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Abstract
Poleward range shifts are a global-scale response to warming, but these vary greatly 
among taxa and are hard to predict for individual species, localized regions or over 
shorter (years to decadal) timescales. Moving poleward might be easier in the Arctic 
than in the Southern Ocean, where evidence for range shifts is sparse and contradic-
tory. Here, we compiled a database of larval Antarctic krill, Euphausia superba and, 
together with an adult database, it showed how their range shift is out of step with the 
pace of warming. During a 70-year period of rapid warming (1920s–1990s), distribu-
tion centres of both larvae and adults in the SW Atlantic sector remained fixed, de-
spite warming by 0.5–1.0°C and losing sea ice. This was followed by a hiatus in surface 
warming and ice loss, yet during this period the distributions of krill life stages shifted 
greatly, by ~1000 km, to the south-west. Understanding the mechanism of such step 
changes is essential, since they herald system reorganizations that are hard to predict 
with current modelling approaches. We propose that the abrupt shift was driven by 
climatic controls acting on localized recruitment hotspots, superimposed on thermal 
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1  |  INTRODUC TION

Temperature is a major driver of marine species distribution at global 
scales (Beaugrand et al., 2019; Burrows et al., 2011, 2019; Pinsky 
et al., 2013) and, accordingly, one of the ‘universal’ responses to cli-
matic warming is a poleward shift in distribution (Chen et al., 2011; 
Parmesan & Yohe, 2003). This accords with the general principle of 
thermal niche conservatism, a central concept of species distribution 
models, which project distributions under future climatic states based 
on the assumption that the relationship of a species to its environ-
ment (including temperature) remains unchanged (Brun et al., 2016). 
The urgent need to gauge species- and ecosystem-level responses 
to a warmer world has led to a rapid increase in such projections. 
These are valuable, for example, in providing broad-brush, large-scale 
approximations of end-of-century distributions (Cheung et al., 2009).

Despite their clear value at large scales, the utility of such pro-
jections at smaller scales has been questioned on several counts. 
They can be limited in projecting the distributions of individual 
species, particularly over the shorter timescales (years to a few de-
cades) required by resource managers (Brun et al., 2016; Fernandes 
et al., 2020). Further, the underpinning assumptions for the concept 
of niche conservatism (Crisp et al., 2009) are also under scrutiny, 
given the potential for genetic adaptation, phenotypic variability, 
life stage-specific responses and other compensation mechanisms 
(Dam, 2013; Pinsky et al., 2020). Indeed, range shifts among individ-
ual species are highly variable and can be much faster, slower, unre-
sponsive or even opposite in direction to the general poleward shifts 
of isotherms in a warming environment (Chen et al., 2011; Chivers 
et al., 2017; Fuchs et al., 2020; Tarling et al., 2018). Beaugrand and 
Kirby (2018) have proposed a theoretical framework to understand 
the reasons behind this apparent lack of congruence, in terms of 
interacting processes at multiple levels of spatial and biological 
organization.

Polar ectotherms are temperature sensitive and yet their habitats 
are warming faster than the global average rate, so we urgently need 
to understand and project range shifts to gauge their future roles in 

ecosystem functioning, food provision and biogeochemical cycling. 
With some notable exceptions in parts of the Arctic and subarctic 
(Dalpadado et al., 2020; Edwards et al., 2021; Ershova et al., 2021; 
Fossheim et al., 2015), polar data sets rarely have sufficient tempo-
ral and spatial coverage to understand how rapid polar warming has 
translated into range shifts (Wassmann, 2011). Poor understanding 
of the mechanisms behind past change challenges our confidence in 
the future projections (Pinsky et al., 2020).

Within the Southern Ocean, Antarctic krill (Euphausia superba) 
play a central role in the food web, and the spatio-temporal dynam-
ics of this single species impact both higher and lower trophic levels 
(Reiss et al., 2020; Schmidt et al., 2016). For this reason, studies are 
increasingly projecting krill distribution (Mackey et al., 2012; Piñones 
& Fedorov, 2016) or growth potential (Hill et al., 2013; Murphy et al., 
2017; Veytia et al., 2020) based on the untested assumption that the 
relationship of krill with its environment remains fixed. Fortunately, 
this assumption is testable, since extensive abundance data have 
been collected over the last century. For this study, we built a long-
term, large-scale database for krill larvae to complement an existing 
one on adults (Atkinson et al., 2017). The overall range of these adult 
stages has previously been shown to have contracted southwards 
over the last century (Atkinson et al., 2019). By adding the new lar-
val data set, we show here that the range contraction is actually a 
step change, which is decoupled from the pace of climate warming. 
The larval and adult databases allow us to hypothesize a mechanism, 
based on spawning dynamics, to explain such abrupt shifts.

2  |  METHODS

2.1  |  Source krill data

The data set on post-larval krill (i.e. all juvenile and adult krill, here-
after termed collectively as ‘adults’) was obtained from KRILLBASE-
abundance, which is described in Atkinson et al. (2017). This is a 
multinational compilation of all available data on adult abundance (no. 

niche conservatism. During the warming hiatus, the Southern Annular Mode index con-
tinued to become increasingly positive and, likely through reduced feeding success for 
larvae, this led to a precipitous decline in recruitment from the main reproduction hot-
spot along the southern Scotia Arc. This cut replenishment to the northern portion of 
the krill stock, as evidenced by declining density and swarm frequency. Concomitantly, 
a new, southern reproduction area developed after the 1990s, reinforcing the range 
shift despite the lack of surface warming. New spawning hotspots may provide the 
stepping stones needed for range shifts into polar regions, so planning of climate-ready 
marine protected areas should include these key areas of future habitat.
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protected areas, range shift, recruitment, spawning
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m−2) of E. superba, based on net samples. It spans the period 1926–
2016 and, while circumpolar in scope, has most data in the Atlantic 
sector. For this study, we also generated a large, parallel database for 
larval E. superba abundance for the Atlantic sector only (KRILLBASE-
larvae). An earlier version of this composite database was analysed 
by Perry et al. (2019) but we have since added several thousand extra 
net hauls. This larval database, like the one on adults, is a compilation 
of individual survey data transcribed by one of us (AA) from catch 
notebooks, appendices of publications or sent directly by the data 
originators. The original data supplied were presented as numbers 
of larvae per m3 or numbers per m2, based on a volume filtered esti-
mated typically by multiplying the mouth area of the net by the dis-
tance towed. In common with the adult database, we have converted 
all densities to numbers per m2. With 9497 records, KRILLBASE-
larvae builds on an original database of around 1000 records for the 
Atlantic sector, compiled by Siegel and Watkins (2016). Table S1 lists 
the main sources of data that we used for KRILLBASE-larvae.

None of the data in the adult or larval abundance databases are 
based on sampling targeted on krill aggregations. Both databases in-
clude a variety of sampling nets, depths and times of year. Because 
of the ability of adult krill to escape nets, we base our analyses here 
on adult densities that have been numerically standardized to a sin-
gle, relatively efficient net sampling method (a night-time RMT8 net 
fishing from 0 to 200 m on 1 January). The standardization methods 
used are detailed in Atkinson et al. (2017). The larval data have not 
been standardized due to their smaller size, and thus reduced ability 
to evade nets. However, we checked that the main trends observed 
were followed independently by both component larval stages, 
namely calyptopes and furcilia, which differ greatly in size and ver-
tical distribution and thus in their catchability by nets. The sampling 
coverage for each life stage is shown in Table 1.

For most of the analyses, we divided the sampling period into 
three eras of approximately 20 years each, with the exact era bound-
aries selected to be consistent with analyses in Atkinson et al. (2019). 
Thus, era 1 was 1926–1939 (The ‘Discovery era’), era 2 was 1976–
1995 and era 3 was 1996–2016. Table 1 shows the station coverage 
from larval and adult databases for each era, after the data screening 
described in the next section.

2.2  |  Krill data screening

From the complete larval and adult krill databases, we first performed 
screening procedures to exclude outlying hauls which provided 
poor or unbalanced representations of krill density or distribution 
(Table 1). For the adults, these were based on previous screenings 
according to sampling depth of nets and time of year of sampling 
so as to remain consistent with the methods used in Atkinson et al. 
(2008, 2019). The same screening was applied to larvae, except the 
additional months of October and November were removed due to 
the rarity of larvae at that time of year. The full larval database in-
cludes density (no. m−2) data on eggs, nauplii plus metanauplii, and 
each of the three calyptope and six furcilia stages. To maximize sam-
ple size, we pool all calyptope and furcilia into one single category 
entitled ‘larvae’. The exceptions are Figures S1 and S4, which com-
pare trends in calyptopes and furcilia separately to investigate any 
biases related to net mouth area and mesh selection.

2.3  |  Environmental data

Most records of the two krill databases did not have parallel en-
vironmental data, so we needed to add them separately. GEBCO 
bathymetry data were added to each data record as described 
in Atkinson et al. (2017). To provide an estimate of sea surface 
temperature at the time of sampling, we used the Extended 
Reconstructed Sea Surface Temperature (ERSST) data set (Huang 
et al., 2018; https://www.ncdc.noaa.gov/data-acces​s/marin​eocea​
n-data/exten​ded-recon​struc​ted-sea-surfa​ce-tempe​ratur​e-ersst​
-v5). The data set is derived from a reanalysis based on the most re-
cently available International Comprehensive Ocean-Atmosphere 
Data Set (ICOADS). Improved statistical methods have been ap-
plied to produce a stable monthly reconstruction, on a 2°  ×  2° 
spatial grid, based on sparse data (Smith et al., 2008). An annual 
average was calculated for each geographical cell (between 52 and 
74°S and 80 and 20°W) and each year (1854–2018). These values 
were extracted in Matlab and then each larval or adult station was 
interpolated onto this grid to extract an annual mean sea surface 

TA B L E  1  Screening of the full larval and adult krill KRILLBASE databases for our analysis. Further spatial screening applied to some of the 
subsequent analyses. Sampling eras are described in Section 2.1, with numbers of sampling stations after screening presented for each era

Attribute KRILLBASE-larvae KRILLBASE-adults

Stages included Calyptopes and furcilia Post-larvae (Juveniles and adults)

Time span of coverage 1926–2014 1926–2016

Filter for month of coverage December to April inclusive October to April inclusive

Filter for top sampling depth 20 m or shallower 20 m or shallower

Filter for bottom sampling depth 50 m or deeper 50 m or deeper

No. stations 1926–1939 (era 1) 772 772

No. stations 1976–1995 (era 2) 969 3297

No. stations 1996–2016 (era 3) 3339 4405

Total stations 5080 8474

https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5)
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5)
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5)
https://The
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temperature relevant to its year of sampling. We chose to extract 
annual averages for this analysis, rather than those months spe-
cific to sampling to maximize the ERSST data input for this high-
latitude region. To further account for incomplete spatio-temporal 
coverage of temperature data, the 2° × 2° grid cells were analysed 
here based on their average annual values over the whole ~20-
year period encompassing each era.

Sea ice is important for the krill life cycle and its winter coverage 
provides an index of long-term environmental change independent 
from that of the ERSST data set. The most reliable sea ice index in 
this sector that spans a century is the South Orkney Fast Ice Series 
(SOFI) which is the recorded and interpolated timing of fast ice 
formation and breakout at Signy Island, South Orkneys (an island 
group on the Southern Scotia Arc at approx. 60°40ʹS, 45°00ʹW). 
This annual time series, starting in 1903, is described in more detail 
in Murphy et al. (2014). SOFI pertains to just one part of the SW 
Atlantic sector, and while it does not represent conditions further 
SW down the Antarctic Peninsula, it provides a parallel indication 
of long-term environmental change in the major spawning ground of 
krill along the southern Scotia Arc.

Based on prior work, the Southern Annular Mode (SAM) was 
the climatic mode with the clearest link to krill population pro-
cesses across the whole sector (Atkinson et al., 2019), so we 
focussed on SAM as a correlate of population dynamics acting 
alongside direct temperature effects on the krill distribution. SAM 
is measured as a pressure difference between reference points 
(Marshall, 2003) and more positive anomalies reflect a southerly 
translation of the low-pressure belts encircling Antarctica and a 
general increase in wind strength in the latitudes at which the 
krill population is centred in the SW Atlantic. For the SAM, annual 
values used in Figure 1 were obtained from http://www.nerc-bas.
ac.uk/icd/gjma/sam.html (accessed 11  November 2020). These 
annual means were based on the method described in Marshall 
(2003).

2.4  |  Multiple approaches to range shift analysis

Since our databases do not provide an evenly weighted spatial and 
temporal coverage, we approached the range shift analysis of larval 
and adult krill in six different ways, which contrast greatly in the way 
they combine and analyse the data. These were: first, simple grid-
ding and visualization of the data, based both on three sampling eras 
(Figure 2) and individual sampling years (Figure S1); second, calcula-
tion of changes in latitude and longitude of the leading, central and 
trailing portions of the distribution during the three eras (Figure 3); 
third, by doing similar analyses but dividing into latitudinal bands not 
grid cells and using five eras rather than three (Figure S5); fourth, 
by calculating commensurate changes in thermal habitat of the krill 
stages (Figure 4); fifth, by comparing time trends of krill life stages 
in northern and southern subregions of the sector, again dividing 
the data according to sampling eras, individual year or larval stage 
(Figure 5; Figure S4); and sixth, by dividing again into northern and 

southern subregions but using a non-parametric test on equalized 
sample sizes and a different metric of krill abundance. These six 
methods are detailed below.

2.4.1  |  Method 1: Plotting krill distribution in each 
era and year

Using Arc GIS version 10.2.2 in South Polar Stereographic Projection, 
we provide in Figure 2 a simple visualization of mean gridded distri-
butions during the three above-mentioned sampling eras. The grid 
size used (2° latitude by 5° longitude) was selected as a compromise 
between data coverage and resolution. Data were plotted as the 
arithmetic mean density of all stations in each era that lay within 
each grid cell in each era. At this same grid resolution, the distribu-
tions of individual larval stages in individual years are provided by 
Figure S1.

2.4.2  |  Method 2: Geographical range shift 
quantifications based on the three eras

To provide a numerical analysis of range shifts, we analysed both 
their latitudinal and longitudinal components (Figure 3) and then 
summarized these in terms of kilometre per decade using the ‘meas-
urement’ tool in GIS. To measure latitudinal and longitudinal range 
shifts in a robust way, we needed to identify the group of grid cells 
that were sampled in every one of the three eras (Figure S2). For the 
larvae, this comprised nine latitudinal bands (of 2° latitude) spanning 
50–68°S and 11 bands (of 5° longitude) spanning 20–75°W. For the 
adults, this generated nine latitudinal bands spanning 50–68°S and 
12  longitudinal bands spanning 20–80° W. Hence, the larval com-
parable area consisted of 37 cells while the adult grid comprised 43 
comparable cells.

To examine the ‘centre of gravity’ range shift in terms of lati-
tude, we first averaged, for each era, the available means for the 
respective grid cells within each of the nine latitudinal bands. This 
had the effect of stratifying the data coverage (such that each of 
our comparable grid cells was given the same weight). This method 
was chosen for all our range shift analysis here, to account for un-
even sampling distribution, with some cells sampled much better 
than others. We then calculated the centre of gravity as the sum of 
the product of band mean density and mean latitude of the band, 
divided by the sum of the densities in each band. Similar calcula-
tions of the centre of gravity were performed for the longitudinal 
bands.

To calculate range shifts in terms of cumulative percentiles 
(Figure 3), we took the mean densities in each latitudinal band, as 
described above, and calculated the cumulative sum of the densities, 
from north to south. The ‘northern range edge’ was defined here as 
the interpolated latitude of the 10% cumulative density values, the 
northern quartile as 25%, range centre as 50%, southern quartile 
as 75% and the ‘southern range edge’ as 90%. These 10% and 90% 

http://www.nerc-bas.ac.uk/icd/gjma/sam.html
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
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quantiles are not extreme range edges which are very hard to define 
accurately for plankton due to sampling limitations. Interpolation 
for latitude was linear, based on the two adjacent cumulative sum 
densities and their respective latitudes. Similar calculations of cu-
mulative quantiles of longitude were performed, running from east 
to west, such that the eastern range edge was defined as the 10% 
quantile.

2.4.3  |  Method 3: Improved definition of the 
timing of the range shifts

Division of the 1926–2016 period into only three eras, each of 
about 20 years, loses some of the definition of timing of the range 
shift. To address this, we divided the period also into five eras, 
each of about 10 years each. To maintain adequate sample size in 

F I G U R E  1  Contrasting trends in 
SW Atlantic sector temperature, SAM 
index and sea ice. ERSST annual mean 
sea surface temperature (1920–2018) in 
selected 2° latitude by 2° longitude grid 
cells spanning the SW Atlantic sector. Grid 
cells were South Georgia (cell centred at 
54°S, 36°W), Scotia Sea (58°S, 42°W), 
Elephant Island (62°S, 56°W) and West 
Antarctic Peninsula (66°S, 70°W). Annual 
SAM indices are plotted for the period 
of available data on the right-hand axis. 
Sea ice cover represents the duration 
of winter fast ice in the South Orkneys 
Fast Ice time series; values plotted here 
spanning 1920–2008 are as described in 
Murphy et al. (2014). Superimposed are 
the time spans of the three sampling eras 
of krill larvae and adults over which we 
compared distributions. Era 1 (Discovery 
era) spans 1926–1939, era 2 spans 1976–
1995 and era 3 spans 1996–2016. ERSST, 
Extended Reconstructed Sea Surface 
Temperature; SAM, Southern Annular 
Mode
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an increased number of eras, we used a simpler method whereby 
the data were divided into latitudinal bands rather than into grid 
cells. This had the advantage of reducing the weighting of sparsely 
sampled grid cells, some of which had high krill densities (Figure 2). 
We thus divided into four latitudinal bands each of 5° and span-
ning 50–70°S, calculating the mean density per band. Population 
centre of gravities were calculated as the sum of the products of 
mean density per band and latitude of the middle of the band, di-
vided by the sum of the mean densities per band. These results are 
presented in Figure S4.

2.4.4  |  Method 4: Shifts in thermal habitat of 
krill stages

In common with the analyses of geographical range shift in the three 
eras, the source data were the set of grid cells common to each era 
(Figure S2), with each cell providing both the mean SST for the krill 
records and mean krill density, averaged over each respective era. To 
calculate thermal habitat in each era, the comparable grid cells were 
ranked according to their mean SST in each era in turn, then follow-
ing the method of Edwards et al. (2021), the SST grid cell values were 

F I G U R E  2  Changing distributions of (a) larvae and (b) adult krill over the last 90 years. Note the different scales, which were selected 
based on natural breaks to provide an even colour scale to indicate the main distribution centres (bright colours). This obscures major 
changes in overall density between eras which are better depicted in Figure 5. Dots represent stations sampled in each era. Latitudes and 
longitudes are depicted on top left-hand map, with abbreviations MB, Marguerite Bay; SG, South Georgia; SO, South Orkney Islands
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weighed by multiplying by the mean krill densities for the respective 
cell and sampling era. Weighted centre of gravity of temperature for 
an era was then calculated as the sum of the product of mean tem-
perature for the cell and its mean krill density, divided by the sum 
of mean krill density across all cells (Figure 4). Cumulative percen-
tiles were calculated as before, by calculating cumulative sums of 
the product of temperature and mean density for the cells ranked in 
order of increasing mean temperature and then calculating the me-
dian temperature of cold and warm quartiles, based on interpolation 
of the position of the 25%, 50% and 75% quantile values relative to 
adjacent values.

2.4.5  |  Method 5: Population trajectories 
in northern and southern parts of the SW 
Atlantic sector

The era-based analyses of changes in the distribution of krill de-
scribed above reflect changes in distribution pattern between eras, 

based on data averaged over periods of several decades. Thus, the 
density scales of Figure 2 change between eras in order to portray 
shifts in the distribution centres denoted by the red hotspots of 
highest density. However, the major range shift observed over the 
last 40  years is accompanied by major changes in density of both 
larvae and adults. To examine the causes of this, Figure 5c–f and 
Figure S5 show the larval and adult abundance data at two contrast-
ing scales. At one extreme, we calculated a time series of annual 
mean densities, based on the austral summer season. Thus, for ex-
ample, the year 1981 for krill larvae spans 1 December 1980 to 30 
April 1981. At the resolution of annual mean data, the sample size, 
particularly for the larvae, was highly unbalanced with only a few 
stations sampled in some years. This led to some stations having 
mean abundance of zero, so data were plotted and regressed here as 
Log10(x + n), where n is half of the minimum annual mean recorded 
for the time series. For this reason, we also used the opposite ex-
treme for pooling the data, namely by presenting a simple arithmetic 
mean density of krill in each sampling era, irrespective of the year of 
sampling. These data were not normally distributed so we compared 

F I G U R E  3  An abrupt southward and 
westward shift in krill distribution since 
the 1970s. (a) Latitudinal shifts and (b) 
longitudinal shifts. From north to south 
(panel a), and from east to west (panel 
b), the cumulative quantiles describe the 
range edges (10% and 90%), quartiles 
(25% and 75%) and range centre (50%). 
These, as well as the centre of gravity of 
the population are calculated as described 
in Methods. Width of bars corresponds 
to the duration of sampling averaged 
within each era. During the warming 
period between the 1920s and mid-
1990s, distributions were fairly stable, 
with strong shifts only during the surface 
warming hiatus spanning the second and 
third eras
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them between eras with a Mann–Whitney test. For these analyses, 
adult data are extracted from the whole area due to the wide distri-
bution, while larval data were obtained only from their main distri-
bution area (i.e. 56–68°S, 20–70°W) to reduce variable weighting by 
stations outside the main larval nursery areas.

2.4.6  |  Method 6: A non-parametric test of trends 
in swarm frequency and density in northern and 
southern parts of the SW Atlantic sector

Krill occur in dense swarms and this highly skewed distribution 
poses challenges to the analysis of trends additional to the uneven 
time and space coverage of available data. The previous methods 
rely on trends in arithmetic mean krill density from groups of sta-
tions, some of these (e.g. Figure 5d,f) having been logged before 
analysis. To provide an independent method, we also examined time 
trends in the frequency of encountering swarms (Figure S6). This re-
quired equalizing the sample size, achieved by ordering stations in 
each of the two subregions by sampling day and then dividing each 
into 20 portions with the same number of stations in each (Yang 
et al., 2020). Based on all station data from the whole sector over the 
whole time period, we defined swarm densities as those within the 
top 10% of those observed (thresholds 44 adults m−2 and 121 larvae 
m−2) and computed a time trend for the percentage of hauls with krill 
at swarm densities within each of the 20 sampling periods. Mann-
Kendall trend tests have the advantages of being non-parametric, 
measuring directions of trends (thus not sensitive to the exact trans-
formation of data) as well as being robust to gaps in time series. For 

these reasons, they have proved useful for analysing plankton trends 
(Bedford et al., 2020; Desmit et al., 2020; Pinkerton et al., 2020). 
Mann-Kendall tests were then applied both to trends in mean abun-
dance and swarm percentage, with models including autocorrelation 
described in Supporting Information.

3  |  RESULTS

3.1  |  Environmental changes

Within the 90-year period, there has been a warming of the surface 
waters of the SW Atlantic sector at a much higher rate than either 
the global ocean average or the Southern Ocean average (Meredith 
& King, 2005; Whitehouse et al., 2008). Based on the ERSST an-
nual mean values (Figure 1) for a series of 2° latitude by 2° lon-
gitude grid cells spanning the SW Atlantic, surface temperatures 
increased between the 1920s and the 1990s by approximately 
0.5–1.0°C, depending on region. There was then a hiatus in surface 
warming between the 1990s and 2010s, with the exact timing and 
extent also region dependent. This hiatus was marked by two dec-
ades of surface cooling, followed by a rapid resumption of the up-
ward trend in warming in the last few years. Importantly, this meant 
that, in the southern part of the SW Atlantic sector (i.e. Scotia Sea, 
Elephant Island and West Antarctic Peninsula), the period 1996–
2016 was, on average, cooler than 1976–1995 (Figure 1).

The trends in sea ice concentration over the last century at the 
South Orkneys showed a broadly similar pattern to those of sea 
surface temperature (Figure 1). There was a reduction in winter 

F I G U R E  4  Larval and adult krill have not maintained a fixed thermal niche during periods of warming and cooling. Change in annual mean 
sea surface temperature inhabited by larval and adult krill over the three eras. As for Figure 3, we only included grid cells sampled in each 
era. Grid cells were ordered in increasing temperature and cumulative percentiles and centre of gravity were calculated as per Figure 3, 
weighting according to krill density in each cell. Because of sparse data coverage at the thermal extremes, coupled to the coarse resolution 
of Extended Reconstructed Sea Surface Temperature, we were not able to provide a reliable picture of outer thermal limits (i.e. 10% and 
90% thermal quantiles)
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F I G U R E  5  Climatic controls on recruitment along the South Scotia Arc may have caused the recent abrupt range shift. The SAM index 
is not available for the first sampling era, so this figure pertains to the 1976–2016 period (Eras 2 and 3). (a) Significant relationship between 
recruit density and the SAM index (mean monthly SAM of March–September in the year before the recruit density measurements). This panel 
pertains to oceanic stations (water depth >1000 m) along the Southern Scotia Arc, 60–62.5°S. This band had the strongest climate-recruit 
density relationships seen. (b) Same relationship as for panel a, but for the shelf stations within the 60–62.5°S latitudinal band. This key band 
for recruitment is illustrated in Figure S3, in relation to larval distribution. (c) Mean density of larvae and adults in the SW Atlantic sector 
each year in the northern part of the sector (i.e. north of 62.5°S). Stars represent significant differences between eras (Mann–Whitney test; 
red stars for larvae, blue stars for adults), while numbers over bars represent numbers of stations from each era pooled in these tests. (d) 
Time trends for krill larvae and adults in this northern area, with each data point representing mean krill density during an austral summer. 
Dashed lines signify trend lines that are non-significant (p < .05) while solid lines represent significant regressions. (e, f) Plots as for panels 
c and d, only for the area south of 62.5°S. Inclusion of a model that accounted for autocorrelation did not materially alter the slopes or their 
significance values (Figure S7; Tables S2 and S3). SAM, Southern Annular Mode
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fast ice duration in the middle of last century, followed by relatively 
stable conditions (albeit with inter-annual and subdecadal periodic-
ity) over the last 30 years which correspond to the warming hiatus. 
Figure S4d shows trends in average duration of open water per 
decade, calculated as 365 minus the fast ice duration to ease com-
parison with temperature trends and including recent unpublished 
British Antarctic Survey data. This shows likewise a broadly similar 
trend last century in sea ice and water temperature. The relatively 
stable sea ice conditions in this sector over the last few decades 
is also reported for the Antarctic Peninsula (Henley et al., 2019).

In contrast to the recent hiatus in warming and loss of sea ice in 
the SW Atlantic sector, SAM indices (only available since 1957) have 
shown an ongoing general increase in positive SAM anomalies since 
the 1950s (Figure 1).

3.2  |  Range shifts of larval and adult krill

Figure 2 depicts the distributions of larval and adult krill in each of 
the three eras. The range shift, in a generally SW direction, is evident 
across the measurement period for both larvae and adults. However, 
a fragmented distribution of larvae develops in era 3, not only with 
the retention of the main larval nursery area in the southern Scotia 
Sea, but the development of a separate larval hotspot off Marguerite 
Bay on the Western Antarctic Peninsula (WAP). While larval data cov-
erage is not so good as that of adults, data from individual years and 
the individual component larval stages (Figure S1) support the aver-
age case depicted in Figure 2a. Thus, during the 1900s, highest larval 
densities were always within the region from the tip of the Antarctic 
Peninsula to the Scotia Sea. It is only after the year 2000 that highest 
calyptope and furcilia larval densities have been found at the WAP, for 
instance in 2001, 2002 and 2011 (Siegel et al., 2013). In parallel with 
this SW range shift of larvae, Figure 2b suggests an increase in relative 
importance of the WAP in supporting adults in this sector over time.

These shifts are quantified by calculations of the latitudinal and 
longitudinal translation of range edges and centres throughout the 
last 90 years (Figure 3), based only on grid cells sampled in all three 
eras (Figure S2). During the rapid warming between the first and 
second eras, the ranges of both larvae and adults were fairly static, 
the only exception being the leading (south-westward) range edge 
of adults, which moved south and westwards down the WAP. By 
contrast, in the warming hiatus between eras 2 and 3, the ranges of 
both larvae and adults moved dramatically. For the larvae, the north-
ern range edge was rather static, whereas the leading (southward) 
edge moved greatly to the SW, pulling the centre of gravity of the 
population also in that direction. The adults, by contrast, showed a 
SW translocation of both trailing and leading range edges over the 
last 40 years. Based on an overall movement of the centre of grav-
ity of the populations over the last 90 years, larvae moved 832 km 
and adults moved 1400 km in a SW direction. However, due to the 
bimodal population distributions and differential movements of the 
leading and trailing range edges, the actual distances shifted vary 
according to the metric chosen (Figure 3).

To obtain more detail on the timing of range shifts, we divided the 
time period into five eras (each of around a decade) rather than the 
three periods as used above. This analysis (Figure S4) showed fairly 
unchanging latitudinal distributions of larvae and adults until the mid-
1990s, and it was only in the last two of the decades that the cen-
tre of gravity of their distributions moved substantially to the south. 
This finer time resolution clearly shows the out-of-step relationship 
between the main environmental warming and ice loss (before the 
1980s) and the krill range shift (after the 1980s). Importantly, this 
shift of the centre of gravity of the population did not simply reflect 
a decline in krill densities in the far north, since densities of larvae 
increased substantially in the southernmost latitudes (Figure S4a).

3.3  |  Shifts in the thermal range occupied by krill

A common method of assessing range shifts is to compare them 
to the pace of isotherm movement over the corresponding period 
(Chivers et al., 2017). However, since isotherms run broadly SW–
NE in this region, parallel to the range shifts themselves (rather 
than running across them) and also broadening in extent from 
west to east (Hofmann & Murphy, 2004), this metric was not used 
in the present study. Instead, each station was allocated a sea 
surface temperature value based on a gridded ERSST v5 product 
(see Sections 2.3 and 2.4.3), allowing an analysis of how the ther-
mal habitat of krill has changed over the study period (Figure 4). 
During the rapid warming of the whole sector between the first 
and second eras, the spatial distributions of both larvae and adults 
were fairly static (Figure 3), which means that they were inhabit-
ing increasingly warm water. Figure 4 shows that this increase is 
typically 0.5–1.0°C; similar to the temperature increase in specific 
locations (Figure 1). The changes in thermal regime during the cool-
ing period between eras 2 and 3 are more varied, but frequently 
show the larvae inhabiting increasingly cool waters. This variation 
reflects a combination of a cooling of waters over this time and 
variable degrees of range shift (into cooler regions) between lead-
ing and trailing edges. Therefore, despite some radical changes in 
thermal regime and krill distribution over the last century, the net 
result is that the centre of larval distribution nowadays is in water 
about 0.5°C warmer than it was 90 years ago, while that of adults 
is in water of broadly similar temperature.

3.4  |  Causes of the abrupt distributional shift 
during the warming hiatus

The abrupt poleward shift over the last 40 years is surprising, since it 
spanned the hiatus in warming and was marked by a period of surface 
cooling (Figure 1). Fortunately, the near-continuous time series of krill 
data over this period, coupled with the availability of climatic indices, 
allows us to examine the mechanisms behind this surprising response 
(Figure 5). To examine how the SAM acts on portions of the popula-
tion, thereby modulating the range shift, we divided the SW Atlantic 
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sector into a series of bands, each of 2.5° latitude, following Atkinson 
et al. (2019). By far the strongest SAM–recruit density relationship was 
found in the band from 60.0 to 62.5°S (Figure S3), that is along the 
Southern Scotia Arc, previously identified as a key nursery area (Perry 
et al., 2019). Here, years with strong positive SAM indices tended to 
precede years of poor recruitment, an effect that was seen in both the 
oceanic (Figure 5a) and the shelf (Figure 5b) regions of this zone.

The facts that there are two population centres of larvae in the 
modern era (Figure 2) and that SAM effects on recruitment were 
only seen in the northernmost area provide a natural division of the 
sector into northern and southern portions (Figure S3). The relative 
population trajectories between the northern and southern portions 
of the range of krill are central to interpretations of range shifts. In 
the north, a decline in larvae is suggested, whether data are averaged 
according to sampling era (Figure 5c), individual years (Figure 5d) or 
the component larval stage (Figure S4). These substantial declines 
in northern larvae are in line with the declines in adults, shown both 
here and previously (Atkinson et al., 2019; Hill et al., 2019). By con-
trast, in the southern area along the WAP, changes in both larval and 
adult densities are not so marked, as would be expected if the dis-
tribution of both life stages had contracted towards the south. The 
seasonality, size, mobility, vertical distributions and thus catchability 
of calyptopes, furcilia and adults differ greatly (Siegel & Watkins, 
2016), so their parallel trends are hard to explain simply in terms of 
any temporal changes in sampling method.

These insights on differing trends in the northern and southern 
portions of the larval and adult krill range are provided by relative 
changes in arithmetic mean density. Figure S5 also examines parallel 
trends in the frequency of swarms in each area. The non-parametric 
Mann-Kendall test on equalized sample sizes shows consistently more 
negative z-scores in the northern part of the range than the south, 
indicating steeper decline trends. These declines were seen for both 
swarm frequency and for mean density, supporting previous findings 
that changes in mean krill density may actually be related to changing 
numbers of swarms in any given area (Brierley & Cox, 2015).

Taken together, the evidence suggests that in this northern por-
tion of the SW Atlantic, there has been a sharp downward trend in 
density of all three major krill life stages, namely calyptopes, furcilia 
and adults, since the 1970s. These trends are reflected also in declin-
ing frequency of swarms or dense aggregations and likely result from 
declining recruitment from the major spawning and nursery areas 
adjacent to the Southern Scotia Arc. This in turn reflects the SAM 
index becoming increasingly positive during this period, diminishing 
the importance of this northern spawning and nursery area, concom-
itantly with the increase in importance of a southern spawning area.

4  |  DISCUSSION

Our six main approaches to analysing the distributions of calyptope, 
furcilia and adult stages of krill all show that, during the last 90 years, 
their distributions have shifted substantially (~1000 km) within the SW 
Atlantic sector. While a range contraction of adults has been reported 

previously in this sector (Atkinson et al., 2019), our new larval database 
now shows how this shift occurred. Understanding the mechanism is 
important for several reasons. First, the sheer speed of the recent shift 
is alarming. Assuming that it started from the 1990s (Figure S4c), it is a 
jump of ~500 km per decade—far faster than most observed and pro-
jected values (Pinsky et al., 2020). Second, and despite much specula-
tion on Southern Ocean range shifts, their existence is not a general 
phenomenon and so demands a mechanistic explanation. A suite of 
copepod species, broadly similar in size and swimming ability to krill 
larvae, showed no evidence for a range shift last century; they main-
tained their distributions within the SW Atlantic while their environ-
ment warmed (Tarling et al., 2018). By contrast, the macroplanktonic 
salps expanded their leading range edge southwards in a similar way to 
krill (Atkinson et al., 2004; Pakhomov et al., 2002).

These contrasting examples for and against plankton range 
shifts in the Southern Ocean differ from the increasing evidence for 
northward range shifts in the Arctic (Campana et al., 2020; Ershova 
et al., 2021; Fossheim et al., 2015; Møller & Nielsen, 2019). Is a range 
shift into the high-latitude Southern Ocean impeded by the partic-
ular challenges of bathymetry and hydrography? While the Arctic 
Ocean is a deep basin supplied by localized northward inflows from 
the Atlantic and Pacific Oceans (Wassmann, 2011), the other pole 
comprises a central landmass encircled by a continuous, powerful 
Antarctic Circumpolar Current (ACC). Establishment in a warming 
Arctic Ocean relies on the reproduction of already advected popula-
tions, while occupation of the high-latitude Southern Ocean requires 
not only successful reproduction but also an additional transport 
mechanism across or against the currents. Indeed, the SW range 
shift of krill is actually in the reverse direction to the prevailing ACC 
flow and its northward surface Ekman component (Hofmann et al., 
1998; Hofmann & Murphy, 2004).

For this reason, we need to examine whether we are really 
observing a range shift related to warming, or instead population 
expansions and contractions that seem to have the effect of mov-
ing the range. For instance, the ‘basin model’, as applied to small 
pelagic fish, suggests that in periods of strong recruitment and 
high total abundance, the range expands, while density within the 
range centre increases (Barange et al., 2009). This type of basin 
model may indeed apply to krill; for instance, adults extended 
almost to the Polar Front after exceptional recruitment years 
1981 and 1996, and the rapid retreat of the northern range edge 
of adults since the 1980s coincided with a major decline in their 
density and swarm frequency (Figures S4 and S6). However, the 
southern (leading) edges of both larvae and adult distributions 
have also moved south over the last century, and larvae have in-
creased greatly in the far south (Figure S3). This strongly suggests 
that we are observing a temperature-induced range shift, in addi-
tion to a range contraction as abundance has declined. In the fu-
ture, this southern area may become the main successful spawning 
area of krill in this sector since a series of habitat models, both of 
larvae (Thorpe et al., 2019) and adults (Hill et al., 2013; Piñones & 
Fedorov, 2016; Veytia et al., 2020), project increasingly favourable 
conditions for krill towards the south.
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Our ability to observe both multiple life stages of krill and their 
recruitment over time and space sheds light on the mechanisms behind 
range shifts. The movements do not comply in a simple manner with 
thermal niche theory: between the 1920s and the 1990s, the central 
and northern edges of adults and larvae remain in place while their en-
vironment warmed. This parallels the observations of Scotia Sea cope-
pods over a similar time span (Tarling et al., 2018), but runs counter to 
many projection models of species distributions, such as Mackey et al. 
(2012), which assume that species track thermally optimum isotherms 
poleward. With a non-continuous time series between eras 1 and 2, 
we can only speculate why this is the case. One explanation relates to 
the depth distribution of krill. In common with most other long time-
series analyses and projections, we were forced by data availability 
to use surface values for our temperature index. However, krill distri-
bution extends to depth (Marr, 1962; Schmidt et al., 2011; Tarling & 
Thorpe, 2017), in waters insulated from the rapid changes at the sur-
face (Meredith & King, 2005; Whitehouse et al., 2008) and this may 
provide a more geographically stable thermal environment for krill.

This similarity in distributions between eras 1 and 2 amid a warm-
ing surface environment contrasts with the major (~1000  km) jump 
to the SW during the 25-year warming hiatus from the 1990s. Could 
this rapid shift also be interpreted in terms of differential warming of 
surface and deep waters? The hiatus in surface warming (Turner et al., 
2016) and more stable sea ice conditions (Henley et al., 2019) appear 
to be marked by a general cooling of the topmost ~50 m layer only; 
this being suggested to be related to strengthening winds and associ-
ated sea ice transport (Haumann et al., 2020). Below this near-surface 
layer, at the 55–65°S latitudes important for krill, there has been a 
continuation of the longer term warming since the 1980s, albeit with 
little change below 200 m (Haumann et al., 2020). There is certainly no 
evidence for a major acceleration in subsurface warming in recent de-
cades that would account for such an abrupt shift in krill distribution. 
Neither would such an explanation fit with the fact that during the 
previous decades of warming of surface and subsurface waters (Gille, 
2002; Whitehouse et al., 2008), the krill distribution was fairly static.

To explain this abrupt, non-linear range shift of krill, we instead 
suggest a putative model (Figure 6) in which two separate mech-
anisms interact. First is the underlying change in thermal regime, 
and this warming allows the extension of the adult range down the 
WAP last century. The second effect is indirect: from climatically 
driven changes in the food environment that affect krill recruitment. 
Winter sea ice was initially shown to be an important predictor of 
recruitment (Atkinson et al., 2004; Loeb et al., 1997; Siegel & Loeb, 
1995), but work since has shown that recruitment is better predicted 
statistically by climatic indices which relate not only to winter sea 
ice, but which also modulate food supply for larvae in the ice-free 
season (Loeb & Santora, 2015; Saba et al., 2014). Thus, at the whole-
sector scale of our study, the SAM has a dominant role in driving 
recruitment (Atkinson et al., 2019). Here (Figure 5a,b) we pinpoint 
its effect as being specifically in the main reproductive and nursery 
grounds which are along the Southern Scotia Arc (Perry et al., 2019).

How does SAM affect krill recruitment? The increasingly positive 
SAM is thought to relate to warmer, windier and more unsettled weather 

at the northern Antarctic Peninsula; unfavourable conditions for larval fit-
ness (Loeb et al., 1997; Quetin et al., 2007; Saba et al., 2014). We suggest 
that this combination of conditions has reduced krill replenishment to the 
main northern (Scotia Sea) part of the range (Figure 6). This is evidenced 
by the sharp declines in larvae and adult density (Figure 5c,d), swarm 
frequency (Figure S4) and recruitment indices (Atkinson et al., 2019). 
SAM also has an effect on recruitment in the WAP populations, but here 
its influence is not nearly so strong, with El Niño Southern Oscillation 
(ENSO) also having a major effect (Saba et al., 2014). Consequently, we 
suggest that reproductive success has been more stable in the southern 
part of the range. There is a subdecadal periodicity in adult density but 
little directional change evident since the early 1990s (Steinberg et al., 
2015; see also Figure 5e,f; Figure S6) and increasing larval densities at 
the leading range edge (Figure S4a). Together, this has contributed to a 
shift of the overall range to the south (Figure 6).

Observations of phytoplankton distributions along the WAP 
(Montes-Hugo et al., 2009) support the concept that changing food 
as well as temperature contributed to the rapid range shift of krill. 
Over the period 1978–2006, these authors found a significant de-
crease in summer chlorophyll a concentration north of 63°S with an 
increase to its south. This time span broadly encompasses our obser-
vation of the abrupt range shift, and the northern area showing the 
decline in chlorophyll a corresponds broadly to our northern area 
which has experienced the rapid decline in krill densities. The mech-
anisms behind these changes are likely to be complex (Reiss et al., 
2020), include changes in food quality as well as quantity (Schofield 
et al., 2017) and act on separate spawning locations along the 
Antarctic Peninsula (Conroy et al., 2020). This situation is similar to 
that in the rapidly warming Arctic, where poleward range shifts have 
been interpreted as a combination of direct temperature effects and 
superimposed effects from food web interactions (Dalpadado et al., 
2020; Ershova et al., 2021).

Whatever the mechanisms, our results emphasize the decoupling 
between the range shifts of krill and the pace of climatic warming. 
At the largest scale, krill have broadly maintained their thermal niche 
because, in the last few decades, their adults are centred in a simi-
lar thermal regime as they were 90 years ago, with this regime now 
found at higher latitudes. However, they have not smoothly tracked 
these thermal changes, withstanding about 1°C of warming in situ be-
fore undergoing an enormous shift during the warming hiatus now 
to occupy a new spawning ground. This has major implications for 
future projections, since processes are strongly non-linear, with the 
possibility of further abrupt shifts unrelated to temperature but more 
strongly related to climatic controls in localized recruitment hotspots.

Differential range shifts among species, particularly if they 
involve key species, can reconfigure food web interactions 
(Wallingford et al., 2020). Krill are important biogeochemically 
(Schmidt et al., 2016), supporting an iconic food web of penguins, 
seals, fish, flying seabirds and whales (Constable et al., 2014) and 
an expanding fishery (Meyer et al., 2020). Some of these dependent 
predators, for example gentoo penguins, have themselves expanded 
their ranges southwards (Korczak-Abshire et al., 2021). Given the 
pace of previous warming, there is widespread concern over future 
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trends, particularly over the possibility of step changes or other non-
linear responses to climatic change. Range shifts of krill can lead to 
substantial increases or decreases in availability to krill-dependent 
predators, already suggested through reductions in the contribution 
of krill to the diet of a krill specialist, the gentoo penguin (McMahon 
et al., 2019) and reduced fur seal pup birth weights (Forcada & 
Hoffman, 2014). The great speed of the recent larval and adult pole-
ward shift, at a time when parts of the region were actually cooling, 
is a warning of more surprises in store.

Designing ‘climate-ready’ areas for protection that help key, 
vulnerable or exploited species such as krill needs to account for 
future climate moving their distribution (Queirós et al., 2016; Visalli 
et al., 2020). To project the future, species distribution models are 
particularly valuable at larger scales, including over 50-year time 
frames and global scales. At these scales, for example, they help 
gauge vulnerable biomes and potential hotspots of change (e.g. 
Jones & Cheung, 2015). Likewise, mapping of climate change ve-
locities may help conservation planning in many areas of the world 
ocean where biological data are sparse (Brito-Morales et al., 2018; 
Burrows et al., 2011). All of these approaches carry limitations, 
especially for certain taxa (Brun et al., 2016), for short projection 
periods or for limited geographical areas (Cheung et al., 2016; 
Fernandes et al., 2020). In this context, a ~1000 km jump in krill 
distribution, in two decades and under stable surface temperature, 
provides a sobering reminder about projection at management-
relevant timescales. Krill provide a case study of the mechanisms 
by which such surprises can occur, for which a dogged maintenance 
of time series has proved essential. Understanding the drivers of 
step changes is critical (Beaugrand, 2012; Beaugrand et al., 2019; 
Conversi et al., 2015), since they can herald system reorganizations 

that impact on food web structure, biogeochemical function and 
fisheries management. Equally important is the protection of habi-
tats, such as the new southern krill reproduction area, that sustain 
populations as distributions change.
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F I G U R E  6  Hypothesized mechanism for the stepwise range shift. The schematic depicts the warm (red) to cool (blue) temperature 
gradient across the SW Atlantic sector in the warming era and the subsequent warming hiatus, with main population centres of larvae (red) 
and adults (blue), based on Figure 2. The hypothesized mechanism for this shift is based on the adults moving their southern range edge 
south during the warming period, supporting spawning off Marguerite Bay (WAP, Western Antarctic Peninsula), which then fuels increasing 
adult stocks in this southern area. Meanwhile deteriorating conditions for recruitment in the former Scotia Sea spawning stronghold, due to 
an increasingly positive Southern Annular Mode (Figure 5), cuts the recruitment of adults to the northern part of the range. We suggest that 
this differential recruitment process drives the main range shift which is seen, surprisingly, during the surface warming hiatus
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