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k Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, IRD, UMR 8187 - LOG - Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France 
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A B S T R A C T   

Constructing multi-source satellite-derived water quality (WQ) products in inland and nearshore coastal waters 
from the past, present, and future missions is a long-standing challenge. Despite inherent differences in sensors’ 
spectral capability, spatial sampling, and radiometric performance, research efforts focused on formulating, 
implementing, and validating universal WQ algorithms continue to evolve. This research extends a recently 
developed machine-learning (ML) model, i.e., Mixture Density Networks (MDNs) (Pahlevan et al., 2020; Smith 
et al., 2021), to the inverse problem of simultaneously retrieving WQ indicators, including chlorophyll-a (Chla), 
Total Suspended Solids (TSS), and the absorption by Colored Dissolved Organic Matter at 440 nm (acdom(440)), 
across a wide array of aquatic ecosystems. We use a database of in situ measurements to train and optimize MDN 
models developed for the relevant spectral measurements (400–800 nm) of the Operational Land Imager (OLI), 
MultiSpectral Instrument (MSI), and Ocean and Land Color Instrument (OLCI) aboard the Landsat-8, Sentinel-2, 
and Sentinel-3 missions, respectively. Our two performance assessment approaches, namely hold-out and leave- 
one-out, suggest significant, albeit varying degrees of improvements with respect to second-best algorithms, 
depending on the sensor and WQ indicator (e.g., 68%, 75%, 117% improvements based on the hold-out method 
for Chla, TSS, and acdom(440), respectively from MSI-like spectra). Using these two assessment methods, we 
provide theoretical upper and lower bounds on model performance when evaluating similar and/or out-of- 
sample datasets. To evaluate multi-mission product consistency across broad spatial scales, map products are 
demonstrated for three near-concurrent OLI, MSI, and OLCI acquisitions. Overall, estimated TSS and acdom(440) 
from these three missions are consistent within the uncertainty of the model, but Chla maps from MSI and OLCI 
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achieve greater accuracy than those from OLI. By applying two different atmospheric correction processors to 
OLI and MSI images, we also conduct matchup analyses to quantify the sensitivity of the MDN model and best- 
practice algorithms to uncertainties in reflectance products. Our model is less or equally sensitive to these un-
certainties compared to other algorithms. Recognizing their uncertainties, MDN models can be applied as a 
global algorithm to enable harmonized retrievals of Chla, TSS, and acdom(440) in various aquatic ecosystems 
from multi-source satellite imagery. Local and/or regional ML models tuned with an apt data distribution (e.g., a 
subset of our dataset) should nevertheless be expected to outperform our global model.   

1. Introduction 

With the availability of free satellite images from multiple missions 
capable of making high fidelity radiometric measurements over water 
bodies, devising proper processing chains to produce harmonized global 
water quality (WQ) products is currently a high-priority research topic. 
Global WQ products are critical for addressing the pressing questions 
surrounding aquatic ecosystems threatened by a changing climate and 
ever-increasing human exploitation of natural resources. These chal-
lenges primarily pertain to aquatic ecosystem responses to shifts in 
climate and human activities and the disentanglement of the impacts of 
these two main drivers (e.g., wildfire (Kramer et al., 2020) or extended 
dry/wet periods (Mosley, 2015) versus landuse and landcover change 
(Baker, 2006)) across different eco-hydrodynamic regions. Landcover 
and landuse change, deforestation and reforestation (Mapulanga and 
Naito, 2019), or mining activities (Dethier et al., 2019; Lobo et al., 
2015), for example, can alter the regional carbon cycle in aquatic eco-
systems, thereby affecting aquatic life and water quality (Kutser et al., 
2005). Further, operational utilities and water resource management 
agencies increasingly tend to rely on satellite assets for improved sam-
pling schemes and informed decision-making (Binding et al., 2021; 
Schaeffer et al., 2018). At large spatial scales with seasonal variability, it 
is consequential for these end-users to access reliable satellite-derived 
WQ indicators applicable to a broad range of aquatic ecosystem condi-
tions (e.g., various trophic states). 

The optical WQ indicators considered in this study include chloro-
phyll-a (Chla), total suspended solids (TSS), and Colored Dissolved 
Organic Matter (CDOM), measured as CDOM absorption at 440 nm 
(acdom(440)). These indicators, together with water and other non-water 
Inherent Optical Properties (IOPs), regulate the color of the water 
(Gordon et al., 1975), which is commonly quantified as water-leaving 
radiance (Lw(λ) ; W m− 2 sr− 1 nm− 1) just above the water (Mobley, 
1994). Because Lw(λ) varies according to the illumination conditions, it 
is commonly normalized by the total downwelling irradiance and 
expressed as spectral remote sensing reflectance, i.e., Rrs(λ), in units of 
sr− 1 (Mobley, 1999). For conciseness, the spectral dependency is drop-
ped hereafter. 

Among the three WQ indicators targeted here, Chla, the primary 
pigment found in all phytoplankton types, is a proxy for phytoplankton 
biomass whose shortage or excess leads to detrimental consequences on 
ecosystem function, health, and integrity. While phytoplankton absorb 
and scatter incoming solar irradiance, in open-ocean environments, it is 
the absorption by Chla, with two major absorbing peaks at 443 and 670 
nm, that primarily regulates the shape of Rrs in the visible spectrum 
(Kiefer and Mitchell, 1983). Rrs is further modulated by the absorption 
by other pigments, such as carotenoids and phycobiliproteins 
(Sathyendranath et al., 1989), leading to peaks and troughs throughout 
the visible spectrum (Bricaud et al., 1998). In optically complex waters, 
these spectral features are generally masked by the absorption and/or 
scattering induced by suspended particles as well as by acdom. Across 
global aquatic ecosystems, TSS, inclusive of all organic and inorganic 
suspended particles, influences turbidity. Its elevated quantities may 
limit the availability of light to benthic habitats, trap heat in the upper 
layers of the water column, thereby triggering harmful algal blooms 
(HABs) (Bukata et al., 1995). They can be associated with the transport 
of polluting substances including heavy metals and nutrients to 

waterways (Snyder and Carson, 1986). Its contribution to Rrs is through 
the absorption and scattering regimes and, in general, governs the 
overall magnitude of Rrs (Novo et al., 1989). CDOM may be considered 
as a proxy for dissolved organic carbon (Hestir et al., 2015; Kutser et al., 
2015; Spencer et al., 2012), enabling regional and/or global assessments 
of the carbon budget and cycling in terrestrial and aquatic ecosystems 
(Duarte and Prairie, 2005; Roehm et al., 2009). Due to its light- 
absorbing characteristics, particularly in the ultraviolet (UV) and blue 
spectrum, an increase in CDOM concentration restricts light availability 
in the water column, hence aquatic life (Roulet and Moore, 2006). In 
coastal estuaries, acdom is regarded as a proxy for salinity, an important 
variable that mediates coastal biodiversity (Benlloch et al., 2002) and 
plays a major role in identifying aquaculture sites (Resley et al., 2006). 
Global quantification of changes in these optical WQ indicators over 
time can elucidate aquatic ecosystem responses to environmental 
stressors and inform the global environmental policy (Hakimdavar et al., 
2020). 

Global assessment of these indicators using field sampling techniques 
alone is not feasible. Despite decades of research and developments 
(Brezonik et al., 2015; Bukata et al., 1995; Gitelson, 1992; Odermatt 
et al., 2012), the potential of remote sensing for many aquatic ecosys-
tems has not been fully realized, leaving behind a significant portion of 
global satellite observations Further, methods for generating reliable 
global products still deserve thorough studies. The objective of this 
research is to extend a previously developed machine-learning (ML) 
model, i.e., Mixture Density Networks (MDNs) (Pahlevan et al., 2020; 
Smith et al., 2021) to concurrently estimate Chla, TSS, and acdom(440) 
from the Operational Land Imager (OLI), MultiSpectral Instrument 
(MSI), and Ocean and Land Color Instrument (OLCI) aboard the Landsat- 
8, Sentinel-2, and Sentinel-3 missions, respectively. To the extent 
possible (owing to the differences in the spectral, spatial, and radio-
metric characteristics of these instruments), we aim to advance consis-
tency among multi-mission products to deliver globally seamless WQ 
products. This development relies on an in situ database that contains 
hyperspectral radiometric measurements and co-located Chla, TSS, and 
acdom(440). The model performance is gauged against that of select, top- 
performing state-of-the-art algorithms. The model is then retrained 
using all the available in situ data for application to OLI, MSI, and OLCI 
images and assessment of WQ matchups. 

2. The state of the practice 

Optically relevant WQ indicators and inherent and apparent optical 
properties (IOPs, AOPs) have been collected over four decades using 
radiometers aboard vessels, airborne platforms, or satellites. This has 
generated considerable advances in our ability to estimate Chla (Gitel-
son et al., 2007; Gower et al., 2005; Moses et al., 2012a; O’Reilly et al., 
1998), TSS (Doxaran et al., 2002; Knaeps et al., 2015; Petus et al., 2010), 
or acdom (Kowalczuk et al., 2003; Nieke et al., 1997). Recent and up-
coming launches of satellite missions continuously improve spatiotem-
poral coverage of aquatic environments and produce higher quality 
radiometric measurements. This has spurred the development of new 
high-quality WQ products (Balasubramanian et al., 2020; Cao and 
Tzortziou, 2021; Jiang et al., 2021; Smith et al., 2021) and algorithms 
that operate across different sensors (Pahlevan et al., 2020). Concur-
rently with enhancements in satellite data, the body of high-quality in 
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situ radiometric and biogeochemical data has increased (Spyrakos et al., 
2018), offering more realistic representations of natural waters in 
comparison to synthetic data that has long served as the backbone of 
similar efforts in the ocean color domain (IOCCG, 2006). 

Similar to other geophysical problems, estimating Chla, TSS, and 
acdom(440) from multispectral Rrs is by definition an inverse problem, 
where a function of form f− 1 is sought to predict a vector x given Rrs, i.e., 
x[Chla,TSS,acdom(440)] = f− 1(Rrs). Note that here we assume IOP 
components are not measured or unavailable. Given the inherent co-
variations and nonlinearities of IOPs and the associated substance con-
centrations in global inland and coastal waters (Bukata et al., 1995; 
Doerffer and Fischer, 1994; IOCCG, 2000, 2006, 2018; Mobley, 1994; 
Zheng et al., 2015), a simultaneous retrieval scheme may exploit the fact 
that various natural combinations of these variables differently drive the 
magnitude and shape of Rrs. For optically complex waters, such schemes 
fall into three families of algorithms: a) Linear Matrix Inversion (LMI) 
(Brando and Dekker, 2003; Giardino et al., 2007; Hoogenboom et al., 
1998), b) spectral matching based on look-up-tables (Arabi et al., 2020; 
Concha and Schott, 2016; Gerace et al., 2013; Raqueno, 2003), and c) 
machine-learning models (Doerffer and Schiller, 2007; Hieronymi et al., 
2017; Keiner and Yan, 1998; Tanaka et al., 2004). All these approaches 
have shown promise for estimating WQ indicators and, in some cases, 
for IOPs in inland and nearshore coastal waters; however, most devel-
oped models have been evaluated at local or regional scales only, due to 
the lack of globally representative development data (e.g., the absence 
of specific IOPs in case of LMI). Among these methods, the Multi-Layer 
Perceptron (MLP) neural network (Doerffer and Schiller, 2007) trained 
with a Hydrolight simulated dataset (Mobley and Sundman, 2008) has 
been adopted as the standard processing of OLCI data over inland waters 
(Toming et al., 2017) and applied to OLI (Hafeez et al., 2019) and MSI 
(Ansper and Alikas, 2019; Brockmann et al., 2016; Soomets et al., 2020). 
Instead of using simulated data, our study leverages a sizable database of 
in situ data for training and testing of an MDN for the simultanous 
estimation of Chla, TSS, and acdom(440) at a global scale. 

3. Datasets 

3.1. Development data 

A large portion of our database (Rrs – Chla and Rrs – TSS) has been 
described in previous publications (Balasubramanian et al., 2020; Jiang 
et al., 2021; Pahlevan et al., 2020; Smith et al., 2021). For this study, we 
added new co-located samples from Australia, New Zealand, the 
Netherlands, Spain, Uruguay, and Brazil (Fig. 1). This dataset has been 
further augmented by in situ Rrs – acdom(440) measurements. Our most 
complete dataset includes paired Rrs and Chla samples that correspond 
to 35 different sources, each encompassing data from one or multiple 
campaigns from a single principal investigator (PI). Our TSS and 
acdom(440) datasets came from 26 and 17 sources, respectively. The 
details on the geographic scope of these sources are provided in Ap-
pendix A. Note that the data from a single PI delivered at different stages 
were treated as separate sources, leading to a total of 42 different 
sources (Appendix A). 

The frequency distributions of each WQ component and their 
respective correlations are shown in Fig. 2. It is these covariances that 
our algorithm uses to determine the inverse function and produce the 
three indicators (Section 4). For our development, the measured 
hyperspectral Rrs were resampled with the four, seven, and 12 Relative 
Spectral Responses (RSRs) of OLI, MSI, and OLCI within the 410–800 nm 
spectral range, respectively (see Appendix B for more details). The 
spectral coverage of our Rrs spectra fell into two categories; the ones 
covering 400–700 nm and those that had extended coverage from 400 
through 800 nm. For this reason, the number of samples for the spectral 
band configurations of the sensors differed. OLCI’s band centered near 
400 nm was not considered here due to the small number of in situ 
spectra encompassing the UV range. 

3.2. Satellite data and matchups 

To demonstrate the quality of our WQ map products, three instances 
of near-simultaneous images acquired by OLI, MSI, and OLCI over two 
major estuaries and one hypereutrophic lake (Section 5.2) were 

9% 5%5%

44 % 37%

Fig. 1. Continental distribution of the development data where in situ Rrs and WQ indicators were measured. The percentage of contributed data from each continent 
is also provided for the data applicable to MSI (see text). Note that 63 samples from South Africa have not been illustrated (see Table A). 
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processed via the Atmospheric Correction for OLI ‘lite’ (ACOLITE) 
(Vanhellemont and Ruddick, 2021). These scenarios were selected 
because they represent a wide range of WQ conditions (e.g., 0.5 < Chla 
< 100 mg m− 3). While no ideal atmospheric correction (AC) processor 
for generating seamless Rrs from these missions has yet become available 
(Pahlevan et al., 2021a; Warren et al., 2019), ACOLITE (v20190326.0) is 
a convenient processor for inland and nearshore coastal waters and al-
lows for retrieving Rrs under highly turbid or eutrophic optical regimes, 
thereby making it a suitable choice for demonstration purposes. 

To understand how uncertainties in both Top-of-Atmosphere (TOA) 
observations and AC processing manifest in derived Rrs, i.e., un-
certainties in Rrs - hereafter referred to as σ(Rrs), and subsequent MDN 
products, OLI and MSI images at WQ matchup locations were reduced to 
Rrs via two AC processors, namely the SeaWiFS Data Analysis System 
(SeaDAS v7.5.3) and ACOLITE. Per Pahlevan et al. (2021a), these two 
processors perform relatively well in nearshore coastal and inland wa-
ters, respectively. For SeaDAS, the Near-InfraRed (NIR) and ShortWave 
InfraRed (SWIR) band combinations were utilized to account for aerosol 
contribution, whereas ACOLITE was used with its default setting (dark 
spectrum fitting). Because of MSI’s low signal-to-noise ratio in the NIR 
and SWIR bands (Pahlevan et al., 2017a), SeaDAS did not return as 
many matchups as ACOLITE when MSI imagery were processed. This 
issue however does not apply to OLI (Pahlevan et al., 2021a). Here, 
median satellite-derived WQ estimates within 3 × 3-element windows 
were computed. 

In situ WQ data for this matchup exercise were obtained from various 
databases across North America. A majority of the Chla matchup dataset 
has been employed in previous studies (Pahlevan et al., 2021a;(Smith 
et al., 2021) ). This study added TSS and acdom(440) matchups. The TSS 
data were mostly available through the U.S. Water Quality Portal (htt 
ps://www.waterqualitydata.us) and Geological Survey’s National 
Water Information System (https://nwis.waterdata.usgs.gov/nwis) that 
contain data from small inland waters, as well as through the Ches-
apeake Bay repository (https://www.chesapeakebay.net) with data 
mostly ranging from 0.1 to 20 g m− 3. These datasets were further 
augmented by the repository provided in Ross et al. (2019). Several 
filtering techniques were executed to exclude duplicate data records. 
More Chla and acdom(440) data were made available through the Natural 
Science and Engineering Research Council of Canada’s (NERC) Lake 
Pulse Network (LPN), an extensive multi-year field campaign conducted 
across select drinking water supplies and lakes in Canada (Huot et al., 
2019). Additional acdom(440) datasets acquired in Lake Winnipeg 
(Manitoba, Canada) and across several lakes in Minnesota were 
contributed by Environment and Climate Change Canada (ECCC) and 
the University of Minnesota (Olmanson et al., 2020), respectively. For 
Chla and TSS matchups, we permitted a +/− 3 h time window from the 
satellite overpass for coastal matchups and a same-day overpass for 
inland waters. Given the known stability of acdom(440) over extended 
periods at our matchup sites, i.e., boreal lakes (Cardille et al., 2013), and 
to incorporate an adequate number of matchups, we adopted a +/− 3 

Fig. 2. Frequency distribution (top) of WQ indicators for which co-located Rrs spectra covering the MSI visible-Near-InfraRed spectral bands (< 800 nm) were 
available. 2D histograms (bottom) exhibit correlations between co-located sample pairs. The number of available data samples was the highest for OLI (410 < λ <
700 nm) and slightly lower for OLCI due to a broader spectral coverage. The R-squared (R2) and Pearson Correlation Coefficient (PCC) are annotated to give insights 
into the correlations between WQ indicators. 
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day time window for this parameter (Brezonik et al., 2015). Note that a 
large portion of our dataset originates from narrow ecosystems or 
nearshore coastal waters making it difficult to obtain enough matchups 
for OLCI’s 300 m nominal spatial resolution. 

4. Methods 

MDNs differ from traditional neural networks (Bishop, 1995; Bricaud 
et al., 2007; Jamet et al., 2012) in that they produce the likelihoods of 
generated estimates (Bishop, 1994). Succinctly, MDNs learn a proba-
bility distribution over the output space, thereby accomodating multi-
modal target distributions. This multimodality is a fundamental 
characteristic of inverse problems, where a non-unique relationship 
exists between input and output features. Using the probabilities esti-
mated for each individual prediction, users may choose the maximum 
likelihood estimate (the prediction with the highest probability) or the 
weighted average of all predictions (e.g., see five likelihood functions in 
Fig. 3). Similar to previous publications, the model input and output 
features encompass in situ Rrs and in situ WQ indicators (Section 3.1), 
respectively. Adopted from Pahlevan et al. (2020), an example for a Chla 
estimation from an arbitrary MSI-like Rrs spectrum is illustrated in Fig. 3, 
with Gaussian mixtures output by the model and the maximum likeli-
hood estimate representing the final prediction. For comparison, esti-
mates from a conventional MLP (Smith et al., 2021) and the Ocean Color 
3-band algorithm (OC3) (O’Reilly and Werdell, 2019) are also depicted. 
This multimodal representation within the target space allows for 
enhanced predictions compared to other ML models. Traditional ML 
models like MLPs or other empirical Chla models report a single estimate 
without insights into the distribution of estimates. 

Further, Smith et al. (2021) have shown that for a Chla retrieval task 
from OLI observations, MDNs outperform traditional MLPs by 20 to 
30%, an improvement attributable to MDNs’ ability in learning condi-
tional probabilities. MDNs inherently learn the covariances among the 
output features, intuitively improving the accuracy over models inten-
ded for retrieving an individual parameter (Bishop, 1994). In general, 
multi-parameter inversion algorithms for biogeochemical properties 
and/or IOPs (e.g., Kallio et al. (2001)) are anticipated to constrain the 
solution space given the covariances among parameters of interest in a 
natural environment (Fig. 2). This study leverages this characteristic to 
estimate optically relevant WQ indicators through MDNs. 

4.1. Estimating missing values 

For generating simultaneous WQ indicators, several modifications 
were made to the basic MDN model. First, the data itself necessitates 
special handling, due to hundreds of missing samples from one or two 
categories (Fig. 2). For instance, within the in situ Chla dataset suitable 
for OLI, there are 5680 available measurements out of a total of 6475 
samples. For TSS and acdom(440), the number of available measurements 

is even smaller (3847 and 2910 samples, respectively), with only 1613 
samples encompassing all three quantities - just over 20% of the total 
dataset. To make use of the remaining 80% of the data with missing 
values, a method is needed to allow the MDN model to learn from partial 
information. 

To fill in the missing values, we apply a method referred to as mul-
tiple imputation (Rubin, 2004), which has been utilized in inverse 
problems related to geophysical parameter retrievals (Hudak et al., 
2008; Junninen et al., 2004; Kalteh and Hjorth, 2009). Simply put, the 
missing values are replaced by values randomly drawn from a distri-
bution that represents the dataset. After m values are drawn, each of 
those values is independently used to complete the analysis as if the 
value were not missing and subsequently pooled into a final analysis 
output. This process assumes the missing values are either Missing 
Completely At Random (MCAR), or as a slightly weaker assumption, 
Missing At Random (MAR) (King et al., 2001). Concretely, this means 
that we are assuming a missing Chla is not dependent upon the Chla 
value itself - it is, at worst, dependent only on the other available mea-
surements for that sample. Suppose the missing value is instead condi-
tionally missing upon its value (or the value of other missing variables). 
In that case, the data is considered Missing Not At Random (MNAR) and 
requires additional care in handling (King et al., 2001). 

MDNs inherently model the joint probability of all output variables, 
leading to a multiple imputation approach which is capable of handling 
even MNAR variables in certain circumstances (in addition to the usual 
MAR or MCAR) by allowing us to draw directly from the learned pos-
terior (Buuren and Groothuis-Oudshoorn, 2010; Galimard et al., 2018). 
Moreover, the multiple imputation estimates are improved continuously 
during the training of the MDN, i.e., as the MDN learns to better model 
the target variables, the accuracy of the imputed samples improves, thus 
leading to further improvements in the target variable estimates. Sepa-
rate parts of this type of chained bootstrap learning have been docu-
mented in the literature (Ghahramani and Jordan, 1995). 

4.2. Model architecture and hyperparameters 

Brief experiments were performed to gauge how much improvement 
might be gained through hyperparameter optimization of the model, 
utilizing Amazon Sagemaker’s Bayesian Search method to quickly 
search through the large space. It was found that the added complexity 
did not justify the relatively minor gains in performance, however, 
which is in line with the results shown previously (Smith et al. 2021). 
Instead, we used the configuration outlined in antecedent work to create 
models for all performance assessments: five Gaussian mixtures (Fig. 3), 
defined by a network using five hidden layers with 100 nodes in each 
layer; a learning and L2 normalization rate of 0.001 (a regularization 
term with model weights squared); and a bagging ensemble of ten 
models, over which the median is taken. See previous publications 
(Smith et al. 2021; Pahlevan et al., 2020) for additional details on the 

Fig. 3. A sample Rrs spectrum resampled with MSI RSRs (left) is shown with five Gaussian distributions output by an MDN model (Pahlevan et al., 2020) for 
estimating Chla. The maximum likelihood (dark green curve) is utilized to make the final Chla approximation through the MDN. Chla estimates by an MLP (Smith 
et al. 2021) and the OC3, as well as the in situ measured Chla are also denoted. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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model implementation. 

4.3. Model evaluation 

Per previous literature (Balasubramanian et al., 2020; Pahlevan 

et al., 2021b; Pahlevan et al., 2020; ), several robust single-parameter 
retrieval methods applicable to OLI, MSI, and OLCI with their original 
form and coefficients were considered (Table 1). While >20 algorithms 
for Chla and TSS estimations were initially examined, only a few 
acdom(440) models viable for a wide range of CDOM content were 

Table 1 
Retrieval algorithms assessed in this study.  

WQ 
indicator 

Algorithm 

Chla 

MDN 

GI2B* (Gilerson et al., 2010) Gons (Gons et al., 
2002) 

GU2B* (Gurlin 
et al., 2011) 

Blend (Smith 
et al., 2018) 

Moses-2B* (Moses 
et al., 2012b) 

OC3 (O’Reilly and 
Werdell, 2019) 

TSS 
SOLID (Balasubramanian 

et al., 2020) 
Novoa (Novoa et al., 

2017) 
Nechad (Nechad 

et al., 2010) 
Petus Petus et al., 

2010) Miller & McKee (Miller and McKee, 2004) 

acdom(440) Ficek (Ficek et al., 2011) 
QAA-CDOM (Zhu and 

Yu, 2012) 
Mannino (Mannino et al., 2008)  

* 2B refers to 2-band red-NIR family of algorithms. 

Fig. 4. Scatterplots showing the performances of MDN and best-performing state-of-the-art models for Rrs spectra resampled to MSI RSRs. These analyses correspond 
to a hold-out assessment approach with a 50–50% data split for which actual sample numbers are shown on the y-axes. See references noted in Table 1. Contour lines 
are presented to better illustrate data distributions. Red dots and the annotated values refer to invalid (negative) estimates. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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identified. Prior experiences with algorithm tuning of similar single- 
parameter models (O’Shea et al., 2021) suggest that due to non-linear 
covariations between Rrs and WQ indicators (Defoin-Platel and Chami, 
2007), adjusting one or two single (fixed) coefficients does not offer 
significant performance improvements when a globally applicable 
model is sought. On the other hand, most multi-parameter retrieval al-
gorithms suitable for inland and nearshore coastal waters (e.g., LMI) 
would have required further calibration data to adapt their specific IOPs 
unavailable for most of our dataset. When possible, equations for the 
empirical models listed in Table 1 are provided in Appendix C. It should 
be noted that generic ocean-color algorithms (e.g., default Generalized 
IOP model; (Werdell et al., 2013) have been attempted in prior research 
efforts (Pahlevan et al., 2021b) with (expectedly) little success. 

The two primary metrics used to gauge the accuracy of retrievals are 
the median symmetric accuracy and signed systematic percentage bias 
(Morley et al., 2018) referred to as uncertainty (ε) and Bias (β) 
throughout: 

ε = 100×
(
emedian( | log( e/o) | ) − 1

)
(1)  

MR = median( log( e/o) ) (2)  

β = 100× sign(MR)×
(
e| MR | − 1

)
(3)  

where e and o stand for estimated and in situ observed WQ indicators, 
respectively, and MR is median ratio. These metrics are similar to those 
applied in Seegers et al. (2018) with slight modifications for enhanced 
interpretability and robustness. Previous studies (Smith et al. 2021) 
have shown that these median measures, along with the slope of linear 
regressions (Type I), and root mean squared logarithmic difference 
(RMSLD), are adequate, offering a comprehensive perspective for eval-
uating algorithms. 

Two different schemes for the performance assessment were adop-
ted. The first method was the commonly used hold-out method that 
entails a random split of the entire dataset. Similar to our prior research 
(Pahlevan et al., 2021b), we chose a 50–50 random split to allow equal 
datasets for testing and training. This approach, however, may favorably 
impact the model performance as the test data may not be entirely in-
dependent of the training samples (e.g., data acquired in one lake 
through one or multiple field campaigns may be correlated). To over-
come this drawback and provide a more realistic (or even pessimistic) 
view of the performance, our second assessment strategy was the leave- 
one-out (LOO) approach where the model is trained with all the data 
sources (Appendix A) except one against which its performance is 
evaluated. This process is iterated until each data source is utilized once 
as a test set. The ultimate performance for MDN and the rest of the 
benchmarking algorithms is reported as the median or weighted average 
of all the individual performances (N = 35 for Chla in Fig. 5). This 
approach would deduce the expected performance of the model when an 
out-of-sample (unseen) dataset is applied to the model. In general, these 
two approaches (hold-out and LOO) are anticipated to provide a prac-
tical range for algorithm uncertainties and elucidate how well the model 
can estimate optical WQ indicators in globally diverse aquatic 
ecosystems. 

Due to the necessity of training an MDN for each data source in the 
LOO scheme, we used the Amazon SageMaker Studio (https://aws.am 
azon.com/sagemaker/) to train the models simultaneously. Thus, each 
data split was sent as a separate training job ten times, with a different 
random seed used to initialize network weights and training data shuf-
fling for each of these ten trials. The results of the ten trials were then 
averaged, and the final performance for each data source is used in the 
overall LOO weighted performance assessment (Table 3). In total, this 
led to several hundred training jobs necessary for each sensor. 

5. Results 

5.1. Performance assessment 

The performance assessment for MDN and two other best-performing 
algorithms based on the hold-out method implemented to MSI resam-
pled Rrs spectra (Section 3.1) is presented in Fig. 4. The MDN model 
shows negligible biases and moderate uncertainties across the three WQ 
indicators. Among all the tested Chla and TSS algorithms, Blend (Smith 
et al., 2018) and SOLID (Balasubramanian et al., 2020) are the second- 
best performing algorithms, respectively. Notably, the MDN model 
predicts TSS with virtually no bias. For acdom(440), MDN outperforms 
the other two algorithms with nearly half ε and RMSLD. Further, un-
certainties in MDN estimates of acdom(440) are highly uniform across the 
dynamic range spanning three orders of magnitude, whereas Ficek and 
QAA-CDOM approximations are only optimal for acdom(440) ~ 1 m− 1. 
Reported Slopes slightly less than unity suggest degraded performance 
at the two tails of data distributions (e.g., Chla < 1 mg m-3 and Chla >
100 mg m-3) which may be alleviated with a larger dataset or by aug-
menting the existing dataset to fill in the gaps further. The equivalent 
metrics for OLI- and OLCI-like spectra are shown in Table 2. While the 
uncertainty measures from the MSI and OLCI spectra are similar, the 
estimates through OLI-like band settings contain uncertainties 30 to 
100% larger for the three variables. The reason for the lower accuracy of 
Chla estimates is OLI’s lack of spectral bands within the 700–800 nm 
range (Gitelson, 1992), underscoring that MSI and OLCI spectral band 
configurations in this region introduce more degrees of freedom for 
quantifying TSS and acdom(440), despite acdom(440) being a UV-blue 
absorbing component (Kirk, 1994). It should also be noted that the 
OLCI’s spectral band configuration appears to enable 10–30% more 
accurate products over those from MSI, which corroborates the benefits 
of additional spectral bands for the optical sensing of WQ indicators (Lee 
et al., 2007). 

The LOO assessment of MDN and other best-performing algorithms 
for an MSI-like instrument is provided in bar charts for all the available 
data sources and each WQ component in Fig. 5. Again, MDN produces 
the most accurate estimates for most datasets. There are exceptions to 
that, however, where other algorithms like GI2B, Moses-2B, SOLID, and 
Ficek outperform MDN - though it should be noted that some of these 
occasionally generate invalid retrievals (e.g., GI2B for Chla < 8 mg 
m− 3), rendering them less ideal for global applications. We note that 
there are datasets for which predictions are associated with considerable 
uncertainties (e.g., Dataset #39 for Chla and TSS). For these scenarios, 
MDN typically provides the best approximations. The results do not 
imply that the dataset is of lower quality; instead, they may signify that 
the range of measured values from a specific dataset is not well repre-
sented within the rest of the dataset. 

A summary of the LOO performance assessment for the MDN model 
and the second-best algorithms in terms of a median and weighted 
average of ε is included in Table 3. Here, medians correspond to the 
median of all ε from all the datasets, and weighted averages represent 
sum of all ε weighed by the number of samples per dataset normalized 

Table 2 
Performance metrics for MDN based on the hold-out assessment for the spectral 
band configurations of OLI, MSI, and OLCI.   

WQ indicator ε [%] β [%] Slope [] RMSLD [] 

OLI Chla 59.1 − 9.5 0.77 0.86 
TSS 40.6 7.5 0.78 0.74 
acdom(440) 37.9 − 5.4 0.80 0.53 

MSI Chla 29.2 − 3.4 0.88 0.62 
TSS 32.1 1.4 0.80 0.70 
acdom(440) 34.5 − 1.6 0.73 0.72 

OLCI Chla 26.2 0.2 0.90 0.58 
TSS 29.9 3.6 0.80 0.67 
acdom(440) 26.8 1.2 0.81 0.65  

N. Pahlevan et al.                                                                                                                                                                                                                               

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/


Remote Sensing of Environment 270 (2022) 112860

8

by N. The reported uncertainties are often >50% higher than those 
denoted in Table 2 and bear similar conclusions. For example, the per-
formance metrics suggest that OLCI TSS and acdom(440) products are 
expected to be of higher quality than those from MSI and OLI. Analogous 
to the hold-out analyses (Table 2), it is found that OLI can produce viable 
TSS and acdom(440) estimates - although the derived Chla in highly 
eutrophic waters may be questionable, with more than 80% estimated 
uncertainties. The large differences in median and weighted average 
pertain to an unequal sample size of different data sources. For instance, 
large uncertainties (ε) for small datasets (<10 samples) do not signifi-
cantly contribute to ultimate uncertainties when reporting weighted 
average ε, whereas median ε (computed over all datasets) is equally 
affected by uncertainties in each data source. 

Among the three sensors and WQ indicators, the largest uncertainties 
ranging from 47 to 85% correspond to acdom(440), which may be 
attributable to the availability of fewer samples and a possible presence 
of outliers. Moreover, acdom(440) does not posses uniquely diagnostic 
features in Rrs, and so depends on how well the other components can be 

estimated, pooling uncertainty into acdom(440) estimates. Collectively, 
aside from uncertainties in Chla estimates from OLI, the average ε for all 
the sensors and WQ indicators for MDN are ~49 and ~ 65% (3rd and 4th 

columns in Table 3), which, together with the average ε from the hold- 
out assessment, provide insights into the expected range of un-
certainties, i.e., 26 to 49%, or 26 to 65%, associated with the MDN 
predictions. Whether median or weighted average uncertainties are 
examined, MDN WQ estimates are more accurate than those of the 
second-best models by an average of 11 and 53%, approximated from 
the mean ratios of columns 3–5 and 4–6 in Table 3, respectively. 

5.2. Visual assessments 

Three near-coincident OLI, MSI, and OLCI WQ maps produced via 
the MDN model over the San Francisco Bay, Chesapeake Bay, and Upper 
Klamath Lake (Oregon, USA) are evaluated for multi-mission product 
consistency. To simplify this analysis, we only focus on ACOLITE Rrs 
products. 

Fig. 5. Performance assessments based on the leave-one-out (LOO) experiments for an MSI-like mission for Chla, TSS, and acdom(440). See Appendix A for more 
details on the data sources, indices, and corresponding average Rrs spectra (Figure A). Equations for the state-of-the-art algorithms are provided in Appendix C. 
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The images over the San Francisco Bay (Fig. 6) were acquired on 
March 16th, 2019, under clear sky conditions with OLI and OLCI imagery 
taken ~3 min apart, followed by MSI passing over the region ~30 min 
later. There appears to be a reasonable agreement among the WQ maps, 
verifying the potential of MDN for producing congruous, practical multi- 
mission products. Although the OLI-derived Chla map resembles those 
of MSI and OLCI in the lower section of the bay, a closer examination of 
the maps suggests a higher degree of consistency in MSI and OLCI 
products, which aligns with the assessments in Section 5.1. A notable 
illustration of the advantage of the higher spatial resolution of OLI and 
MSI imagery is the identification of the South Bay salt ponds (Warnock 
et al., 2002) with very high Chla estimates. We also note more resem-
blance in OLI and MSI TSS maps than in those of MSI-OLCI or OLI-OLCI. 
For instance, in the mid-bay area (east of San Rafael), a major gradient in 
TSS is captured by OLI and MSI, whereas the OLCI map shows a more 
uniform distribution across this region. The between-sensor consistency 
is highest for the acdom(440) products in the northern section of the bay; 
spatial patterns show the largest concentrations (~ 2 m− 1) in the Sac-
ramento River outlet region and much lower values (0.2–0.3 m− 1) in the 
southern section of the bay. In the lower bay, the three maps agree well 
by predicting values on the order of 1 m− 1. In situ measured Chla and 
TSS data (Schraga et al., 2020) available through the U.S. Geological 
Survey’s field cruise (https://sfbay.wr.usgs.gov/water-quality-database 
/) two days prior to the overpass date are in general in agreement with 
those depicted in our maps. The reported near-surface Chla and TSS 
measurements in the South Bay at station #24 were ~10.7 mg m− 3 and 
5 g m− 3, respectively, while they are 9 mg m− 3 and 7 g m− 3, respec-
tively, for station #30. 

The mid-section of Chesapeake Bay is mapped by the three missions 
~15 min apart from each other on Nov 7th, 2016 (Fig. 7). In the main 
stem of the bay, OLI and MSI exhibit very similar spatial patterns of 
Chla, with OLCI showing slightly elevated concentrations in the bay and 
along the Potomac River. A single point measurement by the Maryland 
Department of Natural Resources (MD DNR) within the Patuxent River 
discharge (CB5.1 W) on the same date at ~12:20 UTC (> 3 h before 
satellite overpasses) indicates 6.2 mg m− 3 of Chla for which OLI, MSI, 
and OLCI approximate 4.0, 2.9, and 9.4 mg m− 3, respectively. The 
between-sensor consistency is better in the TSS maps, where the most 
apparent difference appears to be that OLI and MSI resolve more subtle 
spatial features which are diffused by OLCI’s coarser spatial sampling. 
For the same MD DNR matchup with a measured TSS of 7.4 g m− 3, TSS 
has been approximated as 4.0, 2.6, and 4.9 g m− 3 by OLI, MSI, and OLCI, 
respectively The acdom(440) products also match each other quite well 
with concentrations ranging from 0.2 to 0.3 m− 1 along the main stem of 

the bay with OLCI maps illustrating lower CDOM levels. Of further note 
are the banding effects in MSI products caused by changes in view azi-
muth angles across odd and even focal plane modules common to 
pushbroom images (Pahlevan et al., 2017b). 

Shown in Fig. 8 are the maps from July 29th, 2019, over the Upper 
Klamath Lake (Oregon), a eutrophic ecosystem known for its major 
summertime cyanobacteria HAB events (Bradbury et al., 2004). Here, 
full OLCI lake-wide maps via ACOLITE were not likely producible due to 
the instrument line-of-sight’s turbid atmospheric conditions. The re-
ported near-surface Chla data measured the following day by the USGS 
Oregon Water Science Center at three locations show concentrations 
varying within the 27–67 mg m− 3 range, suggesting that our estimates 
are a realistic representation of lake conditions. Chla at sites RS, WR, and 
MN on July 30th were reported as 57.0, 27.4, and 66.7 mg m− 3, 
respectively. The differences in MSI and OLCI products for these three 
locations lie between 14 and 35%. As in previous examples, acdom(440) 
maps appear more consistent than the other two indicators. For instance, 
there are major distinctions between the OLI TSS map and those pro-
duced from MSI and OLCI that agree well with the retrieved spatial 
patterns. This implies that OLI’s lack of spectral information within the 
700–800 nm range may render the derived TSS or Chla products inac-
curate in hypereutrophic waters. In addition, differences in estimated Rrs 
spectra can introduce large uncertainties in predicted WQ products. The 
elevated MSI TSS estimates, for example, can be ascribed to such in-
consistencies that drive inaccurate retrievals for one or all sensors (see 
Section 6 for discussions). 

5.3. Matchup analysis 

The performance of MDN in practical terms for MSI and OLI 
matchups has been illustrated in Figs. 9, 10, and 11. Although the Chla 
matchups cover a broad range of trophic states (0.1 < Chla < 100 mg 
m− 3), the range and distribution of TSS and acdom(440) are relatively 
marginal and/or sparse. Therefore, in this subsection, for Chla, we only 
present MSI matchups. For TSS and acdom(440), because of the avail-
ability of larger sample sizes since April 2013, only OLI matchups are 
analyzed. Although OLI’s performance for Chla estimation is subject to 
large uncertainties (Table 2), we also report OLI Chla matchup analyses 
in Appendix D (Figure D). Recall that the purpose of this analysis is to 
gauge the sensitivity of MDN and selected models (Table 1) to σ(Rrs) 
from SeaDAS and ACOLITE, i.e., a direct comparison of the two pro-
cessors is not intended. In addition, the number of matchups for each 
processor and/or sensor is different, making such direct comparisons 
futile. We further note that OLCI’s coarser spatial resolution 

Table 3 
Performance metrics (ε[%]) for MDN and second-best models corresponding to the LOO assessment for the spectral band configurations of OLI, MSI, and OLCI. N 
corresponds to the number of samples used for assessing MDN performance. Reported medians correspond to median of all ε from all the datasets, and weighted 
averages represent the sum of all ε weighed by the number of samples per dataset normalized by N.    

MDN Second-best model (OC3/GI2B, SOLID, Ficek)     

Median [%] Weighted Average [%] Median [%] Weighted Average [%] Number of data sources N 

OLI Chla 89.77 102.80 138.2* 126.3* 38 5577 
TSS 44.71 66.08 67.3 76.8 28 3847 
acdom(440) 60.75 85.83 67.9 203.4 23 2910 

MSI Chla 48.30 42.79 52.2** 62.7 35 4441 
TSS 48.23 62.20 58.5 73.0 26 3613 
acdom(440) 55.03 91.45 54.2 184.4 19 2064 

OLCI Chla 46.30 43.70 47.1** 58.6 35 4366 
TSS 45.12 59.41 58.2 80.2 26 3514 
acdom(440) 47.70 87.45 46.7 166.3 20 1984 

Sensor-average Chla 47.30*** 43.24*** 47.12*** 60.65*** 35 4198 
TSS 46.02 62.56 58.25 76.60 26 3526 
acdom(440) 54.55 88.24 50.30 175.35 19.5 1769 

Average 49.29 64.61 51.88 104.20 26.9 3164  

* Performance is associated with OC3. 
** Performance is associated with GI2B for which >850 samples (~ 28% of N) returned invalid Chla estimates. 
*** OLI statistics are excluded. 
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significantly reduced the number of Chla matchups (Section 3.2), pre-
venting robust statistical analyses. 

As shown in the matchups derived from ACOLITE (Fig. 9), neither 
MDN nor OC3 is viable for generating Chla products from MSI. MDN 
approximations from SeaDAS-derived Rrs, however are highly more ac-
curate than those estimated from OC3, although the number of 
matchups is much smaller than that for ACOLITE. In essence, the per-
formance of MDN and other algorithms is likely better evaluated when a 
wider range of Chla is utilized. It is also shown that Blend exhibits large 
uncertainties for Chla < 10 mg m− 3 and MDN predictions are noisy and 
especially less accurate than OC3 predictions for Chla <1 mg m− 3, 
indicating that σ(Rrs) primarily affect the retrieval accuracies within this 
range compared to the demonstrations in Section 5.1. 

Predictions of TSS from OLI-derived Rrs yields the best result via 
MDN for almost all statistical descriptors compared to SOLID and Novoa 
for both AC processors (Fig. 10). The level of improvement is more 
discernible for SeaDAS Rrs implying that ACOLITE may generate biased- 
high Rrs causing varying degrees of overestimated TSS through all three 
algorithms. It also appears that SOLID is more sensitive to σ(Rrs) from 

ACOLITE than Novoa, while it is marginally less susceptible in the case 
of SeaDAS. Nonetheless, SOLID operates more uniformly across the 
dynamic range for both processors. 

Combined acdom(440) matchups acquired from Lake Winnipeg, Lake 
Pulse Network (LPN), and Minnesota lakes are depicted in Fig. 11. 
Overall, MDN outperforms Ficek, despite its parametrization based on a 
green-red band ratio, which is expected to reduce sensitivity to σ(Rrs). 
The Ficek model tends to overestimate absorption, and its predictions 
contain significant uncertainties (~ 80%) and noise as inferred by the 
RMSLD when SeaDAS output is examined. The noise is approximately 
equal for ACOLITE estimates through MDN and Ficek. It is evident that 
acdom(440) retrievals are largely affected by σ(Rrs) with QAA-CDOM 
being the most sensitive for both AC processors (Mannino et al., 
2014). The consistently negative biases in MDN predictions from Sea-
DAS agree well with the results of previous research (Pahlevan et al., 
2021a), corroborating biased low Rrs retrievals, particularly in the blue 
bands. It should also be noted that a preliminary, independent matchup 
assessment of these three sources manifested more considerable un-
certainties for the LPN (N = 29 and 46 for SeaDAS and ACOLITE, 

San Rafael

March-16- 2019 

South Bay

Salt ponds

Fig. 6. Water quality maps were produced via MDN for near-concurrent images of OLI, MSI, and OLCI onboard Landsat-8, Sentinel-2B, and Sentinel-3B, respectively, 
from March 16th, 2019. The images were processed to Rrs using ACOLITE. Labeled locations correspond to the sites sampled two days prior to the satellite overpasses. 
The near-surface Chla and TSS measurements for that day at station 24 were reported as ~ 10.7 mg m− 3 and 5 g m− 3, respectively, while 9 mg m− 3 and 7 g m− 3 were 
measured for station 30. 
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respectively) where impacts of photons emanating from adjacent land 
were apparent (Pahlevan et al., 2021a; Sterckx et al., 2011). 

6. Discussion 

We showed that the MDN model has the potential for producing 
consistent, high-quality WQ products from the past, present, and future 
satellite observations at a global scale. The model was demonstrated to 
be capable of generating WQ products spanning a wide range of Chla, 
TSS, and acdom(440) that conform to previous studies and expectations. 
It can also be readily adapted to heritage instruments by applying the 
respective RSRs. These missions and/or instruments include, but are not 
limited to, the Thematic Mapper (TM), Enhanced Thematic Mapper Plus 
(ETM+), Medium Resolution Imaging Spectrometer (MERIS), and 
Moderate Resolution Imaging Spectroradiometer (MODIS). The exten-
sion of MDNs to these instruments will enable the construction of a long- 
term record of WQ variability across scales from watersheds to rivers 
and to nearshore and offshore areas that represent distinct optical re-
gimes and offers a historical dataset to quantify trends and shifts in WQ 
indicators. 

To inform a plausible range of uncertainties for the model perfor-
mance, two commonly used approaches in the machine-learning domain 
were employed. The LOO method is possibly the preferred assessment 
subject to the availability of high-quality, methodically measured multi- 
source datasets, as well as datasets with overlapping distributions. This 
is not currently feasible and, owing to the diversity in in situ measure-
ment methodologies and laboratory analyses likely presents the worst- 
case model performance per category (Fig. 5). Our reported weighted 

average and median statistics are, however, reliable metrics to gauge the 
overall performance, and in combination with the hold-out method, 
offer a viable range of uncertainties (e.g., 26 to 65%). This implies that if 
the model is tested with unseen datasets that resemble our development 
data, the performance would compare with the statistical descriptors 
reported through the hold-out method (Table 2). Nevertheless, distinct 
test datasets would yield performances bearing a resemblance to the 
LOO approach (Table 3). 

We further demonstrated that depending on the AC processor, un-
certainties in MDN estimates vary differently for each WQ component. 
We presented two instances over the San Francisco Bay and Chesapeake 
Bay, for which MDN generated relatively consistent WQ products across 
three sensors. Given the range of model uncertainties, however, the 
difference in products from one sensor to another may reach >100% 
even when a perfect AC processor is applied (e.g., when ε for a Chla 
estimate from MSI is − 50% and the corresponding ε in an OLCI-derived 
estimate is 60%). Hence, we surmise that the products are consistent 
within the algorithm uncertainty and caution users on the interpretation 
and application until pixel-level uncertainties are provided (see below). 
These circumstances may exacerbate under more complex atmospheric 
conditions, such as in the presence of absorbing aerosols, haze, and thin 
clouds, where σ(Rrs) are relatively high. An excellent example for this 
scenario is the Upper Klamath Lake demonstration (Fig. 8), where TSS 
estimates through MSI appear to be higher in magnitude than those of 
OLI and OLCI. A brief assessment of ACOLITE Rrs at a few selected lo-
cations verified higher MSI Rrs spectra, which is anticipated to lead to 
overestimated TSS (Woźniak et al., 2010). The extracted spectra for the 
MN location are illustrated in Fig. 12. 

Nov- 07-2016 

Potomac 
River

Fig. 7. Similar to Fig. 6, but over the Chesapeake Bay on Nov 7th, 2016. Near-surface Chla and TSS measurements at CB5.1 W > 3 h before satellite overpasses were 
reported 6.2 mg m− 3 and 7.4 g m− 3, respectively. 
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In general, for Chla and TSS, compared to other retrieval algorithms 
applicable to 0.1 to 20 mg m− 3 (or g m− 3) shown in Figs. 9 and 10, MDN 
appears to be less sensitive to σ(Rrs) when SeaDAS is employed. MDN 
predictions of acdom(440) > 1 m− 1 however, are more impacted than 
those of Ficek, a band ratio model, while QAA-CDOM is proven to be 
highly sensitive to σ(Rrs). Since MDN applies all the available bands to 
predict acdom(440), an AC processor with better performance across all 
the bands (e.g., iCOR; Pahlevan et al. (2021a)) is expected to return 
more accurate retrievals. Yet, our matchup assessment using POLYMER 
Rrs (Steinmetz and Ramon, 2018) in conjunction with QAA-CDOM for 

Lake Winnipeg (not shown here) indicated ~50% uncertainties in 
acdom(440), suggesting >30% improved performance compared to MDN 
and Ficek. This analysis (not shown here) indicates that AC processors 
that may be impractical for global inland and coastal waters (Pahlevan 
et al., 2021a) may still offer viable products when combined with al-
gorithms that favorably offset σ(Rrs) for local and/or regional applica-
tions (e.g., Lake Winnipeg). More extensive matchup assessments (e.g., 
Chla > 20 mg m− 3) are critical to fully characterize the effects of σ(Rrs) 
on MDN estimates. Our analysis of these two AC processors serves as a 
sensitivity assessment to set user expectations of model performance in 

Fig. 8. Like Fig. 6, but showing the Upper Klamath Lake (Oregon) on July 29th,2019, a hypereutrophic lake with a long history of seasonal algal blooms. Near-surface 
Chla for RS, WR, and MN on July 30th were 57.0, 27.4, and 66.7 mg m− 3, respectively. 
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practice and further verifies the intricacies in multi-mission product 
developments. Per recommendations in Pahlevan et al. (2021a), we 
anticipate that the MDN model would show the least sensitivity in 
coastal waters (optical water types 1, 2, and 3) when used in association 
with SeaDAS; whereas its application to ACOLITE Rrs (or iCOR; De 
Keukelaere et al. (2018)) in inland waters, i.e., optical water types 4, 5, 
6, and 7 in Pahlevan et al. (2021), would lead to the most accurate re-
trievals. Further, improved handling of relative (sun-sensor) azimuth 
angles is necessary to characterize surface reflected skylight more 
accurately in the AC process and minimize banding effects present in OLI 
and MSI products. 

In the future, one avenue for improving the model performance is to 
augment the input feature space with band-ratio or line-height features 
that are expected to diminish the algorithm sensitivity to σ(Rrs) (O’Shea 
et al., 2021), which are primarily driven by uncertainties in the AC. One 
should, however, note that incorporating such features may worsen WQ 
estimates when denominators approach zero, typically due to over-
corrections for aerosol contributions. Another line of research that de-
serves attention is the extent to which TOA reflectance observations 
across these sensors are consistent. While the consistency between OLI 
and MSI is monitored on a routine basis (Helder et al., 2018), more ef-
forts are required to quantify their level of agreement with OLCI’s TOA 
products. It is also critical to provide per-pixel uncertainty estimates, 
which are inherently modeled by the MDN itself, i.e., the network 
directly parameterizes the uncertainty within the learned covariance 
matrices of the mixture components (Brando Guillaumes, 2017; Choi 
et al., 2018). This is directly applicable to the task of providing confi-
dence levels, as the negative log-likelihood loss function used to guide 
MDN training has been shown to provide accurate characterizations of 

estimated uncertainty, especially when used in combination with a 
bootstrap-aggregating (bagging) ensemble (Breiman, 1996; Lakshmi-
narayanan et al., 2017). The utility of our products in scientific studies 
and decision-making activities is meaningful only when pixel-level 
confidence intervals are generated and reported (IOCCG, 2019). 

While we anticipate the MDN model to produce adequately accurate 
WQ products at a global scale, we note that locally or regionally tuned 
ML models should generally be expected to outperform our global model 
because of the lesser complexity in the range and magnitude of vari-
ability across smaller spatial scales (although episodic events may not be 
well captured in such scenarios). These developments are particularly 
encouraged in regions where a robust atmospheric correction may not 
be feasible due to frequent haze, thick aerosol layers, or complex sur-
rounding topography and landcover types that may lead to strong ad-
jacency effects (Cao et al., 2020; Xue et al., 2019). 

7. Conclusion 

Building upon previous research efforts, this study formulated, 
developed, and demonstrated MDNs for simultaneous retrieval of opti-
cal WQ indicators, namely Chla, TSS, and acdom(440), from the Landsat- 
8, Sentinel-2, and Sentinel-3 missions. With a goal of producing 
consistent multi-mission global WQ products, to the extent possible, 
given inherent differences in the spectral, spatial, and radiometric 
sampling of the sensors, we developed an MDN model using co-located 
in situ radiometry and WQ data. The model performance was compre-
hensively compared with that of several existing algorithms using two 
different methods, which proved advancements in WQ product accu-
racies. These analyses suggest uncertainties ranging from 26 to 62% for 

Fig. 9. MSI Chla matchups for evaluating MDN approximations. Matching images were processed through ACOLITE (top row) and SeaDAS (bottom row) (Section 
3.2). The number of matchups for each processor is shown on the y-axes. 
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Chla and TSS, and 26 to 91% for acdom(440) from MSI- and OLCI-like Rrs 
spectra through MDN. For a spectral band configuration like that of OLI, 
37 to 85% uncertainties are expected for TSS and acdom(440), whereas 
this range spans from 59 to ~100% for Chla. Our demonstration maps 
exhibited that our model enables consistent multi-mission products 
within model uncertainties. Chla products for less eutrophic waters (e. 
g., large estuaries) are anticipated to agree well across OLI, MSI, and 
OLCI. In contrast, across more eutrophic waters (Chla >5 mg m− 3), MSI 
and OLCI should provide consistent products assuming negligible dif-
ferences in the respective TOA observations. Given high-quality Rrs 
products, we expect TSS and acdom(440) maps from the three missions to 
match very well within the uncertainty of the model across a diverse 
spectrum of optical regimes represented in our development database. 
Our matchup assessments through samples representing an acceptable 
range of WQ conditions (< 20 mg m− 3 of Chla, < 20 g m− 3 of TSS and 
acdom(440) < 2.5 m− 1) suggested that the sensitivity of MDN to σ(Rrs) is 
subject to the quality of Rrs across all the bands and requires further 
studies at global and regional scales. Although our MDN model is 
anticipated to offer practical global multi-mission WQ products, local 
and regional ML models developed using relevant data or tied to a 
specific AC processor may well be advantageous over our global model; 
hence, such exercises, particularly in areas with challenging atmo-
spheric and/or aquatic conditions, are immensely encouraged. These 
developments will likely better serve local communities and water 
resource managers with high demands for precise and timely WQ 
monitoring. Future advancements for the MDN model will include 
adding band-ratio and line-height features to the input feature space to 
maximize its resistance to σ(Rrs). Moreover, future models will provide 
accompanying per-pixel uncertainty estimates to allow users to choose 

fit-for-purpose products. The model is also planned to be extended to 
heritage instruments (e.g., MERIS) and hyperspectral sensors to 
demonstrate its utility for constructing long-term WQ products from the 
past into the future. 

Code and data availability 

The model can be accessed via https://github.com/STREAM-RS. The 
development dataset (Section 3.1) will soon be published in a data 
publication/repository. A copy will also be submitted to SeaBASS and 
other relevant open databases. 
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Fig. 11. Same as Fig. 10 but for acdom(440). Matching images were processed through ACOLITE (top row) and SeaDAS (bottom row) (Section 3.2). Matchups were 
acquired in Lake Winnipeg (circles) and several small lakes (triangles) across Canada (LPN) and the state of Minnesota. The number of matchups for each data source 
(Lake Winnipeg, LPN, and Minnesota) is 59, 46, and 11 for ACOLITE and 68, 29, and 93 for SeaDAS, respectively. 

Fig. 12. OLI, MSI, and OLCI derived Rrs spectra (retrieved through ACOLITE) 
supplied to MDN for WQ indicator estimation. The spectra correspond to the 
MN site in the Upper Klamath Lake (Figure 8). A higher magnitude of MSI Rrs 
leads to larger estimates of TSS. 
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Appendix A  

Table A 
A guide to the various data sources employed in the algorithm development and performance assessments as part of the leave-one-out experiment (Fig. 5 and Table 3). 
NA stands for Not Available, and N is the total number of datasets (irrespective of sensors or WQ indicators) available from each set.  

Data Source Index Data Source Index Data Source Index Sites (examples) N Prior Data Usage 

OLI MSI OLCI 

Chla TSS acdom(440) Chla TSS acdom(440) Chla TSS acdom(440) 

1 1 1 1 1 1 1 1 1 Lake Erie, Lake of the Woods, Lake 
Winnipeg, Lake Ontario (Canada) 

193 (Binding et al., 2018; Binding 
et al., 2019) 

2 2 2 2 2 2 2 2 2 Lake Garda, Lake Iseo, Lake Como, Lake 
Maggiore, Lake Trasimeno (Italy) 

332 (Bresciani et al., 2018; 
Bresciani et al., 2020; Warren 
et al., 2019) 

3 3 3 3 3 3 3 3 3 Lake Peipsi, Lake Saadjärv, Lake Kaiavere, 
Lake Võrtsjärv, Lake Vän, Lake Pärnu, Lake 
Nohipalu, Lake Holstre järv (Estonia), Lake 
Vänern (Sweden) 

193 (Alikas et al., 2020; Ansper and 
Alikas, 2019) 

4 4 4 4 4 4 4 4 4 Lake Kummerow (Germany) 47 (Dörnhöfer et al., 2018) 
5 5 5 5 5 5 5 5 5 Lake Hume, Wachtels Lagoon, Lake 

Victoria, Lake Burrinjuck, Lake Bonney 
Riverland, Lake Dartmouth (Australia) 

67 (Botha et al., 2020) 

6 6 6 6 6 6 6 6 6 Japura River, Tiete River, Lake Curuai, 
Lake Acai, Prana River (Brazil) 

49 (Cairo et al., 2020) (Jorge 
et al., 2017) (Maciel et al., 
2019) (da Silva et al., 2020) 

7 7 7 7 7 7 7 7 7 Lake Suwa, Lake Kasumigaura, Lake 
Dianchi, Lake Biwa, Lake Erhai (Japan/ 
China) 

64 (Jiang et al., 2021; Matsushita 
et al., 2015; Yang et al., 2011) 

NA 8 NA NA 8 NA NA 8 NA Grizzly Bay (California, USA) 19 (Jensen et al., 2019) 
NA 9 NA NA 9 NA NA 9 NA Northern Gulf of Mexico (Louisiana shelf) 68 
NA 10 NA NA 10 NA NA 10 NA Plum Island (Massachusetts, USA) 24 (Zhang et al., 2020) 
11 NA NA 11 NA NA 11 NA NA Curonian Lagoon (Lithuania) 54 NA 
12 NA 12 NA NA NA NA NA NA Lake IJsselmeer, Lake Loosdrecht (the 

Netherlands) 
424 (Simis et al., 2005) 

13 13 13 13 13 13 13 13 13 Fremont Lakes (Nebraska, USA) 164 (Gurlin et al., 2011; Moses 
et al., 2012b) 

14 14 NA 14 14 NA 14 14 NA Western Lake Erie (2014–2019) (USA) 278 NA 
15 15 15 NA 15 NA NA NA NA Lake Champlain, Lake Michigan, Lake Erie, 

Oneida Lake (USA) 
55 (Mouw et al., 2013) 

16 16 16 NA 16 NA NA NA NA Green Bay (Wisconsin, USA) 15 (Lee et al., 2013) 
17 17 17 17 17 17 17 17 17 Lake Koshkonong, Lake Kegonsa, Lake 

Waubesa (Wisconsin, USA) 
188 (Pahlevan et al., 2020) 

NA 18 NA NA 18 NA NA 18 NA Vietnam, France, Spain, and Guyana 
coastlines 

770 (Han et al., 2016; Loisel et al., 
2017) 

19 19 NA 19 19 NA 19 19 NA Eagle Creek Reservoir, Morse Reservoir 
(Indiana, USA) 

192 (Li et al., 2015; Song et al., 
2013) 

20 20 20 20 20 20 20 20 20 Lake Garda, Lake Iseo, Lake Como, Lake 
Maggiore, Lake Trasimeno (Italy) 

17 (Bresciani et al., 2018; 
Bresciani et al., 2020; Warren 
et al., 2019) 

21 21 NA 21 21 NA 21 21 NA South Korea coastal waters 53 (Pahlevan et al., 2020) 
22 NA NA 22 NA NA 22 NA NA Lake Xingyun (China) 20 NA 
23 23 23 23 23 23 23 23 23 Mantua lakes (Italy) 23 (Pinardi et al., 2018) 
24 NA NA 24 NA NA 24 NA NA Massachusetts Bay (Massachusetts, USA) 3 (Wei et al., 2016) 
25 25 25 25 25 25 25 25 25 Cannon Lake, Sakatah Lake, Francis Lake, 

Minnetonka Lake (Minnesota, USA) 
12 (Page et al., 2019) 

26 NA 26 26 NA 26 26 NA 26 Mississippi ponds 41 (Wang et al., 2016) 
27 27 27 27 27 27 27 27 27 Lake Ngaroto, Lake Rotomanuka, Lake 

Waikare, Lake Rotokakahi, Lake Ohau, 
Lake Manapouri, Lake Karaka (New 
Zealand) 

236 (Balasubramanian et al., 2020) 

28 NA NA 28 NA NA 28 NA NA Chesapeake Bay (USA) 43 (Pahlevan et al., 2020) 
29 29 NA 29 29 NA 29 29 NA Apalachicola Bay, St. Mary’s River, Roat 

West Carib, Edisto River, Bayou Cumbest, 
Delaware Bay, Silver Lake (USA) 

759 (Balasubramanian et al., 2020) 

30 NA 30 30 NA 30 30 NA 30 West Florida shelf, Chesapeake Bay, 
Monterey Bay (NASA’s SeaBASS, USA) 

1042 (Werdell and Bailey, 2005) 

NA 31 NA NA 31 NA NA 31 NA Gironde and Scheldt estuaries (France/ 
Belgium) 

79 (Knaeps et al., 2018) 

32 32 NA 32 32 NA 32 32 NA Hartbeespoort, Theewaterskloof and 
Loskop dams (South Africa) 

63 (Matthews, 2020; Matthews 
and Bernard, 2013) 

33 NA NA 33 NA NA 33 NA NA Fifty-three reservoirs and lakes in Spain 250 (Ruiz-Verdú et al., 2008) 
34 NA 34 34 NA NA 34 NA 34 Lake Taihu (2011) (China) 45 (Wang et al., 2016) 
35 NA 35 35 NA 35 35 NA 35 Lake Taihu (2008), Lake Chaohu, Lake 

Hongze (China) 
260 (Cao et al., 2020) 

36 NA NA 36 NA NA 36 NA NA Lake Trasimeno and Curonian lagoon 
(Italy/Lithuania) 

20 (Bresciani et al., 2012; 
Giardino et al., 2015) 

37 NA NA 37 NA NA 37 NA NA Pinto Lake (California, USA) 9 (Kudela et al., 2015) 

(continued on next page) 
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Table A (continued ) 

Data Source Index Data Source Index Data Source Index Sites (examples) N Prior Data Usage 

OLI MSI OLCI 

Chla TSS acdom(440) Chla TSS acdom(440) Chla TSS acdom(440) 

38 NA NA 38 NA NA 38 NA NA Rincon del Bonete Lake and Paso Palmar 
Lake on Negro river (Uruguay) 

48 (Smith et al. 2021) 

39 39 NA 39 39 NA 39 39 NA Thac Ba Reservoir, Ba Be Lake, Hanoi Lake, 
Ha Long Bay (Vietnam) 

115 (Ha et al., 2017b; Vinh et al., 
2019) 

40 NA NA 40 NA NA 40 NA NA Lake Hoan Kiem, Lake Linh Dam, West 
Lake, Lan Van Quan (Vietnam) 

70 (Ha et al., 2017a) 

41 41 41 41 41 41 41 41 41 Western Lake Erie (2013, 2014) (USA) 36 (Moore et al., 2019; Moore 
et al., 2017) 

42 42 42 42 42 42 42 42 42 South_Green_Bay AERONET-OC site 
(Wisconsin, USA) 

6 (Pahlevan et al., 2021b)  

Fig. A. Average hyperspectral Rrs spectra associated with the 42 data sources are shown in three plots (each showing 14 samples). Note that the often-observed noise 
(peaks/troughs) in the ~ 760 nm region did not affect our developments/assessments (see Table B for OLI, MSI, and OLCI’s spectral bands), and not all the spectra 
cover the full 400–800 nm range. 

Appendix B  

Table B 
Relevant characteristics of the sensors evaluated throughout this study.   

OLI MSI OLCI 

Nominal spatial resolution (m) 30 10, 20, 60 300 
Swath (km) 185 290 1270 
# of relevant bands < 800 nm 4 7 13 
Spectral bands (nm) 443, 482, 560, 655 443, 492, 560, 665, 705, 740, 783 410, 443, 490, 510, 560,620, 665, 673, 681, 708, 753, 778 
Full-width-half-maximum (nm) 20–60 20–65 ≤ 15 
Lifetime 2013 – 2015 – 2016 – 
Data source https://earthexplorer.usgs.gov https://scihub.copernicus.eu  

Appendix C 

Gilerson 2B (GI2B) - (Gilerson et al., 2010) 

Chl = [35.75*(Rrs(708)/Rrs(665) ) − 19.3 ]1.124 

Gons (Gons et al., 2002) 

bb = 1.61πRrs(778)/(0.082 − 0.6πRrs(778) )

Chl =
[
(Rrs(708)/Rrs(665) )*(0.7+ bb) − 0.4 − bb

1.063 ]/0.016 

Gurlin 2B (GU2B) - (Gurlin et al., 2011) 

ϕ = Rrs(708)/Rrs(665)

ChlG2B = 25.28ϕ2 + 14.85ϕ − 15.18 

Blend (Smith et al., 2018) 

ϕ = Rrs(708)/Rrs(665)
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α1 = (ϕ − 0.75)/(1.15 − 0.75)

α2 = (1.15 − ϕ)/(1.15 − 0.75)

Chl = α1ChlG2B +α2ChlOCx 

MDN (Pahlevan et al., 2020;(Smith et al., 2021) ). 
Codes are accessible via: https://github.com/STREAM-RS/STREAM-RS 
SOLID (Balasubramanian et al., 2020) 

bbp(865) = (Rrs(865) (aw(865)+ bbw(865)+ 0.5 ) − 0.105 bbw(865) )
/
(0.105 − Rrs(865) )

TSS = { 

53.736 bbp
MDN(665)0.8559 if Rrs(492). < Rrs(665). < Rrs(560)

224.43 bbp(865) − 12.575 if Rrs(560). < Rrs(665)&Rrs(740). > 0.01  

53.736 bbp
QAA(665)0.8559 if Rrs(560). < Rrs(492)

53.736 bbp
MDN(665)0.8559 else 

} 
*bbp

MDN is derived from a MDN model trained with a synthetic dataset (Balasubramanian et al., 2020). 
Code is available via: https://github.com/STREAM-RS/STREAM-RS. 
Nechad (Nechad et al., 2010) 

TSS = 1.74 + (355.85*πRrs(665) )/(1 − πRrs(665)/1728 )

Novoa (Novoa et al., 2017) 

Cgreen = 130.1πRrs (561)

Cred = 531.5πRrs(655)

Cnir = 37150πRrs(865)2 + 1751πRrs(865)

α1 = log(0.016/(πRrs(665) ) )/log(0.016/0.007)

β1 = log((πRrs(665) )/0.007 )/log(0.016/0.007)

α2 = log(0.120/(πRrs(665) ) )/log(0.120/0.080)

β2 = log((πRrs(665) )/0.080 )/log(0.120/0.080)

TSS = { 

Cgreen if πRrs(655). < 0.007  

α1Cgreen + β1Cred if 0.007 ≤ πRrs(655) ≤ 0.016  

Cred if 0.016 < πRrs(655). < 0.080  

α2Cred + β2Cnir if 0.080 ≤ πRrs(655) ≤ 0.120  

Cnir if 0.120 < πRrs(655)

} 
Ficek et al., 2011 

acdom(440) = 3.65 (Rrs(570)/Rrs(655) )− 1.93 

Mannino et al. 2007: 

acdom(440) = − 0.0736 loge(0.408 Rrs(490)/Rrs(555) − 0.173 )

QAA-CDOM: 
The QAA procedure (http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf) was implemented. From the reported IOPs, acdom(440) 

was estimated as follows 

ap = 0.63 bbp
0.88  

acdom(440) = a(440) − aw(440) − ap(440)

Where ap and aw represent pigment and pure water absorption, respectively, and bbp is the particulate backscattering. 
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Appendix D

Fig. D. OLI Chla matchups for evaluating MDN retrievals. Matching images were processed through ACOLITE (top row) and SeaDAS (bottom row) (Section 3.2). The 
number of matchups for each processor is shown on the y-axes. 
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