoplankton group may have difficulties in reasonably simu-

lating the vertical distribution of the remineralization process of particulate organic mat-

ter, which can further lead to model bias in nutrient and carbon distributions. Further-

more, the CoSiNE model has been applied and validated in the SCS in many different 

studies. It has been used to study mesoscale eddies [36], Kuroshio intrusion fronts [37], 

carbon export [34], and cross-shelf exchange [38], etc., which shows its applicability in the 

SCS. Because of the model’s ability in simulating two phytoplankton groups, we were able 

to utilize both satellite-derived PFT data and total chlorophyll-a concentration to constrain 

the model. 

The coupled model was initialized with the climatological data from the World 

Ocean Atlas 2009 (WOA09) and was forced by the 6-hourly surface forcing fields from 

NCEP/NCAR reanalysis data, including air temperature at 2 m, surface wind components 

at 10 m, relative humidity at 2 m, sea level pressure, total cloud coverage, and net short- 

and long-wave radiations. The model was run for 4 years from January 2013 to December 

2016. 

The model was set up at the South East Asian Time series Study (SEATS; 18°N, 116°E) 

station in the northern SCS (Figure 1). The SEATS is a station that is representative of 

typical physical and biogeochemical conditions in the northern SCS. The SEATS station is 

located away from coastal upwelling regions in the SCS [39–41]. The major nutrient sup-

ply to the upper layers is via vertical mixing [42]. The seasonal change of monsoon winds 

leads to variability in the upper ocean circulation. The dominant temporal variability of 

biogeochemical processes in the upper ocean occurs at the seasonal timescale, and surface 

production stays low in summer and high in winter. In the SCS, mesoscale eddies are 

ubiquitous, which have an important influence on the biological process, but eddies are 

often sporadic and do not show a clear seasonal pattern in the northern SCS [43]. There-

fore, the influence of eddies is not discussed in the parameter optimization process in this 

study. 

 

Figure 1. Spatial distribution of surface chlorophyll-a concentration (mg m−3) in winter in the 

northern SCS. The background color shows the climatological Chla averaged in winter from 1998 

to 2010. The white curve is the isobath of 200 m and 2000 m, respectively. The yellow pentacle 

shows the position of SEATS station. The red point shows the starting point of the float, and the 

gray curve shows the trajectory of the float. 

2.2. Sensitivity Analysis 

There are more than 40 parameters related to biochemical processes in the CoSiNE 

model. Parameters with high sensitivity should have priority for optimization. Therefore, 

a sensitivity analysis was carried out first to identify the parameters that have an 
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important influence on modeled chlorophyll-a concentration. The initial parameter values 

refer to previous studies [34,44–46], and possible ranges for each parameter, before the 

optimization, were defined following the method of Hemmings et al. [47] and Kaufman 

et al. [31]. The upper and lower bounds for biological parameters, such as parameters re-

lated to phytoplankton growth and zooplankton grazing, were selected from the rules of 

previous studies [31,47]. For the parameters that were unique in the CoSiNE model, 

bounds were set to be half and double the initial values. For fractional parameters, values 

were set to vary from 0.05 to 0.95. The sensitivity analysis experiment was conducted in 2 

steps. 

Firstly, we used a sensitivity formulation to perform a screening sensitivity analysis. 

The following sensitivity function is employed to measure the local sensitivity of the bio-

logical parameters to model outputs [45,48]: 

𝑆𝐶,𝑥 =
𝐶𝑥−𝐶𝑥−%

𝐶𝑥

𝑋−𝑋𝑥−%

𝑋
⁄ , (2) 

where Xx-% is the value of biological parameter subtracted by a fixed ratio (50%), Cx-% is 

the corresponding annual mean chlorophyll-a concentration at the sea surface. Parameters 

with larger Sc,x values are thought to be more sensitive to the model. With this approach, 

we identified 20 sensitive parameters by using a threshold of Sc,x > 20%. These parameters 

have large impacts on phytoplankton dynamics at the SEATS station. The sensitivity of 

the remaining parameters was less than 20%, and the variations in phytoplankton chloro-

phyll-a due to these insensitive parameters were small, thus these parameters were ig-

nored in the following analysis. 

Secondly, we performed the next step of the global sensitivity analysis experiment 

on the sensitive parameters identified in the first step to further pick out the key parame-

ters. We conducted an analysis following the approach of Hemmings et al. [47] for all 20 

sensitive parameters using the Monte Carlo sampling methods to obtain 500 different 

combinations of these parameters [49,50]. The sampling ranges were the same as the pa-

rameter optimization range. Then, we conducted these 500 groups of model runs, each of 

which has a unique combination of parameter values. We computed the coefficient of de-

termination (r2) between the parameter and the output of chlorophyll-a concentration at 

the sea surface to quantify the amount of variance in the outputs explained by each pa-

rameter. After that, we ranked the r2 of each parameter and selected the key parameters 

for the subsequent optimization process. 

2.3. Genetic Algorithm 

Genetic algorithm (GA) is a powerful tool to solve various optimization problems. It 

is a random search algorithm, including a process of evolving a population of individuals 

generated randomly towards better solutions. It is an iterative process. Each individual 

represents a solution to the problem and is characterized by its fitness, which shows its 

chance of survival. The fitness is usually the value of the objective function in the optimi-

zation problem being solved. New individuals are built by means of crossover and muta-

tion operators. A crossover operator produces 2 offspring by combining and exchanging 

the elements of 2 parent individuals randomly. Mutation adds small random changes to 

an individual. A genetic algorithm can reduce the risk of premature convergence by re-

initializing after each convergence and creating new random individuals while maintain-

ing the best fit individual from the iterative process [51].  

The input parameters of the GA contain population size, probabilistic crossover rate, 

probabilistic mutation rate, and the maximum number of the generation. In this study, 

those 4 parameters were set to be 20, 0.6, 0.1, and 1000, respectively. In this optimization 

algorithm, the individuals of the GA represent the CoSiNE models with different param-

eter sets. The fitness is denoted by the cost function, which shows the difference between 

the model result and observations. Genetic individuals of each generation were selected 

using a roulette model to generate a combination of parameters with better performance 
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according to the pre-set crossover and mutation probability. The process of “survival of 

the fittest” implies a maximization procedure. The entire process is conducted to further 

improve the cost function until a stopping criterion is met. Possible stopping criteria are 

related to optimal fitness value or the maximum number of the generation. The cost func-

tion, F, is defined as: 

𝐹 =
1

𝑁
∑

(𝑥_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑−𝑥_𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 )

𝜎2

2
  𝑁

𝑖 , (3) 

where x_simulated is the simulated value, x_observed is the observations, σ is the standard 

deviation of the observations and N is the number of observations. The aim of GA process 

is to search for the best parameter combination to minimize the misfit between the obser-

vations and simulations. The flow chart of the entire model parameter optimization pro-

cess is shown in Figure 2. 

 

Figure 2. Flow chart of parameter optimization. 

2.4. Data and Optimization Experiments 

The observations used during the optimization process include ocean color data and 

BGC-Argo profiles. Ocean color-derived chlorophyll-a concentration with a horizontal 

resolution of 4 km was obtained from Ocean Color Climate Change Initiative (OC-CCI) 

dataset provided by the European Space Agency [52]. The data combines measurements 

from 4 sensors, including the Sea-viewing Wide Field of View Sensor (SeaWiFS), the Mod-

erate-Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging 

Spectroradiometer (MERIS), and the Visible Infrared Imaging Radiometer (VIIRS). Re-

mote-sensing reflectance data from MODIS-Aqua, MERIS, and VIIRS were band-shifted 

to match the wavebands of SeaWiFS. The merged products were validated against in-situ 

observations. The uncertainties (bias and RMSD) are assigned to every pixel in the prod-

ucts [21]. Daily OC-CCI chlorophyll-a concentration data within a 3 × 3 pixel around the 

SEATS station were used. We analyzed the satellite data with in-situ measurements, and 

the correlation was up to 0.93 at the SEATS station. These OC-CCI chlorophyll-a data were 

further processed into a daily PFT dataset following previous studies of Lin et al. [24] and 

Brewin et al. [25], which have 3 phytoplankton groups: pico-, nano-, and micro-phyto-

plankton. The details of 3-component PFT model of phytoplankton size classes are shown 

in Appendix B. As our model only includes pico-phytoplankton and diatom, the PFT-

derived nano- and micro-phytoplankton were combined to constrain the modeled diatom 

for the data assimilation. From these data, the ratios of pico-phytoplankton and diatom 

(nano- and micro-phytoplankton) chlorophyll-a concentrations to total chlorophyll-a 

were about 76% and 24% for the whole year, respectively. Lin et al. [24] collected remote 
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sensing and in situ pigment data during SCS cruises from 2006 to 2012. From their meas-

urements, the ratio of pico-phytoplankton chlorophyll-a to total chlorophyll-a concentra-

tion was between ~60% and ~80%, with slightly higher value in winter and lower in sum-

mer, which was consistent with the data used in this study. With the PFT data, the GA 

optimization calculated the cost function for each phytoplankton group separately thus 

as to achieve the goal from the total weighted F value at each generation. 

 A BGC-Argo float was deployed in the northern SCS on 27 June 2014 (Figure 1), pro-

filing every 1 to 5 days with a vertical resolution of ~2 m above 1000 m and of ~50 m from 

1000 to 2000 m depth. The float always surfaced near local midnight to avoid the in vivo 

fluorescence non-photochemical quenching [53,54]. The float was equipped with a SBE 

41CP CTD and a WETLabs MCOMS 3-in-1 optical sensor that included sensors for chlo-

rophyll-a fluorescence and the particulate backscattering coefficient at 700 nm (bbp(700)). 

The float data were processed following Xing et al. [55]. Near the float deployment time 

and location, water was collected for in situ calibration of the float’s chlorophyll-a fluo-

rometer [55]. Before parameter optimization, we have removed abnormal outliers. The 

bbp(700) profiles were smoothed by a 5-point running median filter to remove unexpected 

spikes [56,57]. The particulate organic carbon (POC) was calculated from measured 

bbp(700) based on the empirical relationship [58], which was also validated in the SCS [59]: 

𝑃𝑂𝐶 = 53,607 × 𝑏𝑏𝑝(700) × (555/700)−1 + 2.5, (4) 

We conducted a series of optimization experiments to assimilate the ocean color data 

and float observations of chlorophyll-a. In these experiments, we applied different obser-

vation data for F calculation (Table 1) and each experiment was initialized from the same 

individuals of the GA. In the control (CTRL) run, the model used default model parame-

ters without data assimilation. In experiment 1 (EXP1), only satellite data were used to 

optimize the model. EXP1a used satellite ocean color data to compare the total sea surface 

chlorophyll-a from the model. EXP1b adopted ocean color PFT data to calculate the cost 

function for each phytoplankton group separately. In experiment 2 (EXP2), BGC-Argo 

profiles of chlorophyll-a from 5 m to 150 m were used. Besides, the depth-integrated chlo-

rophyll-a between 65 m and 85 m were added into the cost function to better capture the 

SCM feature. In experiment 3 (EXP3), both ocean color PFT and float profiles of chloro-

phyll-a were used for optimization. In addition, we set up two more experiments based 

on EXP3. We calculated the seasonal average and monthly average of BGC-Argo profiles 

data for assimilation to eliminate the high-frequency effect of the floats data, and the other 

settings were kept consistent.  

Table 1. Observation data to calculate the cost function in each experiment. 

Experiment Observation Data 

CTRL  - 

EXP1a satellite sea surface chlorophyll-a 

EXP1b satellite-derived PFT data 

EXP2 BGC-Argo profiles of chlorophyll-a 

EXP3 PFT data and BGC-Argo profiles of chlorophyll-a  

EXP-S PFT data and seasonal averaged BGC-Argo profiles of chlorophyll-a  

EXP-M PFT data and monthly averaged BGC-Argo profiles of chlorophyll-a  

3. Results 

3.1. Seasonal Variation of Chlorophyll-a 

Temporal variations of satellite-derived chlorophyll-a and BGC-Argo profiles are 

shown in Figure 3. In the surface layer, satellite-derived chlorophyll-a concentration 

demonstrates obvious seasonal characteristics (Figure 3a). In winter, surface chlorophyll-

a concentration reaches the highest value of about 0.3 mg m−3, due to the winter cooling 

and strong mixing that brings subsurface nutrients into the upper layer [60]. In spring, 
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surface chlorophyll-a decreases gradually. Surface chlorophyll-a shows a very low con-

centration of about 0.1 mg m−3 in summer, resulting from nutrient depletion at the surface 

and enhanced vertical stratification [14]. Chlorophyll-a concentration stays low during the 

monsoon transition period. 

From BGC-Argo float profile data, sea surface chlorophyll-a shows the same feature. 

Sea surface chlorophyll-a is highest in winter and relatively low in other seasons (Figure 

3b). The winter peak of chlorophyll-a from the float is a little higher than that from the 

satellite data. Zhang et al. [61] found this same phenomenon by comparing BGC-Argo 

chlorophyll-a at 5 m depth with remote sensing derived data obtained by MODIS/Aqua 

instruments. It might be because that the float covered a relatively wide spatial range with 

high phytoplankton biomass area in the northern SCS (Figure 1). There is also uncertainty 

in remote sensing reflectances (Rrs). Products derived from Rrs are affected by the bias to 

varying degrees, with chlorophyll varying up to 25% over a year [62,63]. On the other 

hand, satellite observations may miss high chlorophyll-a peaks due to cloud influence in 

winter. Other than this small difference, the BGC-Argo chlorophyll-a data are in agree-

ment with remote sensing data.  

In the northern SCS, SCM exists but is less significant in winter, demonstrating a sea-

sonal variation. A distinct SCM appears in spring, gradually deepens in summer and au-

tumn with a value of more than 0.6 mg m−3 and a depth of 65–85 m, consistent with the 

model result and observations of Gong et al. [17]. The SCM quickly shoals or even disap-

pears in winter and surface phytoplankton reaches high concentrations. The SCM in the 

northern SCS is affected by multiple biological processes, such as phytoplankton growth, 

zooplankton grazing, phytoplankton sinking, phytoplankton photo-acclimation and de-

tritus remineralization [17,61,64]. Parameter optimization could facilitate the ecosystem 

model to reproduce the SCM and better elucidate dominant dynamics of phytoplankton 

chlorophyll-a distribution. 

 

Figure 3. (a) Time series of satellite-derived chlorophyll-a concentration (mg m−3) at the SEATS 

station. (b) Time series of BGC-Argo measured chlorophyll-a profiles (mg m−3). 

3.2. Optimizable Parameter Selection 

We first identified 20 sensitive model parameters based on the sensitivity analysis. 

Considering the sensitivity of modeled surface chlorophyll-a concentration, parameters 

related to zooplankton grazing, phytoplankton growth, and detritus remineralization are 

particularly sensitive. Then we conducted 500 groups of model runs with a unique com-

bination of parameter values using the Monte Carlo sampling as described in Section 2.2.  
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According to the analysis above, 9 key parameters (Table 2) were selected for the 

model set up in the northern SCS, which mainly fell into 3 categories: predator-related 

parameters for zooplankton, growth-related parameters for phytoplankton and the initial 

slope of the P-I curve associated with phytoplankton photosynthesis. The GA optimiza-

tion aims at these 9 optimizable parameters and searches for the best parameter combina-

tion to minimize the misfit between the observations and simulations. 

Table 2. Parameters selected for the optimization. 

Parameter Description Initial Value Minimum Maximum Unit r2 

reg1 Z1 excretion rate to ammonium 0.1 0.05 0.2 day−1 0.083 

gmaxs1 maximum specific growth rate of S1 2.0 1.0 4.0 day−1 0.018 

beta1 Z1 maximum grazing rate 0.8 0.4 1.0 day−1 0.099 

beta2 Z2 maximum grazing rate 0.4 0.2 0.8 day−1 0.047 

akz2 half saturation for Z2 grazing 0.25 0.125 0.5 mmol N m−3 0.025 

amaxs1 initial slope of P-I curve of S1 0.025 0.0125 0.05 (W m−2 day)−1 0.075 

akno3s2 
half saturation of nitrate uptake by 

S2 
2.0 1.0 4.0 mmol N m−3 0.046 

bgamma1 grazing efficiency of Z1 0.75 0.375 1.0 day−1 0.139 

Chl2cs2_m 
maximum chlorophyll-a to carbon 

ratio for S2 
0.065 0.03 0.08 mg Chla (mg C)−1 0.056 

Note: parameter initial values refer to Ma et al. [34]. 

3.3. Optimization Results 

The default parameters in the CoSiNE model have been empirically tuned against 

different observations in the SCS [34]. Nevertheless, compared with the CTRL run, assim-

ilating data into the model using the GA showed improvements in the cost function for 

all runs (Table 3). The cost function of each experiment varied with the data assimilation 

settings. 

Table 3. Item of cost function (unitless). 

Item Fs1 Fs2 Fv Fscm 

CTRL 0.1945 0.0333 3.2583 0.0542 

EXP1a 0.1782 0.0293 3.5846 0.0477 

EXP1b 0.1424 0.0169 3.3784 0.0516 

EXP2 0.2020 0.0279 2.5939 0.0368 

EXP3 0.1600 0.0155 2.8763 0.0404 

Note: Fs1 and Fs2 represent sea surface Chla misfit of two PFTs, pico-phytoplankton and diatom, 

respectively; Fv represents the vertical misfit between float and model; Fscm represents the Chla 

misfit between 65 m and 85 m depth. 

In EXP1, assimilation of satellite data improves the model result of sea surface chlo-

rophyll-a and phytoplankton groups. The EXP1a, directly incorporating the satellite chlo-

rophyll-a in the optimization, decreases the cost function by 5.3%. From Table 3, both Fs1 

and Fs2 in EXP1a display reductions, suggesting that adjustment of total chlorophyll-a 

improves the chlorophyll-a simulation contributed by different phytoplankton functional 

types. However, the vertical simulation of chlorophyll-a is not improved in EXP1a. Com-

pared with EXP1a, EXP1b shows a better performance in reproducing two phytoplankton 

functional types, indicating ocean color PFT data assimilation has the potential to improve 

estimation of phytoplankton groups. The cost function values of the two phytoplankton 

functional types in EXP1b decrease by 26.8% and 49.2%, respectively. In the northern SCS, 

chlorophyll-a concentration of pico-phytoplankton is typically higher than diatoms [65]. 

Although modeled total chlorophyll-a concentration fits well with ocean color data (Fig-

ure 4), the CTRL model predicts a larger concentration of diatom group, resulting in the 
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diatom ratio being significantly higher in winter, even up to 50% (Figure 5). After the as-

similation of PFT, the relative ratio of diatom in EXP1b is more consistent with observa-

tions. However, the model misses the vertical distribution pattern of chlorophyll-a, with 

a deeper but smaller SCM (Figure 6). It indicates that while the assimilation of satellite 

data improves the model predictions of phytoplankton groups at the surface, the model 

predictions of vertical chlorophyll-a structure may still not be optimal compared with the 

CTRL run (Table 3), likely due to the lack of vertical information.  

 

Figure 4. Comparison of sea surface chlorophyll-a concentration (mg m−3) from different model 

experiments in the optimization period. 

 

Figure 5. Comparison of chlorophyll-a concentrations (mg m−3) of pico-phytoplankton ((a) Chl1) 

and diatom ((b) Chl2) in the optimization period. 

In EXP2, the modeled vertical chlorophyll-a profile matches the observations quite 

well (Figure 6). The cost function value of chlorophyll-a averaged over the water column 

between model and observations declined by 20.4% (Table 3). Compared to the CTRL and 

EXP1, the assimilation of vertical float observations largely improves subsurface predic-

tions of chlorophyll-a. The magnitude and the vertical location of SCM are more consistent 

with the float data. The model reproduces the seasonal variation of surface total chloro-

phyll-a concentration (Figure 4). However, it fails to simulate surface phytoplankton 
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groups, especially for diatom, with its concentration considerably low in the whole mod-

eling period (Figure 5). Since the chlorophyll-a of pico-phytoplankton dominates the total 

chlorophyll-a, underestimation of diatom might be neglected if only considering total sur-

face chlorophyll-a. In Figure 4, each model exhibits reasonable prediction of the surface 

chlorophyll-a. However, the phytoplankton groups might be misrepresented. 

 

Figure 6. Comparison of the vertical distribution of chlorophyll-a concentration (mg m−3) on 6 May 

2015. Colored solid lines represent different experiments (CTRL, EXP1b, EXP2, and EXP3). Dotted 

lines represent the BGC-Argo observation. 

In EXP3, both ocean color PFT data and float profiles were taken into consideration 

in the GA optimization process. The cost functions for surface pico-phytoplankton, sur-

face diatom, SCM, and vertical profiles in this run all decrease compared with the CTRL 

model (Table 3). For all four optimization experiments, although each cost function in 

EXP3 was not the lowest, the overall prediction skill of EXP3 was the optimal one. The 

depth of SCM was slightly shallower than that in EXP2 and BGC-Argo (Figure 6), but the 

magnitude increased (Table 3). There was also a clear improvement in the fractions of the 

two phytoplankton groups (Figure 5). The chlorophyll-a ratio of diatom was consistent 

with observations, especially in the winter period. The chlorophyll-a partitioning between 

pico-phytoplankton and diatom was in better agreement with the observations. From this 

experiment, considering both vertical observations and PFT data provided the best opti-

mization performance. 

The monthly-averaged chlorophyll-a profiles of each experiment are displayed in 

Figure 7. The main difference of each experiment appeared in the SCM simulation. Similar 

to the result in Figure 6, the EXP1b showed a relatively poor prediction skill of SCM be-

cause of the lack of vertical data assimilation. In the northern SCS, SCM appears in spring, 

gradually deepens in summer and autumn. The EXP1b model shows an almost un-

changed SCM depth for the whole year, and the chlorophyll-a concentrations are lower 

than the observations. Both EXP2 and EXP3 can approximately simulate the depth of SCM 

in spring, summer, and autumn after the optimization, but the magnitude of SCM is 

slightly smaller than the BGC-Argo profile. 
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Figure 7. Comparison of vertical monthly chlorophyll-a concentrations averaged in March (a), 

June (b), and November (c) 2015. Colored solid lines represent different experiments (CTRL, 

EXP1b, EXP2, and EXP3). Dotted lines represent the BGC-Argo observation. 

4. Discussion 

4.1. Influence of Sampling Frequency of Float Data 

With respect to the traditional sampling from ship cruises, the advantage of BGC-

Argo float is sampling the ocean continuously and with a relatively high frequency, re-

turning vertical profiles associated with different spatial and temporal scales. Kaufman et 

al. [31] demonstrated the benefit of assimilating high-frequency data in a 1D model. BGC-

Argo float sampling frequency of 1~5 days has the potential to resolve intraseasonal and 

mesoscale processes in the northern SCS [59].  

To examine the influence of the sampling frequency on the assimilation performance, 

we conducted two more experiments, calculating the seasonal average (EXP-S) and 

monthly average (EXP-M) float profiles, respectively. GA optimization settings are similar 

to the EXP3, only changing the calculation of the cost function. In EXP-S, the observations 

of cost function used chlorophyll-a profiles of four seasonal averages. After the assimila-

tion, the vertical chlorophyll-a bias decreases by 6.9%, and the SCM bias decreases by 

22.7% with respect to the CTRL (Table 4). However, the misfit of seasonal mean chloro-

phyll-a profiles between the model and the float data shows less reduction (Figure 8), 

which may result from the fact that the four seasonal chlorophyll-a profiles are not enough 

to model optimization. In the EXP-M, monthly mean chlorophyll-a profiles were com-

puted from the float data and used in the optimization. The result indicates that the SCM 

bias yields the largest reduction and each item of cost function and shows considerable 

improvements compared to the CTRL model. The depth and magnitude of SCM show the 

consistency with the observed data well (Figure 8), indicating that using monthly mean 

profiles is sufficient to contribute to the optimization of vertical chlorophyll-a structure 

and maintain the optimal calibration of the biological parameters. This was also found in 

Bisson et al. [62]. EXP-M improves the vertical chlorophyll-a even more than EXP3, prob-

ably indicting that high-frequency variabilities associated with the float data of every 1~5 

days are not fully represented in the model, and assimilating those variabilities into the 

1D model may increase the model-data deviations. It is particularly clear in March. In the 

northern SCS, March is a transition season between summer and winter monsoons, when 

the seasonal influence on the vertical distribution of chlorophyll-a is not the dominant 

factor. Instead, local processes and/or mesoscale processes may affect phytoplankton dis-

tributions measured by the BGC-Argo float, which are not resolved by the 1D model. As 

the dominant variability of phytoplankton in the northern SCS is at the seasonal timescale, 

monthly float data are more suitable to apply to the data assimilation for the 1D model. 
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Table 4. Item of the cost function. 

Item Fv Fscm Fv-s Fv-m 

CTRL  3.2583 0.0542 1.0583 0.9097 

EXP-S 3.0348 0.0419 0.9812 0.8065 

EXP-M 2.6264 0.0292 0.7438 0.5916 

EXP3 2.8763 0.0404 0.5826 0.6877 

Note: Fv and Fscm are the same as those in Table 3; Fv-s and Fv-m represent the vertical misfit of 

average seasonal Chla and monthly average Chla, respectively. 

 

Figure 8. Comparison of vertical monthly chlorophyll-a concentrations averaged in March (a), 

June (b), and November (c) 2015. Colored solid lines represent different experiments (CTRL, EXP-

S, EXP-M and EXP3). Dotted lines represent the BGC-Argo observation. 

4.2. Effects of Biological Parameter on Vertical Chlorophyll-a Structure 

In the experiments above, the main differences in the vertical Chla simulation are the 

magnitude and the depth of SCM layer. The depth and magnitude of SCM layer largely 

depend on the phytoplankton dynamics, which are influenced by biological parameters. 

Among the optimization parameters, gmaxs1, amaxs1, and akno3s2 are related to phyto-

plankton growth. Beta1, beta2, akz2, and bgamma1 are related to zooplankton growth and 

grazing processes. The assimilation of vertical float observations significantly improves 

subsurface predictions of chlorophyll-a in EXP2, EXP3, and EXP-M. The EXP-M shows the 

best prediction skill in vertical chlorophyll-a structure, which is consistent with the BGC-

Argo profile.  

The optimal parameter values of each experiment are shown in Table 5. In EXP2 and 

EXP3, biological parameters show similar variation in value compared with CTRL model, 

but the magnitude of SCM in EXP3 is slightly smaller than that in EXP2 (Figure 7), which 

might be due to the change of gmaxs1, amaxs1, and akno3s2. Based on Michaelis–Menten 

equation, the decrease of the maximum specific growth rate in EXP3 will weaken the phy-

toplankton growth rate. The amaxs1 shows the ability of pico-phytoplankton to utilize 

solar irradiance for photosynthesis. EXP3 model with a smaller amaxs1 suggests a slightly 

weaker photosynthesis ability of pico-phytoplankton. Nitrogen limitation plays an im-

portant role in modulating the phytoplankton growth in the deep basin of the SCS [49]. 

Parameter akno3s2 represents the half-saturation of nitrate uptake by diatom. Thus, EXP3 

with a smaller akno3s2 will improve the growth of diatom and increase sea surface chlo-

rophyll-a concentration of diatom. Besides, EXP3 has a slightly shallower SCM layer than 

EXP2 because of the enhancement of zooplankton grazing processes. The parameters re-

lated to grazing rate and efficiency (beta1, beta2, and bgamma1) in EXP3 are higher than 
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those in EXP2, which increase the zooplankton grazing and thus decrease the phytoplank-

ton biomass in the upper layer in EXP3. In EXP1b, the model with a large amaxs1 value 

and small grazing rate also show a deeper SCM layer. The high grazing parameter values 

may lead to reduced phytoplankton peak and shallower SCM depth [66]. 

Table 5. Optimal parameter values of each experiment. 

Parameter reg1 gmaxs1 beta1 beta2 akz2 amaxs1 akno3s2 bgamma1 Chl2cs2_m 

CTRL 0.1 2.0 0.8 0.4 0.25 0.025 2.0 0.75 0.065 

EXP1a 0.096 2.412 0.573 0.605 0.436 0.024 1.536 0.539 0.041 

EXP1b 0.124 3.027 0.518 0.423 0.395 0.016 1.371 0.912 0.045 

EXP2 0.118 2.303 0.679 0.649 0.384 0.026 1.647 0.821 0.057 

EXP3 0.12 1.914 0.702 0.672 0.372 0.021 1.372 0.874 0.056 

EXP-S 0.151 1.937 0.916 0.405 0.414 0.027 2.587 0.876 0.05 

EXP-M 0.092 3.471 0.624 0.468 0.305 0.048 1.05 0.743 0.03 

Compared to EXP2 and EXP3, ecosystem model of EXP-M has the largest gmaxs1 

and amaxs1, and has the smallest beta1, beta2, and bgamma1. These parameters facilitate 

the photosynthetic efficiency of pico-phytoplankton and reduce the zooplankton grazing 

rate to promote the biomass of phytoplankton. Pico-phytoplankton provides the domi-

nant contribution of chlorophyll-a in the SCS. Parameter optimization greatly increases 

the biomass of pico-phytoplankton and provides better chlorophyll-a simulation results. 

The EXP-M also has a small akno3s2 value, leading to high growth potential of the diatom. 

In contrast, EXP-M has a relatively smaller akz2, which changes the grazing pressure of 

mesozooplankton and has the potential to change phytoplankton biomass to some extent. 

That is to say, ecosystem models with high nonlinearity can result in parameters that have 

a synergistic regulation effect on the modeled vertical chlorophyll-a structure.  

The vertical chlorophyll-a structure is closely related to the process of phytoplankton 

growth and zooplankton grazing. Thus, relevant biological parameters can affect the 

depth and magnitude of the SCM. Among these parameters, the phytoplankton growth 

parameters tend to change the magnitude of SCM; the zooplankton grazing parameters 

tend to change both the magnitude and the depth of SCM. All biological parameters have 

nonlinear effects on the modeled vertical chlorophyll-a structure. 

4.3. Impacts on Subsurface POC and Export Flux 

Chlorophyll-a is the commonly used variable to study marine biogeochemistry. Be-

sides, the POC is an important carbon pool that represents the biological pump transport-

ing CO2 from the atmosphere to the ocean interior [67]. In this study, observed POC were 

derived from the validated bbp(700) based on the empirical relationship. Compared to 

other experiments, POC at 100 m depth increases significantly in the EXP-M model, which 

is statistically consistent with the observed data, especially in winter and spring (Figure 

9). Modeled POC concentration at 100 m is comparable with previous observations at the 

SEATS station with a range of 1–2 mmol C m−3 [68]. In the model, the key parameters 

regulate the sinking pathway of POC by controlling the biological processes of phyto-

plankton and zooplankton. Parameter optimization improves the phytoplankton compo-

sition and adjusts the zooplankton growing and grazing process, reflecting a change of 

detritus concentration. Since the model predictions fit well with observations in the verti-

cal chlorophyll-a structure, POC concentration at 100 m in the EXP-M model is largely 

improved compared to the CTRL model.  

Marine organisms are components and also producers of POC. They produce detri-

tus through feeding and metabolic processes that ultimately cause POC to sink down-

ward. During in situ measurements, POC includes all the particulate (defined by the pore 

size of filter) organic carbon in the water column. In the model, POC concentration was 

calculated as the sum of phytoplankton biomass, zooplankton biomass, and detritus. 
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Thus, uncertainties in modeled POC are generally larger than modeled individual varia-

ble, such as chlorophyll-a concentration, because more biogeochemical dynamics are in-

volved in the POC simulation. Compared with chlorophyll-a simulation, modeled POC 

in EXP-M shows relatively larger bias, especially in summer and fall when surface pro-

duction is considerably low in the SCS. In winter, when surface production is high, mod-

eled POC compares well with observations. This seasonal variability is consistent with the 

measured POC export flux shown in previous studies. Zhou et al. [69] showed that POC 

export is high in winter but low during summer and fall at SEATS. Moreover, they found 

the correlation between surface chlorophyll-a and POC export at 100 m was significant 

only when Chla>0.11 mg m−3. It indicates that other factors (phytoplankton composition, 

zooplankton, etc.) may play an important role in POC generation and export during the 

low-production period, which remains largely unknown and requires further investiga-

tions.  

 

Figure 9. Comparison of modeled and measured POC concentrations (mg C m−3) at 100 m depth. 

Colored solid lines represent different experiments (CTRL, EXP-S, EXP-M, and EXP3). Blue dotted 

lines represent the BGC-Argo observation. 

Carbon export flux is estimated by detritus and phytoplankton sinking in the model. 

The comparison of POC export flux at 100 m depth is shown in Figure 10. In EXP-M, chlo-

rophyll-a concentrations fit the best with the BGC-Argo observations both at the SCM 

layer and 100 m depth. More carbon is exported from the euphotic zone due to the im-

provement of vertical profile of chlorophyll-a. Winter peak could reach about 110 mg C 

m−2 d−1 and other seasons show a low value of about 40 mg C m−2 d−1, similar to carbon 

export flux of the sediment trap data in the central SCS [34]. Other experiments demon-

strate an underestimation of carbon export flux. Carbon export is affected by phytoplank-

ton composition, zooplankton, and other components of the food web [70]. Phytoplankton 

and zooplankton communities play a significant role in controlling POC export flux [71]. 

Siegel et al. [72] found phytoplankton’s contribution to total export flux was on average 

12.7% and a portion of the export was controlled by fecal matter from zooplankton graz-

ing. The PFT data assimilation improves the plankton groups and results in a better pre-

diction of carbon export flux. Therefore, it is important to improve the understanding of 

biogeochemical processes and food web dynamics in order to better predict POC export 

in the northern SCS. 
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Figure 10. Comparison of modeled POC export fluxes (mg C m−2d−1) from different model experi-

ments at 100 m depth. Colored solid lines represent different experiments (CTRL, EXP 1b, EXP2, 

EXP3, EXP-S, EXP-M). 

5. Summary and Conclusions 

Parameter optimization of marine ecosystem models provides a convenient tech-

nique for adjusting model parameters to better represent the marine ecosystem [73–76]. 

In this research, we implemented a genetic algorithm to optimize nine biological param-

eters in the CoSiNE marine ecosystem model using satellite data and BGC-Argo float ob-

servations. The application of remote sensing data improves the predictive capability of 

the model. The satellite-derived PFT data allow us to better simulate phytoplankton com-

munity structure, which has been used in the North Atlantic, Mediterranean Sea and 

global ocean. Our experiments confirmed that it could also significantly improve the 

model simulation in the northern SCS. However, this advantage relies on the accuracy of 

the PFT data. The PFT three-component model still needs more in-situ measurements to 

validate and evaluate in the SCS. Our study is just a preliminary application of the PFT 

data in the ecosystem, modeling in the SCS. Utilizing the multiplatform observational data 

decreases the model bias in predictions of surface and vertical chlorophyll-a distributions. 

All model experiments show different degrees of improvement in model skill compared 

with the CTRL model. After the assimilation of the satellite-derived fields, the model-pre-

dicted surface chlorophyll-a concentrations for two phytoplankton groups fit the ob-

served values quite well, with a bias reduction of 26.8% and 49.2%, respectively. The as-

similation of BGC-Argo float observations reduces the misfit of vertical chlorophyll-a pro-

files ranging from 11.7% to 20.3%, and the SCM bias decreases ranging from 4.7% to 32.1%.  

From the experiments, data assimilation improves the simulation of the ecosystem 

model using both satellite PFT data and BGC-Argo observations. We show that the 

monthly float data are most suitable to apply in the 1D model vertical structure optimiza-

tion. Parameter optimization provides better chlorophyll-a simulation by adjusting frac-

tions of phytoplankton groups. Monthly BGC-Argo data assimilation also improves the 

modeled subsurface POC and POC export flux simulation by modulating the phytoplank-

ton functional types, phytoplankton growth, and zooplankton grazing processes.  

BGC-Argo floats are expanding in the global ocean, providing more opportunities 

and challenges for modeling, understanding, and predicting marine ecosystems. The com-

bination of BGC-Argo observations and satellite-derived phytoplankton functional type 

data provides reliable support for the optimization of the model. As the 3D model requires 

more computational time and costs, it is difficult to optimize the parameters of 3D model 

directly. The success of applying the genetic algorithm in the 1D marine ecosystem model 

provides the basis for further application in 3D ecosystem models.  



Remote Sens. 2022, 14, 1297 17 of 23 
 

 

Author Contributions: Conceptualization, C.S. and P.X.; methodology, P.X. and W.M.; resources, 

X.X., G.Q., and S.C.; writing—original draft preparation, C.S. and P.X.; writing—review and editing, 

P.X., and R.J.W.B.; funding acquisition. All authors have read and agreed to the published version 

of the manuscript. 

Funding: This study was supported by the National Natural Science Foundation of China (41890805, 

41730536) and the Key Special Project for Introduced Talents Team of Southern Marine Science and 

Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0305). R.J.W.B was supported by 

the European Space Agency (ESA) project “Biological Pump and Carbon Exchange Processes 

(BICEP)”. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author. 

Conflicts of Interest: The authors declare no conflict of interest.  

Appendix A 

The term BIO(C) represents biological sources and sinks of a particular state variable. The details 

are as follows: 

𝜕𝑆1

𝜕𝑡
= 𝑁𝑃𝑆1 + 𝑅𝑃𝑆1 − 𝐺𝑟𝑎𝑆1𝑍1 − 𝑀𝑜𝑟𝑡𝑆1 − 𝐴𝑔𝑔𝑆1 − 𝑤1 ×

𝜕𝑆1

𝜕𝑧
, (A1) 

𝜕𝑆2

𝜕𝑡
= 𝑁𝑃𝑆2 + 𝑅𝑃𝑆2 − 𝐺𝑟𝑎𝑆2𝑍2 − 𝑀𝑜𝑟𝑡𝑆2 − 𝐴𝑔𝑔𝑆2 − 𝑤2 ×

𝜕𝑆2

𝜕𝑧
, (A2) 

𝜕𝐶ℎ𝑙1

𝜕𝑡
= 𝑁𝑃𝐶ℎ𝑙1 − 𝐺𝑟𝑎𝐶ℎ𝑙1𝑍1 − 𝑀𝑜𝑟𝑡𝐶ℎ𝑙1 − 𝐴𝑔𝑔𝐶ℎ𝑙1 − 𝑤1 ×

𝜕𝐶ℎ𝑙1

𝜕𝑧
, (A3) 

𝜕𝐶ℎ𝑙2

𝜕𝑡
= 𝑁𝑃𝐶ℎ𝑙2 − 𝐺𝑟𝑎𝐶ℎ𝑙2𝑍2 − 𝑀𝑜𝑟𝑡𝐶ℎ𝑙2 − 𝐴𝑔𝑔𝐶ℎ𝑙2 − 𝑤2 ×

𝜕𝐶ℎ𝑙2

𝜕𝑧
, (A4) 

𝜕𝑍1

𝜕𝑡
= 𝛾1 × 𝐺𝑟𝑎𝑆1𝑍1 − 𝐺𝑟𝑎𝑍1𝑍2 − 𝑟𝑒𝑔1 × 𝑍1 − 𝛾1 × 𝑟𝑒𝑔1 × 𝐸𝑥𝑐𝑟𝑍1, (A5) 

𝜕𝑍2

𝜕𝑡
= 𝛾2 × (𝐺𝑟𝑎𝑆2𝑍2 + 𝐺𝑟𝑎𝑍1𝑍2 + 𝐺𝑟𝑎𝑆𝑃𝑂𝑁𝑍2 + 𝐺𝑟𝑎𝐿𝑃𝑂𝑁𝑍2) − 𝑀𝑜𝑟𝑡𝑍2

− 𝑟𝑒𝑔2 × 𝑍2 − 𝛾2 × 𝑟𝑒𝑔2 × 𝐸𝑥𝑐𝑟𝑍2, 
(A6) 

𝜕𝑁𝑂3

𝜕𝑡
= −𝑁𝑃𝑆1 − 𝑁𝑃𝑆2 + 𝛾3 × 𝑁𝐻4, (A7) 

𝜕𝑁𝐻4

𝜕𝑡
= −𝑅𝑃𝑆1 − 𝑅𝑃𝑆2 + 𝑟𝑒𝑔1 × 𝑍1 + 𝑟𝑒𝑔2 × 𝑍2 + 𝑅𝑒𝑚𝑖𝑛𝑃𝑂𝑁

+ 𝛾1 × 𝑟𝑒𝑔1 × 𝐸𝑥𝑐𝑟𝑍1 + 𝛾2 × 𝑟𝑒𝑔2 × 𝐸𝑥𝑐𝑟𝑍2 − 𝛾3 × 𝑁𝐻4, 
(A8) 

𝜕𝑃𝑂4

𝜕𝑡
= (−𝑁𝑃𝑆1 − 𝑁𝑃𝑆2 + 𝑟𝑒𝑔1 × 𝑍1 + 𝑟𝑒𝑔2 × 𝑍2 + 𝑅𝑒𝑚𝑖𝑛𝑆𝑃𝑂𝑁 + 𝑅𝑒𝑚𝑖𝑛𝐿𝑃𝑂𝑁)

× 𝑃2𝑁, 
(A9) 

𝜕𝑆𝑖(𝑂𝐻)4

𝜕𝑡
= (−𝑁𝑃𝑆2 − 𝑅𝑃𝑆2) × 𝑆𝑖2𝑁 + 𝑅𝑒𝑚𝑖𝑛𝑏𝑆𝑖 , (A10) 

𝜕𝑆𝑃𝑂𝑁

𝜕𝑡
= (1 − 𝛾1) × 𝐺𝑟𝑎𝑆1𝑍1 + 𝑀𝑜𝑟𝑡𝑆1 + 𝐴𝑔𝑔𝑆1 − 𝐺𝑟𝑎𝑆𝑃𝑂𝑁𝑍2 − 𝑅𝑒𝑚𝑖𝑛𝑆𝑃𝑂𝑁

− 𝑤𝑆𝑃𝑂𝑁 ×
𝜕𝑆𝑃𝑂𝑁

𝜕𝑧
, 

(A11) 

𝜕𝐿𝑃𝑂𝑁

𝜕𝑡
= (1 − 𝛾2) × (𝐺𝑟𝑎𝑆2𝑍2 + 𝐺𝑟𝑎𝑍1𝑍2) + 𝑀𝑜𝑟𝑡𝑆2 + 𝑀𝑜𝑟𝑡𝑍2 + 𝐴𝑔𝑔𝑆2

− 𝐺𝑟𝑎𝐿𝑃𝑂𝑁𝑍2 − 𝑅𝑒𝑚𝑖𝑛𝐿𝑃𝑂𝑁 − 𝑤𝐿𝑃𝑂𝑁 ×
𝜕𝐿𝑃𝑂𝑁

𝜕𝑧
, 

(A12) 

𝜕𝑏𝑆𝑖

𝜕𝑡
= (𝐺𝑟𝑎𝑆2𝑍2 + 𝑀𝑜𝑟𝑡𝑆2 + 𝐴𝑔𝑔𝑆2) × 𝑆𝑖2𝑁 − 𝑅𝑒𝑚𝑖𝑛𝑏𝑆𝑖 − 𝑤𝑏𝑆𝑖 ×

𝜕𝑏𝑆𝑖

𝜕𝑧
, (A13) 

𝜕𝐷𝑂

𝜕𝑡
= (𝑁𝑃𝑆1 + 𝑁𝑃𝑆2) × 𝑂2𝑁𝑂3 + (𝑅𝑃𝑆1 + 𝑅𝑃𝑆2) × 𝑂2𝑁𝐻4 − 2𝛾3 × 𝑁𝐻4

− (𝑟𝑒𝑔1 × 𝑍1 + 𝑟𝑒𝑔2 × 𝑍2 + 𝑅𝑒𝑚𝑖𝑛𝑃𝑂𝑁) × 𝑂2𝑁𝐻4, 
(A14) 

𝜕𝐷𝐼𝐶

𝜕𝑡
= −(𝑁𝑃𝑆1 + 𝑁𝑃𝑆2 + 𝑅𝑃𝑆1 + 𝑅𝑃𝑆2) × 𝐶2𝑁 + (𝑟𝑒𝑔1 × 𝑍1 + 𝑟𝑒𝑔2 × 𝑍2

+ 𝑅𝑒𝑚𝑖𝑛𝑆𝑃𝑂𝑁 + 𝑅𝑒𝑚𝑖𝑛𝐿𝑃𝑂𝑁) × 𝐶2𝑁, 
(A15) 
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𝜕𝑇𝐴𝐿𝐾

𝜕𝑡
= −

𝜕𝑁𝑂3

𝜕𝑡
+

𝜕𝑁𝐻4

𝜕𝑡
, (A16) 

where 𝑤1,  𝑤2, 𝑤𝑆𝑃𝑂𝑁, 𝑤𝐿𝑃𝑂𝑁, and 𝑤𝑏𝑆𝑖 are the sinking speed of the S1, S2, SPON, LPON, 

and bSi, respectively. γ1 and γ2 are grazing efficiency of Z1 and Z2. The reg1 and reg2 are 

excretion rate to ammonium of Z1 and Z2. P2N is the relative molecular weight ratio of P 

and N (Similarly, Si2N=Si/N, O2NO3=O/NO3, O2NH4=O/NH4, and C2N=C/N).  

NPS1 and NPS2 represent new productions of S1 and S2. RPS1 and RPS2 represent 

regenerated productions of S1 and S2. MortS1(Chl1), MortS2(Chl2) and MortZ2 are mor-

tality of S1(Chl1), S2(Chl2), and Z2. AggS1(Chl1) and AggS2(Chl2) are aggregation of 

S1(Chl1) and S2(Chl2). GraS1Z1(GraChl1Z1) are grazing processes of Z1 on S1(Chl1). 

GraS2Z2 (GraChl2Z2), GraZ1Z2, GraSPONZ2, and GraLPONZ2 are grazing processes of Z2 on 

S2, Z1, SPON, and LPON, respectively. ExcrZ1 and ExcrZ2 are excretion processes of Z1 

and Z2. ReminSPON, ReminLPON, and ReminbSi are remineralization processes of SPON, 

LPON and bSi, respectively.  

The calculations of biological processes are as follows. 

(1) The new production and regenerated productions of S1 and S2: 

𝑁𝑃𝑆1 = 𝜇1𝑚𝑎𝑥 × 𝑚𝑖𝑛 (
𝑁𝑂3

𝐾𝑁𝑂3𝑠1 + 𝑁𝑂3
,

𝑃𝑂4

𝐾𝑃𝑂4𝑠1 + 𝑃𝑂4
) × 𝑒−𝜓𝑁𝐻4 × (1

− 𝑒𝑥𝑝(
−𝛼 × 𝐼

𝜇1𝑚𝑎𝑥
)) × 𝑆1, 

(A17) 

𝑅𝑃𝑆1 = 𝜇1𝑚𝑎𝑥 ×
𝑁𝐻4

𝐾𝑁𝐻4𝑠1 + 𝑁𝐻4
× (1 − 𝑒𝑥𝑝(

−𝛼 × 𝐼

𝜇1𝑚𝑎𝑥
)) × 𝑆1, (A18) 

𝑁𝑃𝑆2 = 𝜇2𝑚𝑎𝑥 × 𝑚𝑖𝑛 (
𝑁𝑂3

𝐾𝑁𝑂3𝑠2 + 𝑁𝑂3
,

𝑃𝑂4

𝐾𝑃𝑂4𝑠2 + 𝑃𝑂4
,

𝑆𝑖(𝑂𝐻)4

𝐾𝑆𝑖(𝑂𝐻)4𝑠2 + 𝑆𝑖(𝑂𝐻)4
) × (1

− 𝑒𝑥𝑝(
−𝛼 × 𝐼

𝜇2𝑚𝑎𝑥
)) × 𝑆2, 

(A19) 

𝑅𝑃𝑆2 = 𝜇2𝑚𝑎𝑥 ×
𝑁𝐻4

𝐾𝑁𝐻4𝑠2 + 𝑁𝐻4
× (1 − 𝑒𝑥𝑝(

−𝛼 × 𝐼

𝜇2𝑚𝑎𝑥
)) × 𝑆2, (A20) 

𝐼(𝑧, 𝑡) = 𝐼𝑜(𝑡) × 𝑒𝑥𝑝( − 𝑘1 × 𝑧 − 𝑘2 × ∫ (𝑆1 + 𝑆2)𝑑𝑧
0

−𝑧

), (A21) 

where 𝜇1max and 𝜇2max are the maximum growth rate of S1 and S2. ψ is the NH4 inhibi-

tion parameter. 𝐾𝑁𝑂3, 𝐾𝑁𝐻4, 𝐾𝑃𝑂4 and 𝐾𝑆𝑖(𝑂𝐻)4 are the half-saturation constants for NO3, 

NH4, PO4 and Si(OH)4. α is the initial slop of P-I curve.  

(2) The production of chlorophyll-a: 

𝑁𝑃𝐶ℎ𝑙1 = 𝜌𝑐ℎ𝑙1 × (
𝑁𝑃𝑆1

𝑆1
+

𝑅𝑃𝑆1

𝑆1
) × 𝐶ℎ𝑙1, (A22) 

𝜌𝑐ℎ𝑙1 =
𝜃𝑚𝑎𝑥 × 𝑁𝑃𝑆1

𝛼1 × 𝐼 × 𝐶ℎ𝑙1
, (A23) 

𝑁𝑃𝐶ℎ𝑙2 = 𝜌𝑐ℎ𝑙2 × (
𝑁𝑃𝑆2

𝑆2
+

𝑅𝑃𝑆2

𝑆2
) × 𝐶ℎ𝑙2, (A24) 

𝜌𝑐ℎ𝑙2 =
𝜃𝑚𝑎𝑥 × 𝑁𝑃𝑆2

𝛼2 × 𝐼 × 𝐶ℎ𝑙2
, (A25) 

where 𝜃max is the maximum ratio of chlorophyll-a to carbon. 

(3) The mortality: 

𝑀𝑜𝑟𝑡𝑆1 = 𝛾𝑠1 × 𝑆1, 
(A26) 

𝑀𝑜𝑟𝑡𝑆2 = 𝛾𝑠2 × 𝑆2, 
(A27) 

𝑀𝑜𝑟𝑡𝐶ℎ𝑙1 = 𝛾𝑠1 × 𝐶ℎ𝑙1, 
(A28) 

𝑀𝑜𝑟𝑡𝐶ℎ𝑙2 = 𝛾𝑠2 × 𝐶ℎ𝑙2, 
(A29) 

𝑀𝑜𝑟𝑡𝑍2 = 𝛾𝑍2 × 𝑍22, 
(A30) 
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where 𝛾𝑠1, 𝛾𝑠2 and 𝛾𝑍2 are death rate of S1, S2 and Z2. 

(4) The aggregation: 

𝐴𝑔𝑔𝑆1 = 𝛾6 × (𝑆1 + 𝑆2) × 𝑆1, 
(A31) 

𝐴𝑔𝑔𝑆2 = 𝛾6 × (𝑆1 + 𝑆2) × 𝑆2, 
(A32) 

𝐴𝑔𝑔𝐶ℎ𝑙1 = 𝛾6 × (𝑆1 + 𝑆2) × 𝐶ℎ𝑙1, 
(A33) 

𝐴𝑔𝑔𝐶ℎ𝑙2 = 𝛾6 × (𝑆1 + 𝑆2) × 𝐶ℎ𝑙2, 
(A34) 

where 𝛾6 represents the aggregation rate. 

(5) The grazing (subscript is predator): 

𝐺𝑟𝑎𝑆1𝑍1 = 𝑔𝑚𝑎𝑥𝑧1 ×
𝑆1

𝐾𝑧1 + 𝑆1
× 𝑍1, (A35) 

𝐺𝑟𝑎𝑆2𝑍2 = 𝑔𝑚𝑎𝑥𝑧2 ×
𝜌1 × 𝑆22

𝐾𝑧2 + 𝜁1 + 𝜁2
× 𝑍2, (A36) 

𝐺𝑟𝑎𝑍1𝑍2 = 𝑔𝑚𝑎𝑥𝑧2 ×
𝜌2 × 𝑍12

𝐾𝑧2 + 𝜁1 + 𝜁2
× 𝑍2, (A37) 

𝐺𝑟𝑎𝐶ℎ𝑙1𝑍1 = 𝐺𝑟𝑎𝑆1𝑍1 ×
𝐶ℎ𝑙1

𝑆1
× 𝑍1, (A38) 

𝐺𝑟𝑎𝐶ℎ𝑙2𝑍2 = 𝐺𝑟𝑎𝑆2𝑍2 ×
𝐶ℎ𝑙2

𝑆2
× 𝑍2, (A39) 

𝐺𝑟𝑎𝑆𝑃𝑂𝑁𝑍2 = 𝑔𝑚𝑎𝑥𝑧2 ×
𝜌3 × 𝑆𝑃𝑂𝑁2

𝐾𝑧2 + 𝜁1 + 𝜁2
× 𝑍2, (A40) 

𝐺𝑟𝑎𝐿𝑃𝑂𝑁𝑍2 = 𝑔𝑚𝑎𝑥𝑧2 ×
𝜌4 × 𝐿𝑃𝑂𝑁2

𝐾𝑧2 + 𝜁1 + 𝜁2
× 𝑍2, (A41) 

𝜉1 = 𝜌1 × 𝑆2 + 𝜌2 × 𝑍1 + 𝜌3 × 𝑆𝑃𝑂𝑁 + 𝜌4 × 𝑆𝑃𝑂𝑁, 
(A42) 

𝜉2 = 𝜌1 × 𝑆22 + 𝜌2 × 𝑍12 + 𝜌3 × 𝐿𝑃𝑂𝑁2 + 𝜌4 × 𝐿𝑃𝑂𝑁2, 
(A43) 

where 𝑔𝑚𝑎𝑥𝑧1 and 𝑔𝑚𝑎𝑥𝑧2 are the maximal grazing rates of Z1 and Z2. 𝐾𝑧1 and 𝐾𝑧2 are the 

half saturation constants of Z1 and Z2 grazing. 𝜌 is grazing preference. 𝜌1 , 𝜌2 , 

𝜌3 and 𝜌4 are grazing preference for S2, Z2 grazing preference for Z1, Z2 grazing prefer-

ence for SPON, and Z2 grazing preference for LPON, respectively. 

(6) The excretion: 

𝐸𝑥𝑐𝑟𝑍1 =
𝑆12

𝐾𝑧1 + 𝑆12
× 𝑍1, (A44) 

𝐸𝑥𝑐𝑟𝑍2 = (
𝑆22

𝐾𝑧2 + 𝑆22
+

𝑍12

𝐾𝑧2 + 𝑍12
) × 𝑍2, (A45) 

(7)The remineralization: 

𝑅𝑒𝑚𝑖𝑛𝑆𝑃𝑂𝑁 = 𝛾𝑆𝑃𝑂𝑁 × 𝑆𝑃𝑂𝑁, 
(A46) 

𝑅𝑒𝑚𝑖𝑛𝐿𝑃𝑂𝑁 = 𝛾𝐿𝑃𝑂𝑁 × 𝐿𝑃𝑂𝑁, 
(A47) 

𝑅𝑒𝑚𝑖𝑛𝑏𝑆𝑖 = 𝛾𝑏𝑆𝑖 × 𝑏𝑆𝑖, 
(A48) 

where 𝛾𝑆𝑃𝑂𝑁, 𝛾𝐿𝑃𝑂𝑁 and 𝛾𝑏𝑆𝑖 represent the remineralization rate of SPON, LPON and bSi. 

Appendix B 

The PFT three-component model of phytoplankton size classes were developed by 

Brewin et al. [25]. 

Total Chla concentration (𝐶) is the sum of Chla concentrations in three size classes. 

Here we use OC-CCI Chla concentration. Picoplankton and nanoplankton can be 
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combined into a single class [77], and their combined Chla concentration (𝐶𝑝,𝑛) can be ex-

pressed as: 
𝐶𝑝,𝑛 = 𝐶𝑝,𝑛

𝑚 [1 − 𝑒𝑥𝑝(−𝑆𝑝,𝑛𝐶)] , 
(A49) 

where 𝐶𝑝,𝑛
𝑚  is the asymptotic maximum value for 𝐶𝑝,𝑛 and 𝑆𝑝,𝑛 is the initial slope. Then the 

Chla of microplankton (𝐶𝑚) can simply be calculated as: 
𝐶𝑚 = 𝐶 − 𝐶𝑝,𝑛 , 

(A50) 

The Chla of picoplankton (𝐶𝑝) can also be expressed in a similar form as a function of 

total chla concentration: 
𝐶𝑝 = 𝐶𝑝

𝑚[1 − 𝑒𝑥𝑝(−𝑆𝑝𝐶)] , 
(A51) 

where 𝐶𝑝
𝑚 is the asymptotic maximum value for 𝐶𝑝 and 𝑆𝑝 determines the initial slope of 

the curve. Then the value of Cn can be calculated as follows: 
𝐶𝑛 = 𝐶𝑝,𝑛 − 𝐶𝑝  , 

(A52) 

Therefore, the fractions of these size classes can be derived by the following equa-

tions: 

𝐹𝑚 =
C − 𝐶𝑝,𝑛

𝑚 [1 − 𝑒𝑥𝑝(−𝑆𝑝,𝑛𝐶)]

C
 , (A53) 

𝐹𝑛 =
𝐶𝑝,𝑛

𝑚 [1 − 𝑒𝑥𝑝(−𝑆𝑝,𝑛𝐶)] − 𝐶𝑝
𝑚[1 − 𝑒𝑥𝑝(−𝑆𝑝𝐶)]

𝐶
 , (A54) 

𝐹𝑝 =
𝐶𝑝

𝑚[1 − 𝑒𝑥𝑝(−𝑆𝑝𝐶)]

C
 , (A55) 

where the parameter values of 𝐶𝑝,𝑛
𝑚 , 𝐶𝑝

𝑚, 𝑆𝑝,𝑛 and 𝑆𝑝 in the SCS are 0.9532, 0.2563, 0.9835 

and 3.5346, respectively [19]. 
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